organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­yl)-1-(phenyl­sulfon­yl)propan-2-ol

aCollege of Plant Protection, Northwest A&F University, Yangling 712100, People's Republic of China, and bCollege of Science, Northwest A&F University, Yangling 712100, People's Republic of China
*Correspondence e-mail: duzt@nwsuaf.edu.cn

(Received 24 September 2011; accepted 28 September 2011; online 5 October 2011)

The title compound, C16H18O3S, features a U-shape mol­ecular structure with a dihedral angle between the terminal benzene rings of 20.8 (1)°. An intra­molecular O—H⋯O hydrogen bond helps to stabilize the mol­ecular structure. Inter­molecular classical O—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the use of organic sulfones as inter­mediates in organic synthesis, see: Consiglio et al. (1983[Consiglio, G., Morandini, F. & Piccolo, O. (1983). Chem. Commun. pp. 112-114.]); Wenkert et al. (1983[Wenkert, E., Fernandes, J. B., Michelotti, E. L. & Swindell, C. S. (1983). Synthesis, pp. 701-703.]); Trost (1991[Trost, B. M. (1991). Comprehensive Organic Synthesis, Vol 3. New York: Pergamon Press.]). For related structures, see: Gu et al. (2004[Gu, J.-M., Zhang, Y.-C. & Hu, X.-R. (2004). Acta Cryst. E60, o1115-o1116.]); Garst et al. (2006[Garst, M. E., Dolby, L. J., Esfandiari, S., Okrent, R. A. & Avey, A. A. (2006). J. Org. Chem. 71, 553-556.]); Ding et al., (2009[Ding, Z.-H., Yang, J., Wang, T., Shen, S.-X. & Zhang, Y.-W. (2009). Chem. Commun. pp. 571-573.]); Groszek et al. (2006[Groszek, G., Blazej, S., Brud, A., Swierczynski, D. & Lemek, T. (2006). Tetrahedron, 62, 2622-2630.]); Shi et al. (2011[Shi, B.-J., Ding, L.-C., Chen, G. & Du, Z.-T. (2011). Acta Cryst. E67, o2589.]). For background to our program to synthesis new herbicide derivatives, see: Du et al. (2011[Du, Z.-T., Wang, Y., Ma, W.-L., Lv, D. & Yu, H.-R. (2011). Nat. Prod. Commun. 6, 167-169.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O3S

  • Mr = 290.36

  • Orthorhombic, P b c a

  • a = 15.6696 (14) Å

  • b = 11.7501 (11) Å

  • c = 15.9042 (16) Å

  • V = 2928.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.38 × 0.29 × 0.21 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.919, Tmax = 0.954

  • 13679 measured reflections

  • 2578 independent reflections

  • 1590 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.141

  • S = 1.08

  • 2578 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 2.14 2.848 (3) 144
O1—H1⋯O3i 0.82 2.45 3.103 (3) 137
C15—H15⋯O2ii 0.93 2.48 3.403 (5) 173
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic sulfones have been proven as good intermediates in organic synthesis (Consiglio et al., 1983; Wenkert et al., 1983; Trost 1991). As a result of our program of synthesis of new herbcide derivatives (Du et al., 2011), we obtained a intermediate compound C16H18O3S (I) in the synthesis and structure are reported here. There are two benzene rings in the title compound and they exhibit face-to-face conformation. The dihedral angle between the two benzene rings is 20.8 (1)°. The molecules of I are crystalized in Pbca space group which differs from that of 2-methoxy-4-methyl-1-(1-(phenylsulfonyl)propan-2-yl)benzene (P2~1~/c, Shi et al., 2011). In the crystal structure there is an intramolecular C—H···O hydrogen-bonding interaction (Table 1) which is benefical to the stabilization of the packing, and whose symmetry code is defined as -x, -y + 1, -z + 1.

Related literature top

For the use of organic sulfones as intermediates in organic synthesis, see: Consiglio et al. (1983); Wenkert et al. (1983); Trost (1991). For related structures, see: Gu et al. (2004); Garst et al. (2006); Ding et al., (2009); Groszek et al. (2006); Shi et al. (2011). For background to our program to synthesis new herbcide derivatives, see: Du et al. (2011).

Experimental top

A mixture of 2-methyl-2-(p-tolyl)oxirane (148 mg, 1 mmol) and sodium benzenesulfinate (246 mg, 1.5 mmol) in dry DMF (3 ml) was stirred over night at 80°C. When the reaction was completed, 2 ml water was added to the reaction mixture to quench reaction, then was extracted with ethyl acetate (20 ml × 3). The ethyl acetate layers were combined and washed by 20 ml water, then 15 ml saturated sodium chloride and dried over anhydrous sodium sulfate. The solution was evapourated and the residue was separated on silica gel column chromatography with a gradient of petroleum ether and ethyl acetate as eluent to yield 348 mg the title compound. The compound was then dissolved in methanol, and colorless crystals were formed on slow evaporation at room temperature over one week.

Refinement top

H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, O—H = 0.82 Å) and refined as riding atoms with Uiso(H) = 1.5Ueq(O,C) for hydroxyl and methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the a axis, with hydrogen bonds shown as dashed lines.
2-(4-Methylphenyl)-1-(phenylsulfonyl)propan-2-ol top
Crystal data top
C16H18O3SDx = 1.317 Mg m3
Mr = 290.36Melting point: 392 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2803 reflections
a = 15.6696 (14) Åθ = 2.5–23.6°
b = 11.7501 (11) ŵ = 0.23 mm1
c = 15.9042 (16) ÅT = 298 K
V = 2928.3 (5) Å3Block, colorless
Z = 80.38 × 0.29 × 0.21 mm
F(000) = 1232
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2578 independent reflections
Radiation source: fine-focus sealed tube1590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.919, Tmax = 0.954k = 713
13679 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.054P)2 + 2.2452P]
where P = (Fo2 + 2Fc2)/3
2578 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H18O3SV = 2928.3 (5) Å3
Mr = 290.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.6696 (14) ŵ = 0.23 mm1
b = 11.7501 (11) ÅT = 298 K
c = 15.9042 (16) Å0.38 × 0.29 × 0.21 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2578 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1590 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.954Rint = 0.055
13679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
2578 reflectionsΔρmin = 0.30 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16491 (15)0.5125 (2)0.51682 (13)0.0541 (7)
H10.11350.50150.51180.081*
O20.05450 (17)0.2052 (2)0.41610 (15)0.0608 (7)
O30.01924 (14)0.4061 (2)0.44403 (15)0.0607 (7)
S10.07045 (5)0.32361 (7)0.40083 (5)0.0424 (3)
C10.17920 (19)0.3470 (3)0.4275 (2)0.0441 (8)
H1A0.19180.30220.47720.053*
H1B0.21400.31710.38220.053*
C20.2081 (2)0.4699 (3)0.44465 (19)0.0428 (8)
C30.19648 (19)0.5463 (3)0.36837 (19)0.0376 (7)
C40.2366 (2)0.5198 (3)0.2928 (2)0.0446 (8)
H40.26910.45370.28920.053*
C50.2294 (2)0.5888 (3)0.2233 (2)0.0473 (9)
H50.25640.56800.17350.057*
C60.1827 (2)0.6890 (3)0.2262 (2)0.0453 (8)
C70.1425 (2)0.7151 (3)0.3009 (2)0.0477 (9)
H70.11010.78120.30430.057*
C80.1492 (2)0.6455 (3)0.3710 (2)0.0448 (8)
H80.12150.66590.42050.054*
C90.3024 (2)0.4680 (3)0.4693 (2)0.0586 (10)
H9A0.32110.54400.48150.088*
H9B0.33540.43750.42380.088*
H9C0.30970.42120.51830.088*
C100.1751 (3)0.7661 (3)0.1507 (2)0.0644 (11)
H10A0.15550.83970.16840.097*
H10B0.13520.73410.11150.097*
H10C0.22990.77350.12430.097*
C110.06017 (19)0.3471 (3)0.2917 (2)0.0402 (8)
C120.0856 (2)0.2625 (3)0.2375 (2)0.0557 (10)
H120.10850.19500.25810.067*
C130.0767 (3)0.2792 (4)0.1524 (3)0.0721 (13)
H130.09350.22240.11510.086*
C140.0435 (3)0.3785 (5)0.1222 (3)0.0742 (13)
H140.03780.38890.06450.089*
C150.0186 (3)0.4630 (4)0.1765 (3)0.0698 (12)
H150.00360.53070.15550.084*
C160.0264 (2)0.4476 (3)0.2624 (2)0.0546 (9)
H160.00920.50420.29960.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0580 (15)0.0663 (17)0.0380 (13)0.0058 (13)0.0003 (11)0.0134 (12)
O20.0805 (18)0.0463 (15)0.0555 (15)0.0190 (13)0.0042 (13)0.0066 (12)
O30.0468 (14)0.0772 (18)0.0582 (15)0.0029 (13)0.0069 (12)0.0265 (14)
S10.0442 (5)0.0438 (5)0.0392 (5)0.0035 (4)0.0028 (4)0.0042 (4)
C10.0426 (19)0.049 (2)0.0409 (18)0.0050 (16)0.0008 (15)0.0056 (16)
C20.0438 (19)0.046 (2)0.0384 (18)0.0014 (16)0.0013 (14)0.0037 (16)
C30.0355 (17)0.0355 (18)0.0417 (18)0.0049 (14)0.0042 (14)0.0056 (15)
C40.0432 (19)0.042 (2)0.0488 (19)0.0049 (16)0.0036 (15)0.0011 (17)
C50.048 (2)0.049 (2)0.045 (2)0.0008 (17)0.0041 (16)0.0005 (17)
C60.0387 (18)0.046 (2)0.051 (2)0.0055 (16)0.0084 (16)0.0015 (17)
C70.0421 (19)0.039 (2)0.062 (2)0.0009 (16)0.0043 (17)0.0049 (18)
C80.0430 (18)0.044 (2)0.047 (2)0.0028 (17)0.0003 (15)0.0084 (17)
C90.048 (2)0.071 (3)0.057 (2)0.0061 (19)0.0154 (17)0.007 (2)
C100.067 (3)0.066 (3)0.060 (2)0.002 (2)0.006 (2)0.012 (2)
C110.0367 (17)0.042 (2)0.0421 (18)0.0008 (15)0.0010 (14)0.0012 (15)
C120.057 (2)0.063 (2)0.047 (2)0.0100 (19)0.0081 (18)0.0064 (19)
C130.063 (3)0.106 (4)0.048 (2)0.003 (3)0.011 (2)0.016 (3)
C140.064 (3)0.110 (4)0.048 (2)0.021 (3)0.002 (2)0.020 (3)
C150.065 (3)0.068 (3)0.077 (3)0.020 (2)0.025 (2)0.030 (3)
C160.052 (2)0.044 (2)0.068 (3)0.0073 (18)0.0150 (19)0.0010 (19)
Geometric parameters (Å, º) top
O1—C21.424 (4)C7—H70.9300
O1—H10.8200C8—H80.9300
O2—S11.435 (2)C9—H9A0.9600
O3—S11.433 (2)C9—H9B0.9600
S1—C111.764 (3)C9—H9C0.9600
S1—C11.778 (3)C10—H10A0.9600
C1—C21.538 (4)C10—H10B0.9600
C1—H1A0.9700C10—H10C0.9600
C1—H1B0.9700C11—C121.375 (5)
C2—C31.520 (4)C11—C161.376 (5)
C2—C91.528 (4)C12—C131.375 (5)
C3—C81.382 (4)C12—H120.9300
C3—C41.392 (4)C13—C141.365 (6)
C4—C51.375 (4)C13—H130.9300
C4—H40.9300C14—C151.373 (6)
C5—C61.387 (5)C14—H140.9300
C5—H50.9300C15—C161.384 (5)
C6—C71.378 (5)C15—H150.9300
C6—C101.509 (5)C16—H160.9300
C7—C81.387 (5)
C2—O1—H1109.5C3—C8—C7120.9 (3)
O3—S1—O2118.50 (16)C3—C8—H8119.5
O3—S1—C11108.34 (15)C7—C8—H8119.5
O2—S1—C11107.58 (15)C2—C9—H9A109.5
O3—S1—C1108.52 (15)C2—C9—H9B109.5
O2—S1—C1106.05 (15)H9A—C9—H9B109.5
C11—S1—C1107.35 (15)C2—C9—H9C109.5
C2—C1—S1118.0 (2)H9A—C9—H9C109.5
C2—C1—H1A107.8H9B—C9—H9C109.5
S1—C1—H1A107.8C6—C10—H10A109.5
C2—C1—H1B107.8C6—C10—H10B109.5
S1—C1—H1B107.8H10A—C10—H10B109.5
H1A—C1—H1B107.1C6—C10—H10C109.5
O1—C2—C3112.3 (3)H10A—C10—H10C109.5
O1—C2—C9104.9 (3)H10B—C10—H10C109.5
C3—C2—C9109.2 (3)C12—C11—C16121.3 (3)
O1—C2—C1109.5 (3)C12—C11—S1118.5 (3)
C3—C2—C1112.2 (3)C16—C11—S1120.2 (3)
C9—C2—C1108.4 (3)C11—C12—C13119.0 (4)
C8—C3—C4117.2 (3)C11—C12—H12120.5
C8—C3—C2122.6 (3)C13—C12—H12120.5
C4—C3—C2120.2 (3)C14—C13—C12120.5 (4)
C5—C4—C3121.6 (3)C14—C13—H13119.8
C5—C4—H4119.2C12—C13—H13119.8
C3—C4—H4119.2C13—C14—C15120.3 (4)
C4—C5—C6121.1 (3)C13—C14—H14119.8
C4—C5—H5119.4C15—C14—H14119.8
C6—C5—H5119.4C14—C15—C16120.1 (4)
C7—C6—C5117.3 (3)C14—C15—H15119.9
C7—C6—C10121.1 (3)C16—C15—H15119.9
C5—C6—C10121.6 (3)C11—C16—C15118.7 (4)
C6—C7—C8121.8 (3)C11—C16—H16120.6
C6—C7—H7119.1C15—C16—H16120.6
C8—C7—H7119.1
O3—S1—C1—C232.7 (3)C10—C6—C7—C8179.6 (3)
O2—S1—C1—C2161.1 (2)C4—C3—C8—C70.0 (5)
C11—S1—C1—C284.2 (3)C2—C3—C8—C7177.7 (3)
S1—C1—C2—O164.0 (3)C6—C7—C8—C30.3 (5)
S1—C1—C2—C361.4 (3)O3—S1—C11—C12163.9 (3)
S1—C1—C2—C9177.9 (2)O2—S1—C11—C1234.7 (3)
O1—C2—C3—C80.2 (4)C1—S1—C11—C1279.1 (3)
C9—C2—C3—C8115.7 (3)O3—S1—C11—C1615.4 (3)
C1—C2—C3—C8124.0 (3)O2—S1—C11—C16144.6 (3)
O1—C2—C3—C4177.9 (3)C1—S1—C11—C16101.7 (3)
C9—C2—C3—C461.9 (4)C16—C11—C12—C130.2 (5)
C1—C2—C3—C458.3 (4)S1—C11—C12—C13179.0 (3)
C8—C3—C4—C50.3 (5)C11—C12—C13—C140.3 (6)
C2—C3—C4—C5178.1 (3)C12—C13—C14—C150.0 (6)
C3—C4—C5—C61.0 (5)C13—C14—C15—C160.5 (6)
C4—C5—C6—C71.2 (5)C12—C11—C16—C150.2 (5)
C4—C5—C6—C10179.3 (3)S1—C11—C16—C15179.5 (3)
C5—C6—C7—C80.9 (5)C14—C15—C16—C110.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.822.142.848 (3)144
O1—H1···O3i0.822.453.103 (3)137
C15—H15···O2ii0.932.483.403 (5)173
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H18O3S
Mr290.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)15.6696 (14), 11.7501 (11), 15.9042 (16)
V3)2928.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.38 × 0.29 × 0.21
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.919, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
13679, 2578, 1590
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.141, 1.08
No. of reflections2578
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.822.142.848 (3)144
O1—H1···O3i0.822.453.103 (3)137
C15—H15···O2ii0.932.483.403 (5)173
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Fundamental Research Funds for the Central Universities in NWSUAF (No. QN2009048) and the opening project of Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin (BRTD1004) as well as the National Natural Science Foundation of China (20802058) is greatly appreciated.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConsiglio, G., Morandini, F. & Piccolo, O. (1983). Chem. Commun. pp. 112–114.  CrossRef Google Scholar
First citationDing, Z.-H., Yang, J., Wang, T., Shen, S.-X. & Zhang, Y.-W. (2009). Chem. Commun. pp. 571–573.  Web of Science CSD CrossRef Google Scholar
First citationDu, Z.-T., Wang, Y., Ma, W.-L., Lv, D. & Yu, H.-R. (2011). Nat. Prod. Commun. 6, 167–169.  CAS PubMed Google Scholar
First citationGarst, M. E., Dolby, L. J., Esfandiari, S., Okrent, R. A. & Avey, A. A. (2006). J. Org. Chem. 71, 553–556.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroszek, G., Blazej, S., Brud, A., Swierczynski, D. & Lemek, T. (2006). Tetrahedron, 62, 2622–2630.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, J.-M., Zhang, Y.-C. & Hu, X.-R. (2004). Acta Cryst. E60, o1115–o1116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, B.-J., Ding, L.-C., Chen, G. & Du, Z.-T. (2011). Acta Cryst. E67, o2589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrost, B. M. (1991). Comprehensive Organic Synthesis, Vol 3. New York: Pergamon Press.  Google Scholar
First citationWenkert, E., Fernandes, J. B., Michelotti, E. L. & Swindell, C. S. (1983). Synthesis, pp. 701–703.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds