organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-1,2-Bis[4-(prop-2-yn-1-yl­­oxy)benzyl­­idene]hydrazine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 21 September 2011; accepted 5 October 2011; online 8 October 2011)

The mol­ecule of the title compound, C20H16N2O2, is centrosymmetric with the mid-point of the central N—N bond located on an inversion center. The configuration around the C=N bond is E. The whole mol­ecule (except for the H atoms) is approximately planar, with an r.m.s. deviation of 0.07 Å. In the crystal, the presence of weak inter­molecular C—H⋯O hydrogen bonding involving each acetyl­ene H atom and the adjacent phen­oxy O atom results in the formation of supra­molecular chains.

Related literature

For the structure of (E,E)-1,2-bis­[3-meth­oxy-4-(prop-2-yn-1-yl­oxy)benzyl­indene]­hydrazine see: Al-Mehana et al. (2011[Al-Mehana, W. N. A., Shakir, R. M., Yahya, R., Abd Halim, S. N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1659.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O2

  • Mr = 316.35

  • Monoclinic, P 21 /n

  • a = 7.6598 (1) Å

  • b = 8.1117 (1) Å

  • c = 12.9966 (2) Å

  • β = 94.466 (1)°

  • V = 805.08 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.16 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.996

  • 7404 measured reflections

  • 1847 independent reflections

  • 1698 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 1.01

  • 1847 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.928 (15) 2.383 (15) 3.2511 (13) 155.7 (13)
Symmetry code: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The preceeding study reports the crystal structure of (E,E)-1,2-Bis[3-methoxy-4-(prop-2-yn-1-yloxy)benzylindene]hydrazine, in which the molecules are linked by C—H···O interaction between methylene H and methoxy O atoms, resulting in the formation of supramolecular chains (Al-Mehana et al. 2011). The title compound, C20H16N2O2, without the methoxy substituent on the aromatic ring, is also centrosymmetric around the central azine bond [N1—N1i = 1.412 (2) Å; symmetry operation i: -x + 1, -y - 1, -z + 2]. The molecule also adopts the E configuration around the N1=C10 bond [1.2825 (13) Å]. The title compound differs from the previous reported structure as it adopts a different type of C—H···O interaction in its crystal packing. In this case, each acetylene-H atom interacts with the adjacent phenoxy-O [C1—H1···O1ii =3.2511 (13) Å; symmetry operation ii: -0.5 - x, 1/2 + y, 1.5 - z]] resulting in the formation of a supramolecular network (Fig. 2).

Related literature top

For the structure of (E,E)-1,2-bis[3-methoxy-4-(prop-2-yn-1-yloxy)benzylindene]hydrazine see: Al-Mehana et al. (2011).

Experimental top

4,4'-(E, E)-hydrazine-1,2-diylidene bis(methan-1-yl-1-ylidene)diphenol (L1) was prepared by stirring 4-hydroxybenzaldehyde (3 g, 24.5 mmol), hydrazine sulfate (1.65 g, 12.6 mmol) and 1.5 ml of concentrated ammonium solution in a mixture of ethanol and water (20 ml) for 3 h. The product was obtained as a yellow crystalline solid, m.p. 558 K. A mixture of the diphenol, L1 (2 g, 8.3 mmol) and anhydrous potassium carbonate (1.84 g, 8.6 mmol) in 20 ml of dry acetone was stirred for 20 minutes. Then an excess of propargyl bromide (2.28 g, 19.2 mmol) was added dropwise and the resulting mixture was left under reflux for 48 h. The solvent was then evaporated under reduced pressure. The product was extracted with 100 ml of diethyl ether. The organic layer was washed with brine and dried with MgSO4. A yellow amorphous solid was obtained upon slow evaporation of the ethereal solution and was recrystallized with ethyl acetate-methanol mixture to yield the pure yellow crystal, m.p. 453 K.

Refinement top

The acetylene H-atom was located in a difference Fourier map, and was refined isotropically. Other H atoms were placed at calculated positions (C–H 0.93 to 0.98 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (E,E)-1,2-bis[4-(prop-2-yn-1-yloxy)benzylindene]hydrazine showing 70% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the supramolecular network in the title compound showing the C—H···O interactions.
(E,E)-1,2-Bis[4-(prop-2-yn-1-yloxy)benzylidene]hydrazine top
Crystal data top
C20H16N2O2F(000) = 332
Mr = 316.35Dx = 1.305 Mg m3
Monoclinic, P21/nMelting point: 453 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.6598 (1) ÅCell parameters from 4790 reflections
b = 8.1117 (1) Åθ = 3.0–28.3°
c = 12.9966 (2) ŵ = 0.09 mm1
β = 94.466 (1)°T = 100 K
V = 805.08 (2) Å3Block, yellow
Z = 20.30 × 0.16 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1847 independent reflections
Radiation source: fine-focus sealed tube1698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.975, Tmax = 0.996k = 1010
7404 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.215P]
where P = (Fo2 + 2Fc2)/3
1847 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H16N2O2V = 805.08 (2) Å3
Mr = 316.35Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.6598 (1) ŵ = 0.09 mm1
b = 8.1117 (1) ÅT = 100 K
c = 12.9966 (2) Å0.30 × 0.16 × 0.05 mm
β = 94.466 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1847 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1698 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.996Rint = 0.021
7404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.32 e Å3
1847 reflectionsΔρmin = 0.26 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03607 (9)0.22226 (8)0.83985 (5)0.0188 (2)
N10.44709 (10)0.44532 (10)0.96895 (6)0.0200 (2)
C10.20330 (14)0.57486 (13)0.80143 (8)0.0249 (2)
H10.285 (2)0.6468 (19)0.7698 (12)0.040 (4)*
C20.09922 (13)0.48192 (12)0.84201 (7)0.0198 (2)
C30.02396 (12)0.37108 (11)0.89870 (7)0.0185 (2)
H3A0.13810.42290.90890.022*
H3B0.01660.34620.96580.022*
C40.13140 (11)0.09661 (11)0.88750 (7)0.0165 (2)
C50.14991 (13)0.04424 (12)0.82692 (7)0.0196 (2)
H50.10060.04730.75920.024*
C60.24152 (12)0.17843 (12)0.86805 (7)0.0192 (2)
H60.25330.27210.82790.023*
C70.31723 (12)0.17477 (11)0.97012 (7)0.0179 (2)
C80.29749 (12)0.03295 (12)1.02859 (7)0.0186 (2)
H80.34730.02931.09610.022*
C90.20532 (12)0.10295 (12)0.98860 (7)0.0181 (2)
H90.19320.19661.02870.022*
C100.42043 (12)0.31051 (12)1.01685 (7)0.0188 (2)
H100.46890.29871.08430.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (4)0.0157 (4)0.0182 (3)0.0023 (2)0.0021 (3)0.0015 (2)
N10.0182 (4)0.0175 (4)0.0238 (4)0.0006 (3)0.0008 (3)0.0045 (3)
C10.0271 (5)0.0247 (5)0.0224 (5)0.0053 (4)0.0016 (4)0.0010 (4)
C20.0215 (5)0.0192 (5)0.0187 (4)0.0009 (4)0.0008 (3)0.0028 (3)
C30.0198 (5)0.0161 (4)0.0191 (4)0.0004 (3)0.0011 (3)0.0021 (3)
C40.0146 (4)0.0155 (4)0.0195 (5)0.0007 (3)0.0014 (3)0.0018 (3)
C50.0216 (5)0.0197 (5)0.0173 (4)0.0006 (3)0.0001 (3)0.0008 (3)
C60.0211 (5)0.0159 (4)0.0207 (5)0.0002 (3)0.0021 (3)0.0014 (3)
C70.0162 (4)0.0169 (5)0.0208 (5)0.0013 (3)0.0028 (3)0.0028 (3)
C80.0175 (4)0.0204 (5)0.0176 (4)0.0020 (3)0.0001 (3)0.0012 (3)
C90.0183 (5)0.0171 (4)0.0191 (4)0.0011 (3)0.0019 (3)0.0017 (3)
C100.0166 (4)0.0192 (5)0.0205 (4)0.0019 (3)0.0009 (3)0.0030 (3)
Geometric parameters (Å, º) top
O1—C41.3730 (11)C5—C41.4010 (13)
O1—C31.4359 (11)C5—H50.9300
N1—C101.2825 (13)C6—H60.9300
N1—N1i1.4120 (15)C7—C81.3934 (13)
C1—H10.929 (16)C7—C61.4062 (13)
C2—C11.1902 (15)C8—C91.3881 (13)
C2—C31.4606 (13)C8—H80.9300
C3—H3A0.9700C9—H90.9300
C3—H3B0.9700C10—C71.4599 (13)
C4—C91.3906 (13)C10—H100.9300
C5—C61.3800 (13)
O1—C4—C9124.18 (8)C5—C6—H6119.7
O1—C4—C5115.18 (8)C6—C7—C10123.14 (9)
O1—C3—C2108.35 (7)C6—C5—C4119.75 (9)
O1—C3—H3A110.0C6—C5—H5120.1
O1—C3—H3B110.0C7—C6—H6119.7
N1—C10—C7122.86 (9)C7—C10—H10118.6
N1—C10—H10118.6C7—C8—H8119.2
C1—C2—C3176.00 (10)C8—C9—C4118.83 (9)
C2—C3—H3A110.0C8—C9—H9120.6
C2—C3—H3B110.0C8—C7—C6118.53 (9)
C2—C1—H1179.5 (10)C8—C7—C10118.30 (8)
H3A—C3—H3B108.4C9—C4—C5120.63 (9)
C4—C5—H5120.1C9—C8—C7121.68 (9)
C4—O1—C3115.98 (7)C9—C8—H8119.2
C4—C9—H9120.6C10—N1—N1i111.36 (10)
C5—C6—C7120.57 (9)
O1—C4—C9—C8179.33 (8)C5—C4—C9—C80.16 (13)
N1i—N1—C10—C7179.14 (9)C6—C5—C4—O1179.17 (8)
N1—C10—C7—C8179.44 (9)C6—C5—C4—C90.36 (14)
N1—C10—C7—C61.46 (15)C6—C7—C8—C90.16 (14)
C1—C2—C3—O1140.8 (15)C7—C8—C9—C40.10 (14)
C3—O1—C4—C93.86 (13)C8—C7—C6—C50.05 (14)
C3—O1—C4—C5176.63 (7)C10—C7—C8—C9178.23 (8)
C4—O1—C3—C2172.83 (7)C10—C7—C6—C5177.92 (8)
C4—C5—C6—C70.31 (14)
Symmetry code: (i) x+1, y1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1ii0.928 (15)2.383 (15)3.2511 (13)155.7 (13)
Symmetry code: (ii) x1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H16N2O2
Mr316.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.6598 (1), 8.1117 (1), 12.9966 (2)
β (°) 94.466 (1)
V3)805.08 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.16 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
7404, 1847, 1698
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.01
No. of reflections1847
No. of parameters113
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.928 (15)2.383 (15)3.2511 (13)155.7 (13)
Symmetry code: (i) x1/2, y+1/2, z+3/2.
 

Acknowledgements

We thank the University of Malaya (FRGS grant No. FP001/2010 A) for supporting this study.

References

First citationAl-Mehana, W. N. A., Shakir, R. M., Yahya, R., Abd Halim, S. N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds