metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(N,N-di­methyl­acetamide)-1κO,2κO-bis­­(μ4-thio­phene-2,5-di­car­boxyl­ato-1:2:1′:2′κ4O2:O2′:O5:O5′)dizinc]

aYankuang Guohong Chemical Co. Ltd, Zoucheng 273500, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 September 2011; accepted 28 September 2011; online 5 October 2011)

In the title polymeric complex, [Zn2(C6H2O4S)2(C4H9NO)2]n, each carboxyl­ate group of the thio­phene-2,5-dicarboxyl­ate dianion bridges a pair of inversion-related dimethyl­acetamide-coordinated ZnII atoms, generating a layer motif parallel to (101). The ZnII atom shows a distorted square-pyramidal coordination; the apical site is occupied by the O atom of the dimethyl­acetamide mol­ecule, whereas the four basal sites are occupied by carboxyl­ate O atoms. In the crystal, the dimethyl­acetamide mol­ecule is disordered over two positions in a 0.72 (1):0.28 (1) ratio in respect of the C atoms.

Related literature

For the 1,10-phenanthroline adduct of zinc 2,5-thio­phene­dicarboxyl­ate, see: Chen et al. (1999[Chen, B.-L., Mok, K. F., Ng, S. Ch. & Drew, M. G. B. (1999). New J. Chem. 23, 877-883.]). For bond-length dimensions of the 2,5-thio­phene­dicarboxyl­ate ion, see: Wu et al. (2006[Wu, S.-M., Li, M., Xiang, J.-F., Yuan, L.-J. & Sun, J.-T. (2006). Acta Cryst. E62, o2951-o2952.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C6H2O4S)2(C4H9NO)2]

  • Mr = 645.26

  • Monoclinic, P 21 /n

  • a = 8.4866 (2) Å

  • b = 14.8476 (4) Å

  • c = 10.1406 (3) Å

  • β = 100.734 (2)°

  • V = 1255.41 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 153 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.675, Tmax = 0.815

  • 7660 measured reflections

  • 2841 independent reflections

  • 1990 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 0.93

  • 2841 reflections

  • 182 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The dianions of rigid aromatic carboxylic acids such as phthalic, isophthalic and terephathalic acids furnish coordination polymers with divalent metal ions. The 2,5-thiophenedicarboxylate anion is less well studied; the only crystal structure study of a zinc(II) system is that of the zinc 2,5-thiophenedicarboxylate adduct with 1,10-phenanthroline (Chen et al., 1999). In this study, the dimethylacetamide (DMA) used as solvent in the synthesis is incorporate into the crystal structure. Polymeric [Zn2(C4H9NO)2(C6H2O4S)2]n (Scheme I) has the –CO2 parts of the thiophene-2,5-dicarboxylate dianion each bridging a pair of inversion-related, dimethylacetamide-coordinated zincII atoms to generate a layer motif (Fig. 1). The ZnII atom shows square-pyramidal coordination; the apical site is occupied by the O atom of the DMA molecule. Bond dimensions involving the carboxylate unit are similar to those reported for ethylenediammonium thiophene-2,5-dicarboxylate dihydrate (Wu et al., 2006).

Related literature top

For the 1,10-phenanthroline adduct of zinc 2,5-thiophenedicarboxylate, see: Chen et al. (1999). For bond dimensions of the 2,5-thiophenedicarboxylate ion, see: Wu et al. (2006).

Experimental top

2,5-Thiophenedicarboxylic acid (0.09 g, 0.5 mmol) and zinc nitrate hexahydrate (0.30 g,0.5 mmol) were dissolved in dimethylacetamide (10 ml). The solution was placed in a 25-ml flask, heated at 90 °C for 5 days. Colorless cystals separated from the solution upon cooling it to room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The DMA molecule is disordered over two positions with resect to the carbon atoms only. Pairs of distances (O–C, N–C) for the two components were restrained to within 0.01 Å of each other. The temperature factors of the primed atoms were set to those of the unprimed ones.

The final difference Fourier map had a peak at 1.04 Å from C3.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of polymeric Zn2(C4H9NO)2(C6H2O4S)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the dimethylacetamide unit is not shown. Only the asymmetric unit is labeled.
Poly[bis(N,N-dimethylacetamide)-1κO,2κO- bis(µ4-thiophene-2,5-dicarboxylato- 1:2:1':2'κ4O2:O2':O5:O5')dizinc] top
Crystal data top
[Zn2(C6H2O4S)2(C4H9NO)2]F(000) = 656
Mr = 645.26Dx = 1.707 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3158 reflections
a = 8.4866 (2) Åθ = 2.4–29.7°
b = 14.8476 (4) ŵ = 2.13 mm1
c = 10.1406 (3) ÅT = 153 K
β = 100.734 (2)°Block, colorless
V = 1255.41 (6) Å30.20 × 0.20 × 0.10 mm
Z = 2
Data collection top
Gemini S Ultra
diffractometer
2841 independent reflections
Radiation source: Enhance (Mo) X-ray Source1990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.1903 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1011
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1917
Tmin = 0.675, Tmax = 0.815l = 1313
7660 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
2841 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 1.13 e Å3
5 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Zn2(C6H2O4S)2(C4H9NO)2]V = 1255.41 (6) Å3
Mr = 645.26Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.4866 (2) ŵ = 2.13 mm1
b = 14.8476 (4) ÅT = 153 K
c = 10.1406 (3) Å0.20 × 0.20 × 0.10 mm
β = 100.734 (2)°
Data collection top
Gemini S Ultra
diffractometer
2841 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1990 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.815Rint = 0.029
7660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0345 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.93Δρmax = 1.13 e Å3
2841 reflectionsΔρmin = 0.55 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.64210 (4)0.53115 (2)0.60386 (3)0.02026 (12)
S10.70730 (9)0.23894 (5)0.23932 (7)0.02835 (19)
O10.7270 (3)0.42738 (18)0.5087 (2)0.0482 (7)
O20.5233 (3)0.38003 (16)0.3549 (2)0.0392 (6)
O31.0411 (4)0.06503 (19)0.2061 (2)0.0544 (8)
O40.8306 (3)0.10976 (17)0.0555 (2)0.0432 (6)
O50.8383 (3)0.55742 (18)0.7354 (2)0.0428 (6)
N11.0425 (3)0.5890 (2)0.8985 (3)0.0387 (7)
C10.6643 (4)0.3774 (2)0.4147 (3)0.0262 (7)
C20.7708 (4)0.3090 (2)0.3709 (3)0.0284 (7)
C30.9309 (5)0.2970 (3)0.4216 (4)0.0507 (10)
H30.99080.33280.49090.061*
C40.9958 (5)0.2253 (3)0.3589 (4)0.0550 (12)
H41.10430.20640.38300.066*
C50.8871 (4)0.1853 (2)0.2597 (3)0.0312 (7)
C60.9207 (4)0.1141 (2)0.1669 (3)0.0299 (7)
C70.8881 (5)0.6019 (3)0.8283 (4)0.0298 (11)0.72 (1)
C80.7793 (6)0.6729 (4)0.8697 (5)0.0425 (13)0.72 (1)
H8A0.68430.68000.79900.064*0.72 (1)
H8B0.83680.73030.88390.064*0.72 (1)
H8C0.74610.65440.95320.064*0.72 (1)
C91.0963 (7)0.6473 (4)1.0207 (5)0.0471 (14)0.72 (1)
H9A1.15230.70040.99530.071*0.72 (1)
H9B1.16910.61281.08870.071*0.72 (1)
H9C1.00270.66631.05730.071*0.72 (1)
C101.1457 (6)0.5301 (4)0.8593 (6)0.0488 (14)0.72 (1)
H10A1.24570.56120.85260.073*0.72 (1)
H10B1.09800.50490.77160.073*0.72 (1)
H10C1.16830.48130.92530.073*0.72 (1)
C7'0.9677 (10)0.5478 (7)0.7833 (9)0.0298 (11)0.28
C8'1.0369 (16)0.4825 (8)0.6974 (13)0.0425 (13)0.28
H8'10.99550.42200.70930.064*0.279 (6)
H8'21.15410.48230.72340.064*0.279 (6)
H8'31.00650.50040.60300.064*0.279 (6)
C9'1.2159 (12)0.5540 (10)0.9429 (15)0.0471 (14)0.28
H9'11.24140.55021.04110.071*0.279 (6)
H9'21.29070.59550.91140.071*0.279 (6)
H9'31.22540.49410.90440.071*0.279 (6)
C10'0.9967 (18)0.6518 (8)0.9728 (14)0.0488 (14)0.28
H10D1.01350.63141.06630.073*0.279 (6)
H10E0.88270.66480.94120.073*0.279 (6)
H10F1.05970.70660.96690.073*0.279 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02204 (18)0.01473 (18)0.02585 (19)0.00035 (14)0.00927 (13)0.00035 (14)
S10.0292 (4)0.0271 (4)0.0297 (4)0.0037 (3)0.0078 (3)0.0091 (3)
O10.0437 (16)0.0457 (16)0.0504 (15)0.0201 (12)0.0037 (12)0.0284 (13)
O20.0275 (13)0.0387 (14)0.0508 (14)0.0083 (10)0.0055 (10)0.0228 (12)
O30.071 (2)0.0465 (16)0.0451 (15)0.0326 (15)0.0095 (13)0.0162 (13)
O40.0420 (15)0.0471 (16)0.0420 (14)0.0071 (12)0.0123 (11)0.0218 (12)
O50.0324 (14)0.0489 (16)0.0444 (14)0.0157 (12)0.0001 (11)0.0031 (13)
N10.0342 (17)0.0409 (18)0.0382 (16)0.0090 (14)0.0002 (13)0.0064 (14)
C10.0343 (18)0.0199 (16)0.0261 (16)0.0037 (13)0.0102 (13)0.0001 (13)
C20.0320 (18)0.0264 (17)0.0258 (15)0.0058 (13)0.0030 (13)0.0080 (13)
C30.052 (3)0.052 (2)0.043 (2)0.018 (2)0.0052 (17)0.0188 (19)
C40.043 (2)0.059 (3)0.056 (2)0.025 (2)0.0071 (19)0.021 (2)
C50.0386 (19)0.0244 (17)0.0318 (16)0.0068 (14)0.0094 (13)0.0052 (14)
C60.0369 (19)0.0190 (17)0.0393 (19)0.0001 (14)0.0215 (15)0.0049 (14)
C70.031 (2)0.025 (2)0.036 (2)0.0063 (17)0.0121 (18)0.0012 (18)
C80.036 (3)0.044 (3)0.047 (3)0.003 (2)0.007 (2)0.016 (2)
C90.040 (3)0.057 (4)0.042 (3)0.010 (2)0.002 (2)0.006 (2)
C100.036 (3)0.052 (3)0.059 (3)0.003 (2)0.010 (2)0.012 (3)
C7'0.031 (2)0.025 (2)0.036 (2)0.0063 (17)0.0121 (18)0.0012 (18)
C8'0.036 (3)0.044 (3)0.047 (3)0.003 (2)0.007 (2)0.016 (2)
C9'0.040 (3)0.057 (4)0.042 (3)0.010 (2)0.002 (2)0.006 (2)
C10'0.036 (3)0.052 (3)0.059 (3)0.003 (2)0.010 (2)0.012 (3)
Geometric parameters (Å, º) top
Zn1—O51.969 (2)C3—C41.404 (5)
Zn1—O12.021 (2)C3—H30.9500
Zn1—O2i2.026 (2)C4—C51.367 (5)
Zn1—O4ii2.041 (2)C4—H40.9500
Zn1—O3iii2.044 (2)C5—C61.479 (4)
Zn1—Zn1i3.0360 (6)C7—C81.511 (6)
S1—C21.699 (3)C8—H8A0.9800
S1—C51.699 (3)C8—H8B0.9800
O1—C11.246 (4)C8—H8C0.9800
O2—C11.237 (4)C9—H9A0.9800
O2—Zn1i2.026 (2)C9—H9B0.9800
O3—C61.257 (4)C9—H9C0.9800
O3—Zn1iv2.044 (2)C10—H10A0.9800
O4—C61.242 (4)C10—H10B0.9800
O4—Zn1v2.041 (2)C10—H10C0.9800
O5—C7'1.125 (8)C7'—C8'1.495 (10)
O5—C71.164 (4)C8'—H8'10.9800
N1—C10'1.303 (10)C8'—H8'20.9800
N1—C101.349 (6)C8'—H8'30.9800
N1—C7'1.366 (8)C9'—H9'10.9800
N1—C71.383 (5)C9'—H9'20.9800
N1—C91.510 (5)C9'—H9'30.9800
N1—C9'1.547 (9)C10'—H10D0.9800
C1—C21.481 (4)C10'—H10E0.9800
C2—C31.372 (5)C10'—H10F0.9800
O5—Zn1—O198.22 (11)C4—C3—H3124.0
O5—Zn1—O2i105.20 (10)C5—C4—C3113.3 (3)
O1—Zn1—O2i156.55 (10)C5—C4—H4123.4
O5—Zn1—O4ii102.52 (10)C3—C4—H4123.4
O1—Zn1—O4ii87.40 (12)C4—C5—C6126.5 (3)
O2i—Zn1—O4ii88.65 (11)C4—C5—S1110.7 (2)
O5—Zn1—O3iii100.14 (10)C6—C5—S1122.2 (2)
O1—Zn1—O3iii85.99 (13)O4—C6—O3125.8 (3)
O2i—Zn1—O3iii88.75 (12)O4—C6—C5117.2 (3)
O4ii—Zn1—O3iii157.07 (10)O3—C6—C5117.0 (3)
O5—Zn1—Zn1i173.08 (8)O5—C7—N1120.3 (4)
O1—Zn1—Zn1i75.18 (7)O5—C7—C8118.2 (4)
O2i—Zn1—Zn1i81.37 (6)N1—C7—C8121.5 (4)
O4ii—Zn1—Zn1i79.50 (7)N1—C9—H9A109.5
O3iii—Zn1—Zn1i77.59 (7)N1—C9—H9B109.5
C2—S1—C592.59 (15)N1—C9—H9C109.5
C1—O1—Zn1132.8 (2)N1—C10—H10A109.5
C1—O2—Zn1i124.3 (2)N1—C10—H10B109.5
C6—O3—Zn1iv129.6 (2)N1—C10—H10C109.5
C6—O4—Zn1v127.4 (2)O5—C7'—N1125.0 (7)
C7'—O5—C762.9 (5)O5—C7'—C8'106.8 (7)
C7'—O5—Zn1154.4 (5)N1—C7'—C8'128.2 (8)
C7—O5—Zn1142.7 (3)C7'—C8'—H8'1109.5
C10'—N1—C10156.1 (8)C7'—C8'—H8'2109.5
C10'—N1—C7'132.4 (8)H8'1—C8'—H8'2109.5
C10—N1—C7'71.4 (5)C7'—C8'—H8'3109.5
C10'—N1—C781.0 (7)H8'1—C8'—H8'3109.5
C10—N1—C7122.9 (4)H8'2—C8'—H8'3109.5
C10—N1—C9119.9 (4)N1—C9'—H9'1109.5
C7—N1—C9117.1 (4)N1—C9'—H9'2109.5
C10'—N1—C9'116.2 (9)H9'1—C9'—H9'2109.5
C7'—N1—C9'111.3 (7)N1—C9'—H9'3109.5
O2—C1—O1126.3 (3)H9'1—C9'—H9'3109.5
O2—C1—C2117.6 (3)H9'2—C9'—H9'3109.5
O1—C1—C2116.1 (3)N1—C10'—H10D109.5
C3—C2—C1126.5 (3)N1—C10'—H10E109.5
C3—C2—S1111.2 (2)H10D—C10'—H10E109.5
C1—C2—S1122.2 (2)N1—C10'—H10F109.5
C2—C3—C4111.9 (3)H10D—C10'—H10F109.5
C2—C3—H3124.0H10E—C10'—H10F109.5
O5—Zn1—O1—C1178.6 (3)C4—C5—C6—O4152.9 (4)
O2i—Zn1—O1—C11.5 (5)S1—C5—C6—O417.8 (4)
O4ii—Zn1—O1—C179.1 (3)C4—C5—C6—O324.9 (5)
O3iii—Zn1—O1—C178.9 (3)S1—C5—C6—O3164.4 (3)
O1—Zn1—O5—C7'2.8 (14)C7'—O5—C7—N15.0 (7)
O2i—Zn1—O5—C7'178.3 (14)Zn1—O5—C7—N1173.8 (3)
O4ii—Zn1—O5—C7'86.3 (14)C7'—O5—C7—C8175.6 (8)
O3iii—Zn1—O5—C7'90.2 (14)Zn1—O5—C7—C85.7 (7)
O1—Zn1—O5—C7174.5 (4)C10'—N1—C7—O5176.9 (7)
O2i—Zn1—O5—C74.3 (5)C10—N1—C7—O54.7 (6)
O4ii—Zn1—O5—C796.3 (4)C7'—N1—C7—O54.7 (6)
O3iii—Zn1—O5—C787.2 (5)C9—N1—C7—O5177.9 (4)
Zn1i—O2—C1—O10.4 (5)C9'—N1—C7—O54 (2)
Zn1i—O2—C1—C2179.1 (2)C10'—N1—C7—C82.5 (8)
Zn1—O1—C1—O21.0 (5)C10—N1—C7—C8175.9 (5)
Zn1—O1—C1—C2178.6 (2)C7'—N1—C7—C8175.9 (8)
O2—C1—C2—C3178.1 (4)C9—N1—C7—C81.5 (6)
O1—C1—C2—C31.4 (5)C9'—N1—C7—C8176 (2)
O2—C1—C2—S12.6 (4)C7—O5—C7'—N15.3 (7)
O1—C1—C2—S1176.9 (3)Zn1—O5—C7'—N1172.9 (4)
C5—S1—C2—C35.4 (3)C7—O5—C7'—C8'174.9 (11)
C5—S1—C2—C1178.5 (3)Zn1—O5—C7'—C8'7 (2)
C1—C2—C3—C4179.1 (4)C10'—N1—C7'—O57.2 (17)
S1—C2—C3—C45.0 (5)C10—N1—C7'—O5175.0 (12)
C2—C3—C4—C51.7 (6)C7—N1—C7'—O55.1 (7)
C3—C4—C5—C6174.0 (4)C9—N1—C7'—O516 (4)
C3—C4—C5—S12.4 (5)C9'—N1—C7'—O5174.8 (10)
C2—S1—C5—C44.4 (3)C10'—N1—C7'—C8'173.1 (12)
C2—S1—C5—C6176.4 (3)C10—N1—C7'—C8'4.8 (11)
Zn1v—O4—C6—O35.8 (5)C7—N1—C7'—C8'175.2 (15)
Zn1v—O4—C6—C5171.8 (2)C9—N1—C7'—C8'164 (2)
Zn1iv—O3—C6—O44.4 (6)C9'—N1—C7'—C8'5.0 (14)
Zn1iv—O3—C6—C5173.1 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C6H2O4S)2(C4H9NO)2]
Mr645.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)8.4866 (2), 14.8476 (4), 10.1406 (3)
β (°) 100.734 (2)
V3)1255.41 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerGemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.675, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
7660, 2841, 1990
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 0.93
No. of reflections2841
No. of parameters182
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.55

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationChen, B.-L., Mok, K. F., Ng, S. Ch. & Drew, M. G. B. (1999). New J. Chem. 23, 877–883.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, S.-M., Li, M., Xiang, J.-F., Yuan, L.-J. & Sun, J.-T. (2006). Acta Cryst. E62, o2951–o2952.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds