organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(3,5-Di­methyl­benz­yl)-5-ethyl-1-[(2-phen­­oxy­eth­­oxy)meth­yl]-1,2,3,4-tetra­hydro­pyrimidine-2,4-dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457 Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 September 2011; accepted 28 September 2011; online 5 October 2011)

The six-membered ring of the uracil part of the title compound, C24H28N2O4, is nearly planar (r.m.s. deviation = 0.013 Å); the aromatic ring of the 3,5-dimethyl­benzyl substitutent is aligned at 85.4 (1)° with respect to this mean plane. The phenyl ring of the substituent at the 1-position takes up two orientations in a 1:1 ratio. In the crystal, two mol­ecules are liked by a pair of N—H⋯O hydrogen bonds, generating a centrosymmetric hydrogen-bonded dimer.

Related literature

For the background to our studies on anti­viral HIV chemicals, see: El-Brollosy et al. (2007[El-Brollosy, N. R., Al-Omar, M. A., Al-Deeb, O. A., El-Emam, A. A. & Nielsen, C. (2007). J. Chem. Res. pp. 263-267.], 2008[El-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9-19.], 2009[El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663-670.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N2O4

  • Mr = 408.48

  • Monoclinic, P 21 /n

  • a = 16.1116 (6) Å

  • b = 4.8211 (2) Å

  • c = 27.5125 (10) Å

  • β = 92.574 (3)°

  • V = 2134.90 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.873, Tmax = 0.966

  • 6587 measured reflections

  • 4115 independent reflections

  • 2940 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.130

  • S = 1.03

  • 4115 reflections

  • 272 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.92 (3) 1.94 (3) 2.859 (2) 173 (2)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are chemicals for treating the human immunodeficiency virus (HIV), and the synthesis of such compounds represents a major thrust of our studies. We have synthesized several analogs of emivirine, TNK-651 and GCA-186 (El-Brollosy et al., 2007; 2008; 2009). We have synthesized the title compound (Scheme I) as a GCA-186 analog but with phenoxyethoxymethyl and ethyl substituents instead of ethoxymethyl and isopropyl at the 1- and 5-positions. Its antiviral activity against HIV will be reported elsewhere.

The six-membered ring of the uracil part is planar. The aromatic ring of the 3,5-dimethylbenzyl substitutent is aligned at 85.4 (1)° with respect to this plane. The phenyl ring of the substituent at the 1-position is disordered over two orientations in a 1:1 ratio (Fig. 1). Two molecules are liked by an N–H···O hydrogen bond to generate a centrosymmetric hydrogen-bonded dimer (Table 1).

Related literature top

For the background to our studies on antiviral HIV chemicals, see: El-Brollosy et al. (2007, 2008, 2009).

Experimental top

5-Ethyl-6-(3,5-dimethylbenzyl)uracil (0.258 g,1 mmol) was stirred in anhydrous acetontrile (15 ml) under nitrogen and N,O-bis(trimethylsilyl)acetamide (0.87 ml, 3.5 mol) was added. The clear solution -50° C and trimethylsilyl trifluoromethanesulfonate (0.18 ml, 1 mmol) was added followed by the dropwise addition of bis-(phenoxyethyloxy)methane (0.576 mg, 2 mmol). The mixture was stirred at room temperature for 4 h. The reaction was quenched with saturate sodium bicarbonate soluiton (5 ml). The solvent was evaporated under reduced pressure. The residue was extracted with ether (3 x 50 ml); the combined organic fractions were dried over magnesium sulfate. The solvent was removed and the residue was chromatographed on silica gel column with chloroform to afford a white solid. This was recrystallized from ethanol to yield the title compound as colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was located in a difference Fourier map, and was freely refined.

The phenyl ring is disordered over two positions; the disorder could not be refined and was regarded as a is a 1:1 type of disorder. The ring was refined as a rigid hexagon of 1.39 Å sides. The temperature factors of the primed atoms were set to those of the unprimed ones; the pair of O–Cphenyl distances were restrained to within 0.01 of each other.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C24H28N2O4 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the phenyl ring is not shown.
6-(3,5-Dimethylbenzyl)-5-ethyl-1-[(2-phenoxyethoxy)methyl]-1,2,3,4- tetrahydropyrimidine-2,4-dione top
Crystal data top
C24H28N2O4F(000) = 872
Mr = 408.48Dx = 1.271 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 1976 reflections
a = 16.1116 (6) Åθ = 2.7–74.3°
b = 4.8211 (2) ŵ = 0.70 mm1
c = 27.5125 (10) ÅT = 100 K
β = 92.574 (3)°Prism, colorless
V = 2134.90 (14) Å30.20 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4115 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2940 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 3.1°
ω scansh = 1719
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 55
Tmin = 0.873, Tmax = 0.966l = 1934
6587 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0602P)2]
where P = (Fo2 + 2Fc2)/3
4115 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C24H28N2O4V = 2134.90 (14) Å3
Mr = 408.48Z = 4
Monoclinic, P21/nCu Kα radiation
a = 16.1116 (6) ŵ = 0.70 mm1
b = 4.8211 (2) ÅT = 100 K
c = 27.5125 (10) Å0.20 × 0.10 × 0.05 mm
β = 92.574 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4115 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2940 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.966Rint = 0.036
6587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
4115 reflectionsΔρmin = 0.33 e Å3
272 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.41200 (10)0.7342 (4)0.49973 (5)0.0225 (4)
H10.4438 (15)0.827 (5)0.4779 (8)0.048 (7)*
N20.38205 (9)0.6427 (3)0.58001 (5)0.0188 (3)
O10.34103 (8)0.5312 (3)0.43648 (4)0.0288 (3)
O20.48232 (8)0.9577 (3)0.56125 (4)0.0268 (3)
O30.44380 (7)0.4797 (3)0.65593 (4)0.0248 (3)
O40.56832 (8)0.5868 (3)0.72760 (5)0.0324 (4)
C10.35269 (11)0.5509 (4)0.48060 (6)0.0207 (4)
C20.30735 (11)0.3942 (4)0.51623 (6)0.0200 (4)
C30.24618 (11)0.1866 (5)0.49479 (7)0.0265 (5)
H3A0.23720.04000.51920.032*
H3B0.27060.09760.46630.032*
C40.16242 (13)0.3118 (6)0.47889 (8)0.0397 (6)
H4A0.12830.17100.46180.060*
H4B0.17110.46880.45710.060*
H4C0.13410.37620.50760.060*
C50.32268 (11)0.4450 (4)0.56414 (6)0.0187 (4)
C60.42908 (11)0.7878 (4)0.54791 (6)0.0204 (4)
C70.27874 (11)0.2963 (4)0.60376 (6)0.0208 (4)
H7A0.32090.23590.62880.025*
H7B0.25250.12710.58960.025*
C80.21249 (11)0.4626 (4)0.62863 (6)0.0201 (4)
C90.16152 (11)0.6537 (4)0.60390 (6)0.0210 (4)
H90.16990.69030.57050.025*
C100.09878 (11)0.7921 (4)0.62691 (7)0.0244 (4)
C110.08768 (12)0.7369 (4)0.67617 (7)0.0267 (5)
H110.04550.83250.69250.032*
C120.13705 (11)0.5453 (4)0.70170 (6)0.0244 (4)
C130.19980 (11)0.4113 (4)0.67758 (6)0.0229 (4)
H130.23460.28250.69490.028*
C140.04326 (12)0.9954 (5)0.59964 (8)0.0326 (5)
H14A0.05500.99090.56500.049*
H14B0.05351.18260.61250.049*
H14C0.01500.94530.60370.049*
C150.12262 (13)0.4790 (5)0.75430 (7)0.0335 (5)
H15A0.10710.64870.77130.050*
H15B0.17360.40290.76980.050*
H15C0.07780.34240.75600.050*
C160.39924 (11)0.6934 (4)0.63250 (6)0.0212 (4)
H16A0.43110.86820.63650.025*
H16B0.34580.71800.64840.025*
C170.53086 (11)0.4743 (5)0.64639 (7)0.0297 (5)
H17A0.54930.66160.63680.036*
H17B0.54060.34530.61920.036*
C180.57914 (12)0.3821 (5)0.69086 (7)0.0317 (5)
H18A0.55870.19980.70180.038*
H18B0.63870.36380.68400.038*
C190.6138 (7)0.580 (2)0.7701 (2)0.0314 (7)0.50
C200.6750 (6)0.3880 (17)0.7837 (2)0.0428 (16)0.50
H200.68650.23730.76280.051*0.50
C210.7193 (4)0.4169 (15)0.8279 (2)0.0473 (14)0.50
H210.76110.28600.83730.057*0.50
C220.7025 (4)0.6374 (15)0.85853 (18)0.0386 (18)0.50
H220.73280.65720.88880.046*0.50
C230.6413 (6)0.8290 (14)0.8449 (2)0.0400 (17)0.50
H230.62980.97970.86580.048*0.50
C240.5969 (7)0.800 (2)0.8007 (2)0.0365 (14)0.50
H240.55510.93090.79140.044*0.50
C19'0.6218 (7)0.570 (2)0.7688 (2)0.0314 (7)0.50
C20'0.6910 (6)0.3974 (18)0.7719 (2)0.0428 (16)0.50
H20'0.70330.28110.74530.051*0.50
C21'0.7423 (4)0.3952 (17)0.8139 (2)0.0473 (14)0.50
H21'0.78960.27740.81600.057*0.50
C22'0.7244 (4)0.5654 (18)0.85281 (19)0.0386 (18)0.50
H22'0.75940.56390.88150.046*0.50
C23'0.6552 (5)0.7379 (15)0.84974 (19)0.0400 (17)0.50
H23'0.64290.85420.87640.048*0.50
C24'0.6039 (6)0.740 (2)0.8077 (2)0.0365 (14)0.50
H24'0.55660.85790.80560.044*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0214 (8)0.0306 (10)0.0160 (7)0.0053 (7)0.0047 (6)0.0009 (7)
N20.0188 (7)0.0235 (9)0.0142 (7)0.0030 (7)0.0028 (6)0.0016 (7)
O10.0305 (7)0.0412 (9)0.0151 (6)0.0050 (7)0.0035 (5)0.0015 (6)
O20.0257 (7)0.0348 (8)0.0202 (6)0.0111 (6)0.0040 (5)0.0003 (6)
O30.0187 (6)0.0374 (8)0.0182 (6)0.0007 (6)0.0013 (5)0.0028 (6)
O40.0285 (7)0.0444 (9)0.0235 (7)0.0064 (7)0.0068 (6)0.0081 (7)
C10.0197 (9)0.0259 (11)0.0166 (9)0.0023 (8)0.0032 (7)0.0006 (8)
C20.0184 (9)0.0216 (10)0.0200 (9)0.0009 (7)0.0019 (7)0.0011 (8)
C30.0287 (11)0.0323 (12)0.0186 (9)0.0090 (9)0.0009 (8)0.0010 (9)
C40.0278 (11)0.0587 (17)0.0320 (11)0.0065 (11)0.0045 (9)0.0122 (12)
C50.0167 (8)0.0205 (10)0.0191 (8)0.0016 (7)0.0028 (7)0.0000 (8)
C60.0178 (9)0.0252 (10)0.0183 (9)0.0000 (8)0.0035 (7)0.0013 (8)
C70.0201 (9)0.0234 (10)0.0191 (9)0.0024 (8)0.0031 (7)0.0005 (8)
C80.0176 (8)0.0233 (10)0.0196 (9)0.0055 (7)0.0038 (7)0.0007 (8)
C90.0194 (9)0.0253 (10)0.0185 (9)0.0047 (8)0.0021 (7)0.0011 (8)
C100.0206 (9)0.0243 (11)0.0281 (10)0.0030 (8)0.0001 (8)0.0005 (9)
C110.0211 (9)0.0309 (12)0.0286 (10)0.0014 (8)0.0069 (8)0.0041 (9)
C120.0213 (9)0.0336 (12)0.0186 (9)0.0064 (9)0.0038 (7)0.0019 (9)
C130.0211 (9)0.0286 (11)0.0191 (9)0.0024 (8)0.0010 (7)0.0042 (8)
C140.0253 (10)0.0321 (12)0.0405 (12)0.0011 (9)0.0010 (9)0.0029 (11)
C150.0292 (10)0.0508 (15)0.0210 (10)0.0065 (10)0.0078 (8)0.0011 (10)
C160.0200 (9)0.0281 (11)0.0156 (8)0.0024 (8)0.0022 (7)0.0029 (8)
C170.0177 (9)0.0481 (14)0.0235 (10)0.0014 (9)0.0032 (7)0.0040 (10)
C180.0258 (10)0.0389 (13)0.0301 (11)0.0067 (9)0.0033 (8)0.0086 (10)
C190.0248 (19)0.0451 (15)0.0237 (10)0.0112 (13)0.0055 (10)0.0059 (10)
C200.040 (4)0.0552 (19)0.032 (3)0.001 (2)0.012 (3)0.009 (2)
C210.039 (4)0.063 (2)0.038 (4)0.002 (3)0.013 (2)0.009 (3)
C220.030 (3)0.058 (4)0.0265 (18)0.013 (3)0.008 (2)0.012 (2)
C230.042 (3)0.059 (5)0.0179 (14)0.010 (3)0.0079 (14)0.011 (2)
C240.0328 (18)0.062 (4)0.0146 (19)0.0076 (19)0.0034 (13)0.006 (2)
C19'0.0248 (19)0.0451 (15)0.0237 (10)0.0112 (13)0.0055 (10)0.0059 (10)
C20'0.040 (4)0.0552 (19)0.032 (3)0.001 (2)0.012 (3)0.009 (2)
C21'0.039 (4)0.063 (2)0.038 (4)0.002 (3)0.013 (2)0.009 (3)
C22'0.030 (3)0.058 (4)0.0265 (18)0.013 (3)0.008 (2)0.012 (2)
C23'0.042 (3)0.059 (5)0.0179 (14)0.010 (3)0.0079 (14)0.011 (2)
C24'0.0328 (18)0.062 (4)0.0146 (19)0.0076 (19)0.0034 (13)0.006 (2)
Geometric parameters (Å, º) top
N1—C61.366 (2)C13—H130.9500
N1—C11.388 (2)C14—H14A0.9800
N1—H10.92 (3)C14—H14B0.9800
N2—C61.380 (2)C14—H14C0.9800
N2—C51.406 (2)C15—H15A0.9800
N2—C161.479 (2)C15—H15B0.9800
O1—C11.224 (2)C15—H15C0.9800
O2—C61.230 (2)C16—H16A0.9900
O3—C161.396 (2)C16—H16B0.9900
O3—C171.439 (2)C17—C181.488 (3)
O4—C191.352 (6)C17—H17A0.9900
O4—C19'1.395 (6)C17—H17B0.9900
O4—C181.429 (2)C18—H18A0.9900
C1—C21.459 (2)C18—H18B0.9900
C2—C51.352 (2)C19—C201.3900
C2—C31.506 (3)C19—C241.3900
C3—C41.525 (3)C20—C211.3900
C3—H3A0.9900C20—H200.9500
C3—H3B0.9900C21—C221.3900
C4—H4A0.9800C21—H210.9500
C4—H4B0.9800C22—C231.3900
C4—H4C0.9800C22—H220.9500
C5—C71.508 (2)C23—C241.3900
C7—C81.522 (2)C23—H230.9500
C7—H7A0.9900C24—H240.9500
C7—H7B0.9900C19'—C20'1.3900
C8—C91.392 (3)C19'—C24'1.3900
C8—C131.393 (2)C20'—C21'1.3900
C9—C101.388 (3)C20'—H20'0.9500
C9—H90.9500C21'—C22'1.3900
C10—C111.401 (3)C21'—H21'0.9500
C10—C141.504 (3)C22'—C23'1.3900
C11—C121.389 (3)C22'—H22'0.9500
C11—H110.9500C23'—C24'1.3900
C12—C131.393 (3)C23'—H23'0.9500
C12—C151.510 (2)C24'—H24'0.9500
C6—N1—C1126.42 (16)H14B—C14—H14C109.5
C6—N1—H1116.5 (15)C12—C15—H15A109.5
C1—N1—H1117.1 (15)C12—C15—H15B109.5
C6—N2—C5122.04 (15)H15A—C15—H15B109.5
C6—N2—C16117.20 (15)C12—C15—H15C109.5
C5—N2—C16120.70 (15)H15A—C15—H15C109.5
C16—O3—C17114.49 (15)H15B—C15—H15C109.5
C19—O4—C18121.0 (4)O3—C16—N2113.50 (15)
C19'—O4—C18116.3 (4)O3—C16—H16A108.9
O1—C1—N1119.88 (17)N2—C16—H16A108.9
O1—C1—C2124.54 (18)O3—C16—H16B108.9
N1—C1—C2115.58 (15)N2—C16—H16B108.9
C5—C2—C1119.08 (17)H16A—C16—H16B107.7
C5—C2—C3126.12 (17)O3—C17—C18109.48 (15)
C1—C2—C3114.80 (16)O3—C17—H17A109.8
C2—C3—C4113.85 (18)C18—C17—H17A109.8
C2—C3—H3A108.8O3—C17—H17B109.8
C4—C3—H3A108.8C18—C17—H17B109.8
C2—C3—H3B108.8H17A—C17—H17B108.2
C4—C3—H3B108.8O4—C18—C17107.43 (17)
H3A—C3—H3B107.7O4—C18—H18A110.2
C3—C4—H4A109.5C17—C18—H18A110.2
C3—C4—H4B109.5O4—C18—H18B110.2
H4A—C4—H4B109.5C17—C18—H18B110.2
C3—C4—H4C109.5H18A—C18—H18B108.5
H4A—C4—H4C109.5O4—C19—C20126.9 (6)
H4B—C4—H4C109.5O4—C19—C24113.0 (6)
C2—C5—N2121.15 (16)C20—C19—C24120.0
C2—C5—C7123.20 (17)C19—C20—C21120.0
N2—C5—C7115.65 (15)C19—C20—H20120.0
O2—C6—N1121.52 (16)C21—C20—H20120.0
O2—C6—N2122.85 (16)C22—C21—C20120.0
N1—C6—N2115.63 (16)C22—C21—H21120.0
C5—C7—C8115.86 (16)C20—C21—H21120.0
C5—C7—H7A108.3C23—C22—C21120.0
C8—C7—H7A108.3C23—C22—H22120.0
C5—C7—H7B108.3C21—C22—H22120.0
C8—C7—H7B108.3C24—C23—C22120.0
H7A—C7—H7B107.4C24—C23—H23120.0
C9—C8—C13118.74 (17)C22—C23—H23120.0
C9—C8—C7122.65 (16)C23—C24—C19120.0
C13—C8—C7118.53 (17)C23—C24—H24120.0
C10—C9—C8121.43 (17)C19—C24—H24120.0
C10—C9—H9119.3C20'—C19'—C24'120.0
C8—C9—H9119.3C20'—C19'—O4123.3 (6)
C9—C10—C11118.53 (18)C24'—C19'—O4116.7 (6)
C9—C10—C14120.98 (17)C19'—C20'—C21'120.0
C11—C10—C14120.49 (18)C19'—C20'—H20'120.0
C12—C11—C10121.36 (18)C21'—C20'—H20'120.0
C12—C11—H11119.3C20'—C21'—C22'120.0
C10—C11—H11119.3C20'—C21'—H21'120.0
C11—C12—C13118.63 (17)C22'—C21'—H21'120.0
C11—C12—C15121.06 (18)C23'—C22'—C21'120.0
C13—C12—C15120.30 (18)C23'—C22'—H22'120.0
C12—C13—C8121.29 (18)C21'—C22'—H22'120.0
C12—C13—H13119.4C22'—C23'—C24'120.0
C8—C13—H13119.4C22'—C23'—H23'120.0
C10—C14—H14A109.5C24'—C23'—H23'120.0
C10—C14—H14B109.5C23'—C24'—C19'120.0
H14A—C14—H14B109.5C23'—C24'—H24'120.0
C10—C14—H14C109.5C19'—C24'—H24'120.0
H14A—C14—H14C109.5
C6—N1—C1—O1176.73 (18)C15—C12—C13—C8177.89 (18)
C6—N1—C1—C22.7 (3)C9—C8—C13—C120.6 (3)
O1—C1—C2—C5176.43 (18)C7—C8—C13—C12176.36 (17)
N1—C1—C2—C53.0 (3)C17—O3—C16—N275.77 (19)
O1—C1—C2—C33.4 (3)C6—N2—C16—O3104.31 (19)
N1—C1—C2—C3177.20 (16)C5—N2—C16—O372.9 (2)
C5—C2—C3—C497.0 (2)C16—O3—C17—C18144.73 (17)
C1—C2—C3—C482.8 (2)C19—O4—C18—C17170.9 (7)
C1—C2—C5—N20.8 (3)C19'—O4—C18—C17167.2 (6)
C3—C2—C5—N2179.36 (17)O3—C17—C18—O464.1 (2)
C1—C2—C5—C7179.49 (17)C19'—O4—C19—C2035 (10)
C3—C2—C5—C70.3 (3)C18—O4—C19—C201.0 (12)
C6—N2—C5—C22.0 (3)C19'—O4—C19—C24142 (11)
C16—N2—C5—C2179.04 (17)C18—O4—C19—C24177.9 (3)
C6—N2—C5—C7177.74 (16)O4—C19—C20—C21176.7 (12)
C16—N2—C5—C70.7 (2)C24—C19—C20—C210.0
C1—N1—C6—O2178.95 (17)C19—C20—C21—C220.0
C1—N1—C6—N20.1 (3)C20—C21—C22—C230.0
C5—N2—C6—O2178.63 (17)C21—C22—C23—C240.0
C16—N2—C6—O21.5 (3)C22—C23—C24—C190.0
C5—N2—C6—N12.3 (3)O4—C19—C24—C23177.1 (10)
C16—N2—C6—N1179.49 (16)C20—C19—C24—C230.0
C2—C5—C7—C8104.9 (2)C19—O4—C19'—C20'156 (11)
N2—C5—C7—C875.4 (2)C18—O4—C19'—C20'10.5 (10)
C5—C7—C8—C935.4 (2)C19—O4—C19'—C24'25 (10)
C5—C7—C8—C13147.79 (18)C18—O4—C19'—C24'170.5 (4)
C13—C8—C9—C100.2 (3)C24'—C19'—C20'—C21'0.0
C7—C8—C9—C10176.65 (18)O4—C19'—C20'—C21'178.9 (11)
C8—C9—C10—C110.4 (3)C19'—C20'—C21'—C22'0.0
C8—C9—C10—C14179.14 (17)C20'—C21'—C22'—C23'0.0
C9—C10—C11—C121.0 (3)C21'—C22'—C23'—C24'0.0
C14—C10—C11—C12178.52 (18)C22'—C23'—C24'—C19'0.0
C10—C11—C12—C131.4 (3)C20'—C19'—C24'—C23'0.0
C10—C11—C12—C15177.69 (19)O4—C19'—C24'—C23'179.0 (10)
C11—C12—C13—C81.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.92 (3)1.94 (3)2.859 (2)173 (2)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC24H28N2O4
Mr408.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)16.1116 (6), 4.8211 (2), 27.5125 (10)
β (°) 92.574 (3)
V3)2134.90 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.873, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6587, 4115, 2940
Rint0.036
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.03
No. of reflections4115
No. of parameters272
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.33

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.92 (3)1.94 (3)2.859 (2)173 (2)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

We thank King Saud University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationEl-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663–670.  CAS Google Scholar
First citationEl-Brollosy, N. R., Al-Omar, M. A., Al-Deeb, O. A., El-Emam, A. A. & Nielsen, C. (2007). J. Chem. Res. pp. 263–267.  Google Scholar
First citationEl-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9–19.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds