organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (E)-3-(2-bromo-4,5-dimeth­­oxy­benzyl­­idene)di­thio­carbazate

aCollege of Biological and Environmental Engineering, Zhejiang University of Technology, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 23 September 2011; accepted 25 September 2011; online 12 October 2011)

The title compound, C11H13BrN2O2S2, was obtained from the condensation reaction of methyl dithio­carbazate and 2-bromo-4,5-dimeth­oxy­benzaldehyde. In the mol­ecule, the benzene ring and dithio­carbazate fragment are located on opposite sides of the C=N bond, showing an E conformation. The dithio­carbazate fragment is approximately planar (r.m.s deviation = 0.0281 Å) and the mean plane is oriented at a dihedral angle of 11.38 (15)° with respect to the benzene ring. In the crystal, pairs of N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For applications of hydrazone and its derivatives in the biological field, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]). For related structures, see: Shan et al. (2008a[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1014.],b[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1024.],c[Shan, S., Wang, S.-H., Tian, Y.-L., Wang, W.-L. & Xu, Y.-L. (2008c). Acta Cryst. E64, o1015.]). For the synthesis, see: Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13BrN2O2S2

  • Mr = 349.26

  • Triclinic, [P \overline 1]

  • a = 5.2460 (12) Å

  • b = 11.781 (5) Å

  • c = 12.400 (5) Å

  • α = 102.347 (3)°

  • β = 100.930 (4)°

  • γ = 101.874 (4)°

  • V = 710.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.18 mm−1

  • T = 293 K

  • 0.42 × 0.28 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.73, Tmax = 0.82

  • 5185 measured reflections

  • 2553 independent reflections

  • 2051 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.079

  • S = 1.02

  • 2553 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.86 2.62 3.456 (4) 166
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrazone and its derivatives have shown the potential application in the biological field (Okabe et al., 1993; Hu et al., 2001). As part of the ongoing investigation on anti-cancer compounds, the title compound has recently been prepared in our laboratory and its crystal structure is presented here.

In the molecules, the benzene ring and dithiocarbazate fragment are located on the opposite sides of the CN bond, showing the E-configuration. This agrees with those found in the structures reported previously (Shan et al., 2008a,b). The dithiocarbazate fragment is approximately planar, the r.m.s deviation being 0.0281 Å; its mean plane is oriented with respect to the benzene ring at 11.38 (15)°, similar to that found in a related structure (Shan et al. 2008c). In the crystal structure, intermolecular N—H···S hydrogen bonding links molecules to form the centro-symmetric dimers (Table 1).

Related literature top

For applications of hydrazone and its derivatives in the biological field, see: Okabe et al. (1993); Hu et al. (2001). For related structures, see: Shan et al. (2008a,b,c). For the synthesis, see: Hu et al. (2001).

Experimental top

Methyl dithiocarbazate was synthesized as described previously by Hu et al. (2001). Methyl dithiocarbazate (0.24 g, 2 mmol) and 2-bromo-4,5-dimethoxybenzaldehyde (0.49 g, 2 mmol) were dissolved in ethanol (20 ml), then acetic acid (0.2 ml) was added to the ethanol solution with stirring. The mixture solution was refluxed for 6 h. After cooling to room temperature, microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with absolute methanol to obtain colourless single crystals of the title compound.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms).
Methyl (E)-3-(2-bromo-4,5-dimethoxybenzylidene)dithiocarbazate top
Crystal data top
C11H13BrN2O2S2Z = 2
Mr = 349.26F(000) = 352
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2460 (12) ÅCell parameters from 2553 reflections
b = 11.781 (5) Åθ = 2.8–25.2°
c = 12.400 (5) ŵ = 3.18 mm1
α = 102.347 (3)°T = 293 K
β = 100.930 (4)°Prism, colorless
γ = 101.874 (4)°0.42 × 0.28 × 0.25 mm
V = 710.4 (4) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2553 independent reflections
Radiation source: fine-focus sealed tube2051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 2.8°
ω scansh = 56
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1411
Tmin = 0.73, Tmax = 0.82l = 1414
5185 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
2553 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C11H13BrN2O2S2γ = 101.874 (4)°
Mr = 349.26V = 710.4 (4) Å3
Triclinic, P1Z = 2
a = 5.2460 (12) ÅMo Kα radiation
b = 11.781 (5) ŵ = 3.18 mm1
c = 12.400 (5) ÅT = 293 K
α = 102.347 (3)°0.42 × 0.28 × 0.25 mm
β = 100.930 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2553 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2051 reflections with I > 2σ(I)
Tmin = 0.73, Tmax = 0.82Rint = 0.026
5185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
2553 reflectionsΔρmin = 0.35 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.29930 (7)0.52287 (3)0.29304 (3)0.06212 (15)
S11.14891 (18)0.35920 (7)0.09979 (7)0.0586 (2)
S20.95417 (16)0.13601 (7)0.02534 (7)0.0499 (2)
N10.7198 (5)0.2821 (2)0.11142 (18)0.0411 (5)
N20.8444 (5)0.3398 (2)0.04224 (18)0.0438 (6)
H2N0.83600.41210.04280.053*
O10.3795 (4)0.0498 (2)0.38554 (17)0.0620 (6)
O20.1403 (4)0.1803 (2)0.49916 (17)0.0676 (6)
C10.3386 (5)0.3734 (3)0.3172 (2)0.0438 (7)
C20.2229 (5)0.3338 (3)0.3994 (2)0.0487 (7)
H20.13320.38100.44020.058*
C30.2405 (6)0.2269 (3)0.4200 (2)0.0480 (7)
C40.3727 (5)0.1538 (3)0.3573 (2)0.0459 (7)
C50.4848 (5)0.1938 (3)0.2762 (2)0.0424 (7)
H50.57210.14570.23480.051*
C60.4722 (5)0.3035 (2)0.2539 (2)0.0399 (6)
C70.6023 (5)0.3466 (3)0.1714 (2)0.0418 (6)
H70.60010.42270.16210.050*
C80.9769 (5)0.2856 (2)0.0251 (2)0.0392 (6)
C91.1501 (7)0.0933 (3)0.1230 (3)0.0603 (9)
H9A1.08990.11460.19230.090*
H9B1.12960.00810.13930.090*
H9C1.33580.13450.08990.090*
C100.5363 (7)0.0214 (3)0.3356 (3)0.0635 (9)
H10A0.46180.04970.25480.095*
H10B0.53560.08880.36750.095*
H10C0.71740.02630.35060.095*
C110.0060 (7)0.2495 (4)0.5675 (3)0.0780 (12)
H11A0.12960.32450.61140.117*
H11B0.05970.20570.61790.117*
H11C0.14190.26480.51920.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0681 (3)0.0539 (2)0.0700 (2)0.02466 (17)0.02423 (18)0.01301 (17)
S10.0871 (6)0.0518 (5)0.0646 (5)0.0304 (4)0.0508 (5)0.0325 (4)
S20.0635 (5)0.0409 (4)0.0588 (5)0.0197 (4)0.0304 (4)0.0217 (4)
N10.0497 (14)0.0445 (14)0.0364 (12)0.0116 (11)0.0202 (11)0.0177 (11)
N20.0615 (16)0.0401 (13)0.0443 (13)0.0190 (12)0.0286 (12)0.0215 (11)
O10.0794 (16)0.0694 (15)0.0599 (13)0.0274 (12)0.0413 (12)0.0352 (12)
O20.0721 (15)0.0933 (17)0.0550 (13)0.0250 (13)0.0420 (12)0.0298 (12)
C10.0391 (16)0.0493 (17)0.0406 (15)0.0114 (13)0.0083 (13)0.0083 (13)
C20.0431 (17)0.070 (2)0.0359 (15)0.0200 (15)0.0177 (13)0.0067 (15)
C30.0424 (17)0.070 (2)0.0361 (15)0.0117 (15)0.0180 (13)0.0177 (15)
C40.0435 (17)0.0566 (19)0.0369 (15)0.0064 (14)0.0137 (13)0.0139 (14)
C50.0459 (17)0.0515 (18)0.0346 (14)0.0148 (14)0.0190 (13)0.0112 (13)
C60.0382 (15)0.0470 (17)0.0354 (14)0.0094 (13)0.0133 (12)0.0106 (13)
C70.0481 (17)0.0421 (16)0.0391 (15)0.0117 (13)0.0159 (13)0.0142 (13)
C80.0474 (16)0.0425 (16)0.0346 (14)0.0158 (13)0.0144 (13)0.0166 (12)
C90.073 (2)0.0517 (19)0.073 (2)0.0287 (17)0.0390 (18)0.0213 (17)
C100.083 (2)0.062 (2)0.064 (2)0.0289 (19)0.0369 (19)0.0264 (17)
C110.067 (2)0.124 (3)0.0492 (19)0.024 (2)0.0377 (18)0.016 (2)
Geometric parameters (Å, º) top
Br—C11.893 (3)C3—C41.411 (4)
S1—C81.662 (3)C4—C51.376 (4)
S2—C81.741 (3)C5—C61.390 (4)
S2—C91.789 (3)C5—H50.9300
N1—C71.280 (3)C6—C71.454 (4)
N1—N21.381 (3)C7—H70.9300
N2—C81.328 (3)C9—H9A0.9600
N2—H2N0.8600C9—H9B0.9600
O1—C41.349 (3)C9—H9C0.9600
O1—C101.421 (4)C10—H10A0.9600
O2—C31.360 (3)C10—H10B0.9600
O2—C111.431 (4)C10—H10C0.9600
C1—C21.395 (4)C11—H11A0.9600
C1—C61.398 (4)C11—H11B0.9600
C2—C31.355 (4)C11—H11C0.9600
C2—H20.9300
C8—S2—C9101.93 (13)N1—C7—C6121.3 (3)
C7—N1—N2113.4 (2)N1—C7—H7119.3
C8—N2—N1121.0 (2)C6—C7—H7119.3
C8—N2—H2N119.5N2—C8—S1120.9 (2)
N1—N2—H2N119.5N2—C8—S2114.23 (19)
C4—O1—C10118.1 (2)S1—C8—S2124.83 (16)
C3—O2—C11117.8 (3)S2—C9—H9A109.5
C2—C1—C6120.9 (3)S2—C9—H9B109.5
C2—C1—Br117.3 (2)H9A—C9—H9B109.5
C6—C1—Br121.8 (2)S2—C9—H9C109.5
C3—C2—C1120.3 (3)H9A—C9—H9C109.5
C3—C2—H2119.8H9B—C9—H9C109.5
C1—C2—H2119.8O1—C10—H10A109.5
C2—C3—O2125.5 (3)O1—C10—H10B109.5
C2—C3—C4120.3 (2)H10A—C10—H10B109.5
O2—C3—C4114.2 (3)O1—C10—H10C109.5
O1—C4—C5126.1 (3)H10A—C10—H10C109.5
O1—C4—C3115.1 (2)H10B—C10—H10C109.5
C5—C4—C3118.7 (3)O2—C11—H11A109.5
C4—C5—C6122.3 (3)O2—C11—H11B109.5
C4—C5—H5118.9H11A—C11—H11B109.5
C6—C5—H5118.9O2—C11—H11C109.5
C5—C6—C1117.5 (2)H11A—C11—H11C109.5
C5—C6—C7121.5 (2)H11B—C11—H11C109.5
C1—C6—C7121.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.862.623.456 (4)166
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H13BrN2O2S2
Mr349.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.2460 (12), 11.781 (5), 12.400 (5)
α, β, γ (°)102.347 (3), 100.930 (4), 101.874 (4)
V3)710.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.18
Crystal size (mm)0.42 × 0.28 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.73, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
5185, 2553, 2051
Rint0.026
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 1.02
No. of reflections2553
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.35

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.862.623.456 (4)166
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014–2017.  CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1014.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Wang, S.-H., Tian, Y.-L., Wang, W.-L. & Xu, Y.-L. (2008c). Acta Cryst. E64, o1015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds