organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(R)-(6-Bromo-2-meth­­oxy­quinolin-3-yl)(phen­yl)meth­yl]-N-[(S)-1-(4-meth­­oxy­phen­yl)eth­yl]-2-(piperazin-1-yl)acetamide

aKey Laboratory of Original New Drug Design & Discovery, Ministry of Education, College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China, bSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China, and cTai'an Hospital of Chinese Medicine, Pharmacy Department, Tai'an 271000, People's Republic of China
*Correspondence e-mail: suntiemin@gmail.com

(Received 26 September 2011; accepted 5 October 2011; online 12 October 2011)

In the title compound, C32H35BrN4O3, the piperazine ring exists in a chair conformation. The quinoline ring system is oriented at dihedral angles of 82.70 (17) and 19.54 (17)° to the phenyl and meth­oxy­phenyl rings, respectively. Weak inter­molecular C—H⋯π inter­actions are present in the crystal structure.

Related literature

For the synthesis of other phamaceutically active derivatives through conventional and other synthetic routes, see: Andries et al. (2005[Andries, K., Verhasselt, P., Guillemont, J., Göehlmann, H. W. H., Neefs, J. M., Winkler, H., Gestel, J. V., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223-227.]); Gaurrand et al. (2006[Gaurrand, S., Desjardins, S., Meyer, C., Bonnet, P., Argoullon, J.-M., Qulyadi, H. & Guillemont, J. (2006). Chem. Biol. Drug Des. 68, 77-84.]); Mao et al. (2007[Mao, J.-L., Wang, Y.-H., Wan, B.-J., Kozikowski, A. P. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624-1630.]); Dalla Via et al. (2008[Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429-434.]). For related structures, see: Cai et al. (2009[Cai, Z.-Q., Xiong, G., Li, S.-R., Liu, J.-B. & Sun, T.-M. (2009). Acta Cryst. E65, o1901.]); Petit et al. (2007[Petit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct. 837, 252-256.]).

[Scheme 1]

Experimental

Crystal data
  • C32H35BrN4O3

  • Mr = 603.55

  • Orthorhombic, P 21 21 21

  • a = 9.9738 (9) Å

  • b = 10.9397 (10) Å

  • c = 27.910 (3) Å

  • V = 3045.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.712, Tmax = 0.835

  • 18937 measured reflections

  • 5999 independent reflections

  • 4518 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.170

  • S = 1.02

  • 5999 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2585 Friedel pairs

  • Flack parameter: 0.011 (12)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10ACgi 0.96 2.69 3.639 (6) 170
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Most quinoline derivatives as a class of extremely important heterocyclic compounds are used in a wide array of synthetic and medical chemistry, such as antifungals, antituberculostatics, anticancer drugs and so on (Andries et al., 2005). At the same time, the title compound is also a promising drug against tuberculosis. We synthesized this compound in order to get some more efficient antituberculosis drugs. To characterize our product, its single crystal structure was determined.

The structure of the title compound is shown in Fig. 1 and geometrical parameters are given in the archived CIF. In the title molecule, the bond lengths and angles are generally within normal ranges. The dihedral angles of aromatic rings are nearly in accordance with related structure TMC-207 (Petit et al., 2007), which has been completed Phase II clinical, and will be marketed in 2012 as a kind of antituberculostatics drug.The dihedral angle between quinoline and phenyl ring [C12—C17] is 82.7°; The dihedral angle between quinoline and phenyl ring [C26—C31] is 19.5°; The dihedral angle between phenyl ring [C26—C31] and phenyl ring [C12—C17] is 78.6°; While the dihedral angle between phenyl and substituted quinolinyl group in TMC-207 is 97.4°, naphthalenyl and substituted quinolinyl group is nearly coplanar. On the other hand, the piperazidine ring exists in a chair conformationand. The bond angles also indicate sp3 hybridization nature of those atoms. No conventional hydrogen bonds were found at 293 (2)K for the title compound.

Related literature top

For the synthesis of other phamaceutically active derivatives through conventional and other synthetic routes, see: Andries et al. (2005); Gaurrand et al. (2006); Mao et al. (2007); Dalla Via et al. (2008). For related structures, see: Cai et al. (2009); Petit et al. (2007).

Experimental top

A solution of (1R,2S)-N-((6-bromo-2-methoxyquinolin-3-yl)(phenyl)methyl)-2- chloro-N-(1-(4-methoxyphenyl)ethyl)acetamide (1.0 mmol), piperazidine (1.1 mmol) and potassium carbonate (4.0 mmol) in acetonitrile was stirred for 4 h at 50°C.The reaction mixture was diluted with water (100 ml). The resulting precipitate was collected by filteration and purified on silica gel column (50% ethyl acetateu in petroleum ether) to give white powder (85.2% yield). A colorless crystalline solid was formed on slow evaporation of acetonitrile/methanol = 1:2 solution.

Refinement top

All H atoms were geometrically positioned (C–H 0.93—0.98 Å and N—H = 0.86 Å) and treated as riding, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, viewed along the a axis, showing 30%probability displacement ellipsoids and the atom- numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound.
N-[(R)-(6-Bromo-2-methoxyquinolin-3- yl)(phenyl)methyl]-N-[(S)-1-(4-methoxyphenyl)ethyl]- 2-(piperazin-1-yl)acetamide top
Crystal data top
C32H35BrN4O3F(000) = 1256
Mr = 603.55Dx = 1.316 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2354 reflections
a = 9.9738 (9) Åθ = 2.0–25.0°
b = 10.9397 (10) ŵ = 1.39 mm1
c = 27.910 (3) ÅT = 293 K
V = 3045.3 (5) Å3Block, colourless
Z = 40.26 × 0.21 × 0.13 mm
Data collection top
Bruker APEXII
diffractometer
5999 independent reflections
Radiation source: fine-focus sealed tube4518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 1.5°
ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1313
Tmin = 0.712, Tmax = 0.835l = 3234
18937 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.109P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5999 reflectionsΔρmax = 0.34 e Å3
361 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), 2585 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (12)
Crystal data top
C32H35BrN4O3V = 3045.3 (5) Å3
Mr = 603.55Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9738 (9) ŵ = 1.39 mm1
b = 10.9397 (10) ÅT = 293 K
c = 27.910 (3) Å0.26 × 0.21 × 0.13 mm
Data collection top
Bruker APEXII
diffractometer
5999 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4518 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.835Rint = 0.035
18937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.170Δρmax = 0.34 e Å3
S = 1.02Δρmin = 0.56 e Å3
5999 reflectionsAbsolute structure: Flack (1983), 2585 Friedel pairs
361 parametersAbsolute structure parameter: 0.011 (12)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1.16448 (6)0.50994 (6)0.67941 (2)0.0885 (3)
O20.5985 (3)0.1119 (3)0.63967 (10)0.0483 (7)
N20.6854 (3)0.0788 (3)0.64410 (10)0.0371 (7)
O30.5042 (4)0.5855 (3)0.55607 (14)0.0717 (10)
O11.0020 (3)0.1519 (3)0.56260 (13)0.0601 (8)
N30.4433 (3)0.0798 (3)0.71731 (11)0.0407 (7)
N11.1268 (3)0.0147 (3)0.58380 (12)0.0447 (8)
C120.6723 (4)0.0284 (3)0.55538 (13)0.0379 (8)
C80.8885 (4)0.0074 (3)0.60224 (12)0.0366 (8)
C41.1325 (4)0.1290 (3)0.60612 (12)0.0382 (8)
C170.7336 (4)0.0184 (4)0.51555 (13)0.0463 (9)
H170.82580.03110.51570.056*
C110.7584 (4)0.0681 (3)0.59812 (12)0.0360 (8)
H110.78780.15140.59050.043*
C70.8947 (4)0.1195 (4)0.62209 (13)0.0419 (9)
H70.81700.15540.63400.050*
C51.0190 (4)0.1841 (4)0.62510 (13)0.0408 (9)
C250.7040 (4)0.1975 (4)0.67042 (14)0.0438 (9)
H250.64430.19490.69830.053*
C61.0297 (4)0.3000 (4)0.64702 (14)0.0486 (10)
H60.95390.33910.65900.058*
C260.6586 (4)0.3032 (4)0.64005 (13)0.0414 (8)
C21.2674 (4)0.2991 (4)0.63264 (15)0.0490 (10)
H21.35000.33750.63600.059*
C190.5536 (4)0.0052 (5)0.71269 (14)0.0530 (11)
H19A0.52330.08530.72290.064*
H19B0.62460.02000.73430.064*
C31.2584 (4)0.1884 (4)0.61003 (14)0.0464 (10)
H31.33480.15220.59720.056*
C160.6590 (4)0.0473 (4)0.47472 (15)0.0567 (11)
H160.70170.07940.44790.068*
C91.0115 (4)0.0395 (3)0.58310 (14)0.0414 (9)
C130.5344 (4)0.0471 (4)0.55422 (15)0.0482 (10)
H130.49130.08020.58080.058*
C270.7433 (4)0.3932 (4)0.62201 (16)0.0522 (11)
H270.83470.38820.62830.063*
C290.5599 (4)0.4968 (4)0.58342 (16)0.0514 (10)
C310.5236 (4)0.3155 (4)0.62922 (17)0.0496 (10)
H310.46340.25820.64120.060*
C280.6960 (4)0.4898 (4)0.59510 (17)0.0554 (11)
H280.75470.55040.58470.066*
C180.6126 (4)0.0162 (4)0.66139 (14)0.0418 (9)
C150.5229 (5)0.0284 (4)0.47393 (16)0.0564 (11)
H150.47340.04620.44660.068*
C300.4758 (5)0.4090 (4)0.60162 (18)0.0581 (12)
H300.38450.41320.59500.070*
C240.8467 (5)0.2064 (5)0.68981 (17)0.0624 (12)
H24A0.86620.13540.70880.094*
H24B0.85500.27830.70930.094*
H24C0.90870.21100.66360.094*
C11.1521 (5)0.3534 (4)0.65043 (13)0.0505 (10)
C230.4107 (5)0.0920 (6)0.76822 (15)0.0657 (14)
H23A0.48810.12280.78540.079*
H23B0.38810.01240.78130.079*
C200.3260 (4)0.0351 (5)0.69106 (16)0.0595 (12)
H20A0.30120.04480.70320.071*
H20B0.34890.02610.65750.071*
C140.4610 (5)0.0170 (5)0.51402 (16)0.0605 (12)
H140.36850.02760.51410.073*
C220.2923 (5)0.1794 (6)0.77515 (19)0.0723 (15)
H22A0.27100.18540.80900.087*
H22B0.31680.26020.76380.087*
N40.1719 (5)0.1351 (6)0.74826 (18)0.0963 (17)
H4A0.09420.12100.76040.116*
C210.2101 (5)0.1193 (7)0.69568 (18)0.0829 (19)
H21A0.13430.08670.67800.100*
H21B0.23300.19810.68200.100*
C101.1213 (5)0.1999 (5)0.5407 (3)0.0880 (19)
H10A1.10250.27880.52720.132*
H10B1.15040.14550.51580.132*
H10C1.19060.20730.56440.132*
C320.5833 (7)0.6817 (5)0.5379 (2)0.0825 (16)
H32A0.52810.73540.51910.124*
H32B0.65330.64880.51810.124*
H32C0.62220.72650.56400.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0962 (5)0.0790 (4)0.0903 (4)0.0348 (3)0.0057 (3)0.0237 (3)
O20.0438 (15)0.0432 (16)0.0578 (16)0.0021 (13)0.0115 (13)0.0067 (14)
N20.0342 (17)0.0399 (16)0.0371 (15)0.0056 (14)0.0051 (13)0.0013 (13)
O30.065 (2)0.053 (2)0.097 (2)0.0068 (16)0.0065 (19)0.0160 (18)
O10.0421 (16)0.0471 (17)0.091 (2)0.0057 (14)0.0201 (15)0.0181 (16)
N30.0303 (16)0.052 (2)0.0395 (17)0.0027 (14)0.0058 (13)0.0062 (15)
N10.0298 (16)0.0457 (18)0.0586 (19)0.0010 (14)0.0049 (14)0.0059 (16)
C120.039 (2)0.0334 (18)0.0411 (18)0.0038 (16)0.0024 (16)0.0054 (14)
C80.0315 (18)0.0396 (19)0.0386 (18)0.0056 (16)0.0041 (14)0.0014 (16)
C40.036 (2)0.040 (2)0.0389 (19)0.0040 (16)0.0022 (15)0.0102 (15)
C170.038 (2)0.056 (2)0.045 (2)0.0102 (19)0.0055 (16)0.0024 (19)
C110.0310 (19)0.041 (2)0.0360 (19)0.0076 (16)0.0088 (15)0.0030 (15)
C70.0311 (18)0.050 (2)0.045 (2)0.0083 (17)0.0079 (16)0.0051 (17)
C50.042 (2)0.044 (2)0.0373 (19)0.0103 (17)0.0066 (16)0.0013 (16)
C250.037 (2)0.051 (2)0.043 (2)0.0068 (17)0.0039 (16)0.0121 (17)
C60.050 (2)0.049 (2)0.046 (2)0.014 (2)0.0122 (19)0.0105 (18)
C260.035 (2)0.044 (2)0.0448 (19)0.0037 (18)0.0023 (17)0.0102 (16)
C20.041 (2)0.050 (2)0.056 (2)0.0195 (19)0.009 (2)0.015 (2)
C190.045 (2)0.068 (3)0.045 (2)0.020 (2)0.0138 (17)0.019 (2)
C30.030 (2)0.053 (2)0.056 (2)0.0023 (18)0.0011 (17)0.016 (2)
C160.056 (3)0.066 (3)0.048 (2)0.006 (2)0.003 (2)0.011 (2)
C90.038 (2)0.039 (2)0.047 (2)0.0015 (17)0.0038 (17)0.0021 (16)
C130.037 (2)0.061 (3)0.046 (2)0.0158 (19)0.0006 (18)0.0003 (18)
C270.031 (2)0.055 (3)0.070 (3)0.0005 (19)0.002 (2)0.003 (2)
C290.049 (2)0.043 (2)0.062 (2)0.007 (2)0.0042 (19)0.001 (2)
C310.028 (2)0.043 (2)0.078 (3)0.0025 (17)0.0074 (19)0.007 (2)
C280.043 (2)0.045 (2)0.079 (3)0.006 (2)0.014 (2)0.001 (2)
C180.0315 (18)0.049 (2)0.0449 (19)0.0122 (17)0.0053 (16)0.0067 (18)
C150.056 (3)0.064 (3)0.049 (2)0.004 (2)0.011 (2)0.004 (2)
C300.037 (2)0.050 (3)0.087 (3)0.0009 (19)0.005 (2)0.003 (2)
C240.051 (3)0.074 (3)0.062 (3)0.008 (2)0.014 (2)0.012 (2)
C10.062 (3)0.053 (2)0.037 (2)0.021 (2)0.0003 (19)0.0004 (17)
C230.045 (3)0.109 (4)0.043 (2)0.000 (3)0.002 (2)0.011 (3)
C200.043 (2)0.079 (3)0.056 (2)0.001 (2)0.0051 (19)0.024 (2)
C140.037 (2)0.073 (3)0.071 (3)0.005 (2)0.005 (2)0.006 (3)
C220.047 (3)0.102 (4)0.068 (3)0.002 (3)0.011 (2)0.041 (3)
N40.059 (3)0.143 (5)0.087 (3)0.010 (3)0.013 (2)0.045 (3)
C210.043 (3)0.141 (6)0.065 (3)0.025 (3)0.004 (2)0.032 (3)
C100.058 (3)0.066 (3)0.140 (5)0.000 (3)0.041 (3)0.032 (3)
C320.112 (5)0.051 (3)0.085 (3)0.003 (3)0.009 (4)0.013 (3)
Geometric parameters (Å, º) top
Br—C11.898 (4)C19—H19B0.9700
O2—C181.217 (5)C3—H30.9300
N2—C181.357 (5)C16—C151.373 (6)
N2—C111.480 (4)C16—H160.9300
N2—C251.504 (5)C13—C141.379 (6)
O3—C291.353 (5)C13—H130.9300
O3—C321.410 (6)C27—C281.379 (6)
O1—C91.360 (5)C27—H270.9300
O1—C101.437 (6)C29—C301.373 (6)
N3—C191.446 (5)C29—C281.398 (6)
N3—C231.464 (5)C31—C301.366 (6)
N3—C201.464 (5)C31—H310.9300
N1—C91.294 (5)C28—H280.9300
N1—C41.399 (5)C15—C141.371 (7)
C12—C171.368 (5)C15—H150.9300
C12—C131.391 (5)C30—H300.9300
C12—C111.533 (5)C24—H24A0.9600
C8—C71.346 (5)C24—H24B0.9600
C8—C91.433 (5)C24—H24C0.9600
C8—C111.543 (5)C23—C221.531 (7)
C4—C51.388 (5)C23—H23A0.9700
C4—C31.418 (5)C23—H23B0.9700
C17—C161.398 (6)C20—C211.483 (7)
C17—H170.9300C20—H20A0.9700
C11—H110.9800C20—H20B0.9700
C7—C51.429 (5)C14—H140.9300
C7—H70.9300C22—N41.497 (7)
C5—C61.412 (6)C22—H22A0.9700
C25—C261.503 (6)C22—H22B0.9700
C25—C241.526 (6)N4—C211.526 (7)
C25—H250.9800N4—H4A0.8600
C6—C11.357 (6)C21—H21A0.9700
C6—H60.9300C21—H21B0.9700
C26—C311.387 (6)C10—H10A0.9600
C26—C271.392 (6)C10—H10B0.9600
C2—C31.368 (6)C10—H10C0.9600
C2—C11.387 (6)C32—H32A0.9600
C2—H20.9300C32—H32B0.9600
C19—C181.553 (5)C32—H32C0.9600
C19—H19A0.9700
C18—N2—C11120.8 (3)O3—C29—C30117.3 (4)
C18—N2—C25123.6 (3)O3—C29—C28124.7 (4)
C11—N2—C25115.5 (3)C30—C29—C28118.0 (4)
C29—O3—C32120.6 (4)C30—C31—C26122.3 (4)
C9—O1—C10116.8 (3)C30—C31—H31118.8
C19—N3—C23108.3 (3)C26—C31—H31118.8
C19—N3—C20110.4 (3)C27—C28—C29120.1 (4)
C23—N3—C20109.8 (3)C27—C28—H28120.0
C9—N1—C4116.9 (3)C29—C28—H28120.0
C17—C12—C13118.6 (4)O2—C18—N2122.9 (3)
C17—C12—C11119.2 (3)O2—C18—C19118.9 (4)
C13—C12—C11122.0 (3)N2—C18—C19118.1 (4)
C7—C8—C9116.1 (3)C14—C15—C16119.1 (4)
C7—C8—C11123.8 (3)C14—C15—H15120.5
C9—C8—C11120.0 (3)C16—C15—H15120.5
C5—C4—N1121.7 (3)C31—C30—C29121.3 (4)
C5—C4—C3119.7 (4)C31—C30—H30119.4
N1—C4—C3118.7 (3)C29—C30—H30119.4
C12—C17—C16120.6 (4)C25—C24—H24A109.5
C12—C17—H17119.7C25—C24—H24B109.5
C16—C17—H17119.7H24A—C24—H24B109.5
N2—C11—C12114.9 (3)C25—C24—H24C109.5
N2—C11—C8113.0 (3)H24A—C24—H24C109.5
C12—C11—C8112.2 (3)H24B—C24—H24C109.5
N2—C11—H11105.2C6—C1—C2122.4 (4)
C12—C11—H11105.2C6—C1—Br118.5 (3)
C8—C11—H11105.2C2—C1—Br119.0 (3)
C8—C7—C5120.9 (4)N3—C23—C22110.5 (4)
C8—C7—H7119.5N3—C23—H23A109.5
C5—C7—H7119.5C22—C23—H23A109.5
C4—C5—C6119.5 (4)N3—C23—H23B109.5
C4—C5—C7118.1 (4)C22—C23—H23B109.5
C6—C5—C7122.4 (4)H23A—C23—H23B108.1
C26—C25—N2110.6 (3)N3—C20—C21111.8 (4)
C26—C25—C24115.6 (4)N3—C20—H20A109.3
N2—C25—C24110.1 (3)C21—C20—H20A109.3
C26—C25—H25106.7N3—C20—H20B109.3
N2—C25—H25106.7C21—C20—H20B109.3
C24—C25—H25106.7H20A—C20—H20B107.9
C1—C6—C5119.1 (4)C15—C14—C13120.8 (4)
C1—C6—H6120.5C15—C14—H14119.6
C5—C6—H6120.5C13—C14—H14119.6
C31—C26—C27116.2 (4)N4—C22—C23110.7 (4)
C31—C26—C25119.4 (4)N4—C22—H22A109.5
C27—C26—C25124.5 (4)C23—C22—H22A109.5
C3—C2—C1119.4 (4)N4—C22—H22B109.5
C3—C2—H2120.3C23—C22—H22B109.5
C1—C2—H2120.3H22A—C22—H22B108.1
N3—C19—C18114.9 (3)C22—N4—C21108.6 (4)
N3—C19—H19A108.5C22—N4—H4A125.7
C18—C19—H19A108.5C21—N4—H4A125.7
N3—C19—H19B108.5C20—C21—N4110.4 (5)
C18—C19—H19B108.5C20—C21—H21A109.6
H19A—C19—H19B107.5N4—C21—H21A109.6
C2—C3—C4119.9 (4)C20—C21—H21B109.6
C2—C3—H3120.0N4—C21—H21B109.6
C4—C3—H3120.0H21A—C21—H21B108.1
C15—C16—C17120.4 (4)O1—C10—H10A109.5
C15—C16—H16119.8O1—C10—H10B109.5
C17—C16—H16119.8H10A—C10—H10B109.5
N1—C9—O1118.8 (3)O1—C10—H10C109.5
N1—C9—C8126.3 (4)H10A—C10—H10C109.5
O1—C9—C8114.9 (3)H10B—C10—H10C109.5
C14—C13—C12120.5 (4)O3—C32—H32A109.5
C14—C13—H13119.7O3—C32—H32B109.5
C12—C13—H13119.7H32A—C32—H32B109.5
C28—C27—C26122.1 (4)O3—C32—H32C109.5
C28—C27—H27118.9H32A—C32—H32C109.5
C26—C27—H27118.9H32B—C32—H32C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cgi0.962.693.639 (6)170
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC32H35BrN4O3
Mr603.55
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.9738 (9), 10.9397 (10), 27.910 (3)
V3)3045.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.26 × 0.21 × 0.13
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.712, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
18937, 5999, 4518
Rint0.035
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.170, 1.02
No. of reflections5999
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.56
Absolute structureFlack (1983), 2585 Friedel pairs
Absolute structure parameter0.011 (12)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cgi0.962.69013.639 (6)169.64
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the College of Experimental Center of Testing Science of Jilin University of China for the X-ray data collection.

References

First citationAndries, K., Verhasselt, P., Guillemont, J., Göehlmann, H. W. H., Neefs, J. M., Winkler, H., Gestel, J. V., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Z.-Q., Xiong, G., Li, S.-R., Liu, J.-B. & Sun, T.-M. (2009). Acta Cryst. E65, o1901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429–434.  Web of Science PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaurrand, S., Desjardins, S., Meyer, C., Bonnet, P., Argoullon, J.-M., Qulyadi, H. & Guillemont, J. (2006). Chem. Biol. Drug Des. 68, 77–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, J.-L., Wang, Y.-H., Wan, B.-J., Kozikowski, A. P. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624–1630.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct. 837, 252–256.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds