organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 2-cyano-3-(2,4-dimeth­­oxy­phen­yl)prop-2-enoate

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, bSchool of Biology, Chemistry and Material Science, Manchester Metropolitan University, Manchester, UK, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 September 2011; accepted 29 September 2011; online 5 October 2011)

The C=C bond in the title compound, C14H15NO4, is in an E configuration. With the exception of the methyl C atoms, the non-H atoms of the mol­ecule all lie approximately on a plane (r.m.s. deviation = 0.096 Å). ππ stacking is observed between parallel benzene rings of adjacent mol­ecules, the centroid–centroid distance being 3.7924 (8) Å.

Related literature

For benzyl­idene­cyano­acetate, see: Bodrikov et al. (1992[Bodrikov, I. V., Bel'skii, V. K., Krasnov, V. L. & Pigin, O. V. (1992). Zh. Org. Khim. 28, 2228-2238.]) and for 3,4-dimeth­oxy­benzyl­idene­cyano­acetate, see: Nesterov et al. (2001[Nesterov, V. N., Kuleshova, L. N. & Antipin, M. Yu. (2001). Kristallografiya, 46, 452-460.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO4

  • Mr = 261.27

  • Monoclinic, P 21 /c

  • a = 10.5661 (6) Å

  • b = 6.9715 (4) Å

  • c = 18.4141 (10) Å

  • β = 101.858 (1)°

  • V = 1327.47 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 14924 measured reflections

  • 3330 independent reflections

  • 2382 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.03

  • 3330 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis of benzylidenecyanoacetate was reported by Bodrikov et al. in 1992; the compound was synthesized by a conventional route. In the present study, microwave radiation was used to initiate the condensation; 2,4-dimethoxylbenzaldehyde was used in place of the unsubstituted homolog. The carbon-carbon double-bond in C14H15NO4 is of an E-configuration (Scheme I, Fig. 1). With the exception of the methyl C, the non-hydrogen atoms all lie on a plane. The features are similar to those of 3,4-dimethoxybenzylidenecyanoacetate (Bodrikov et al., 1992).

Related literature top

For benzylidenecyanoacetate, see: Bodrikov et al. (1992) and for 3,4-dimethoxybenzylidenecyanoacetate, see: Nesterov et al. (2001).

Experimental top

2,4-Dimethoxy benzaldehyde (10 mmol), ethyl cyanoacetate (10 mmol), and 2,4-pentanedione (100 mmol, aprox. 10 ml) dissolved in ethanol (50 ml) and the solution was irradiated by microwave irradiation for 5 minutes. The mixture was cooled and the product was recrystalized from ethanol in 90% yield; m.p. 405 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C14H15NO4 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(E)-Ethyl 2-cyano-3-(2,4-dimethoxyphenyl)prop-2-enoate top
Crystal data top
C14H15NO4F(000) = 552
Mr = 261.27Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3565 reflections
a = 10.5661 (6) Åθ = 2.3–27.7°
b = 6.9715 (4) ŵ = 0.10 mm1
c = 18.4141 (10) ÅT = 295 K
β = 101.858 (1)°Prism, colorless
V = 1327.47 (13) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
2382 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.4°, θmin = 2.0°
ϕ and ω scansh = 1414
14924 measured reflectionsk = 99
3330 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.2366P]
where P = (Fo2 + 2Fc2)/3
3330 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H15NO4V = 1327.47 (13) Å3
Mr = 261.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5661 (6) ŵ = 0.10 mm1
b = 6.9715 (4) ÅT = 295 K
c = 18.4141 (10) Å0.20 × 0.20 × 0.20 mm
β = 101.858 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
2382 reflections with I > 2σ(I)
14924 measured reflectionsRint = 0.026
3330 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
3330 reflectionsΔρmin = 0.21 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31913 (10)0.27747 (18)0.55366 (6)0.0536 (3)
O20.29391 (10)0.12247 (17)0.30174 (6)0.0537 (3)
O30.87131 (11)0.3785 (2)0.71774 (6)0.0628 (4)
O40.66774 (11)0.4110 (2)0.73311 (6)0.0627 (3)
N10.89121 (15)0.2321 (3)0.55058 (9)0.0804 (6)
C10.51259 (12)0.25722 (18)0.50966 (7)0.0351 (3)
C20.37586 (13)0.2438 (2)0.49505 (8)0.0377 (3)
C30.30758 (13)0.1990 (2)0.42512 (8)0.0411 (3)
H30.21790.18990.41630.049*
C40.37162 (14)0.1674 (2)0.36783 (8)0.0401 (3)
C50.50565 (14)0.1815 (2)0.37981 (8)0.0434 (3)
H50.54890.16160.34130.052*
C60.57268 (13)0.2257 (2)0.45012 (8)0.0417 (3)
H60.66230.23500.45820.050*
C70.18101 (15)0.2627 (3)0.54175 (10)0.0631 (5)
H7A0.15350.28950.58730.095*
H7B0.15480.13530.52540.095*
H7C0.14220.35350.50460.095*
C80.35279 (19)0.0981 (3)0.23941 (9)0.0636 (5)
H8A0.28770.06680.19650.095*
H8B0.41510.00380.24920.095*
H8C0.39530.21500.23050.095*
C90.57905 (13)0.30444 (19)0.58405 (7)0.0371 (3)
H90.52420.33400.61600.045*
C100.70570 (13)0.3137 (2)0.61586 (8)0.0383 (3)
C110.74281 (14)0.3727 (2)0.69485 (8)0.0446 (3)
C120.80883 (14)0.2688 (2)0.57949 (8)0.0497 (4)
C130.92092 (19)0.4426 (4)0.79351 (10)0.0773 (6)
H13A0.86870.54880.80470.093*
H13B1.00880.48860.79770.093*
C140.9198 (2)0.2881 (4)0.84808 (12)0.0922 (8)
H14A0.95340.33610.89710.138*
H14B0.97250.18350.83780.138*
H14C0.83270.24420.84490.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0315 (5)0.0867 (8)0.0439 (6)0.0039 (5)0.0112 (4)0.0102 (5)
O20.0473 (6)0.0751 (8)0.0352 (5)0.0065 (5)0.0001 (4)0.0012 (5)
O30.0433 (6)0.0943 (10)0.0461 (6)0.0115 (6)0.0018 (5)0.0126 (6)
O40.0539 (7)0.0885 (9)0.0455 (6)0.0063 (6)0.0098 (5)0.0101 (6)
N10.0359 (7)0.1402 (17)0.0662 (10)0.0018 (9)0.0134 (7)0.0185 (10)
C10.0305 (6)0.0374 (7)0.0368 (7)0.0007 (5)0.0054 (5)0.0033 (5)
C20.0339 (7)0.0416 (7)0.0385 (7)0.0003 (5)0.0095 (5)0.0027 (6)
C30.0296 (6)0.0488 (8)0.0432 (7)0.0020 (6)0.0036 (6)0.0044 (6)
C40.0413 (7)0.0416 (7)0.0348 (7)0.0021 (6)0.0020 (5)0.0049 (6)
C50.0408 (7)0.0549 (9)0.0361 (7)0.0000 (6)0.0117 (6)0.0035 (6)
C60.0301 (7)0.0525 (8)0.0425 (7)0.0001 (6)0.0076 (6)0.0035 (6)
C70.0323 (8)0.1026 (15)0.0569 (10)0.0057 (8)0.0149 (7)0.0097 (10)
C80.0674 (11)0.0851 (13)0.0361 (8)0.0066 (9)0.0059 (7)0.0056 (8)
C90.0342 (7)0.0405 (7)0.0371 (7)0.0004 (5)0.0081 (5)0.0013 (6)
C100.0336 (7)0.0421 (7)0.0387 (7)0.0025 (6)0.0065 (5)0.0004 (6)
C110.0398 (8)0.0509 (9)0.0412 (8)0.0030 (6)0.0041 (6)0.0011 (6)
C120.0329 (7)0.0704 (11)0.0432 (8)0.0058 (7)0.0017 (6)0.0036 (7)
C130.0638 (12)0.1100 (17)0.0506 (10)0.0214 (11)0.0059 (8)0.0201 (11)
C140.0774 (15)0.134 (2)0.0547 (11)0.0001 (14)0.0103 (10)0.0037 (13)
Geometric parameters (Å, º) top
O1—C21.3584 (16)C6—H60.9300
O1—C71.4342 (18)C7—H7A0.9600
O2—C41.3573 (17)C7—H7B0.9600
O2—C81.4238 (19)C7—H7C0.9600
O3—C111.3370 (18)C8—H8A0.9600
O3—C131.456 (2)C8—H8B0.9600
O4—C111.1945 (18)C8—H8C0.9600
N1—C121.139 (2)C9—C101.3475 (19)
C1—C61.3925 (19)C9—H90.9300
C1—C21.4172 (18)C10—C121.426 (2)
C1—C91.4431 (19)C10—C111.485 (2)
C2—C31.376 (2)C13—C141.475 (3)
C3—C41.383 (2)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.391 (2)C14—H14A0.9600
C5—C61.377 (2)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C2—O1—C7117.86 (12)O2—C8—H8B109.5
C4—O2—C8117.79 (12)H8A—C8—H8B109.5
C11—O3—C13116.96 (13)O2—C8—H8C109.5
C6—C1—C2116.87 (12)H8A—C8—H8C109.5
C6—C1—C9124.86 (12)H8B—C8—H8C109.5
C2—C1—C9118.26 (12)C10—C9—C1132.04 (13)
O1—C2—C3123.40 (12)C10—C9—H9114.0
O1—C2—C1115.90 (12)C1—C9—H9114.0
C3—C2—C1120.70 (12)C9—C10—C12124.87 (13)
C2—C3—C4120.35 (12)C9—C10—C11118.55 (12)
C2—C3—H3119.8C12—C10—C11116.57 (12)
C4—C3—H3119.8O4—C11—O3124.19 (14)
O2—C4—C3114.83 (12)O4—C11—C10124.48 (14)
O2—C4—C5124.54 (13)O3—C11—C10111.33 (12)
C3—C4—C5120.63 (13)N1—C12—C10179.7 (2)
C6—C5—C4118.36 (13)O3—C13—C14112.15 (18)
C6—C5—H5120.8O3—C13—H13A109.2
C4—C5—H5120.8C14—C13—H13A109.2
C5—C6—C1123.09 (13)O3—C13—H13B109.2
C5—C6—H6118.5C14—C13—H13B109.2
C1—C6—H6118.5H13A—C13—H13B107.9
O1—C7—H7A109.5C13—C14—H14A109.5
O1—C7—H7B109.5C13—C14—H14B109.5
H7A—C7—H7B109.5H14A—C14—H14B109.5
O1—C7—H7C109.5C13—C14—H14C109.5
H7A—C7—H7C109.5H14A—C14—H14C109.5
H7B—C7—H7C109.5H14B—C14—H14C109.5
O2—C8—H8A109.5
C7—O1—C2—C30.9 (2)C4—C5—C6—C10.1 (2)
C7—O1—C2—C1179.11 (14)C2—C1—C6—C50.6 (2)
C6—C1—C2—O1179.18 (12)C9—C1—C6—C5179.78 (13)
C9—C1—C2—O10.05 (19)C6—C1—C9—C106.4 (2)
C6—C1—C2—C30.8 (2)C2—C1—C9—C10174.47 (15)
C9—C1—C2—C3179.93 (13)C1—C9—C10—C122.2 (3)
O1—C2—C3—C4179.66 (13)C1—C9—C10—C11178.48 (14)
C1—C2—C3—C40.4 (2)C13—O3—C11—O42.3 (3)
C8—O2—C4—C3176.73 (14)C13—O3—C11—C10177.39 (15)
C8—O2—C4—C53.5 (2)C9—C10—C11—O40.9 (2)
C2—C3—C4—O2179.36 (13)C12—C10—C11—O4178.46 (16)
C2—C3—C4—C50.4 (2)C9—C10—C11—O3178.79 (14)
O2—C4—C5—C6179.10 (14)C12—C10—C11—O31.84 (19)
C3—C4—C5—C60.6 (2)C11—O3—C13—C1481.1 (2)

Experimental details

Crystal data
Chemical formulaC14H15NO4
Mr261.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.5661 (6), 6.9715 (4), 18.4141 (10)
β (°) 101.858 (1)
V3)1327.47 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14924, 3330, 2382
Rint0.026
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.03
No. of reflections3330
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Manchester Metropolitan University, Baku State University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBodrikov, I. V., Bel'skii, V. K., Krasnov, V. L. & Pigin, O. V. (1992). Zh. Org. Khim. 28, 2228–2238.  CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNesterov, V. N., Kuleshova, L. N. & Antipin, M. Yu. (2001). Kristallografiya, 46, 452–460.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds