organic compounds
2-(2-Hydroxyphenyl)-1,3-benzothiazole-6-carbaldehyde
aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
The molecule of the title compound, C14H9NO2S, is nearly planar, the maximum atomic deviation being 0.081 (2) Å. An intramolecular O—H⋯N bond generates an S(6) ring motif. In the crystal, inversion-related molecules linked by a pair of weak C—H⋯O hydrogen bonds form a supramolecular dimer. π–π stacking is observed between the thiazole and benzene rings of adjacent molecules, the centroid–centroid distance being 3.7679 (9) Å.
Related literature
For the spectroscopy and preparation of the title compound, see: Hsieh et al. (2008). For the spectroscopy and applications of benzoxazole and benzothiazole derivatives, see: Chen & Pang (2009, 2010); Hrobáriková et al. (2010); Kim et al. (2010a,b); Lijima et al. (2010); Lim et al. (2011); López-Ruiz et al. (2011); Tanaka et al. (2001). For related structures, see: Tong (2005); Hahn et al. (1998). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811040712/xu5345sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811040712/xu5345Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811040712/xu5345Isup3.cml
The title compound was synthesized according to the literature (Hsieh et al., 2008). Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from the chloroform solution.
H atoms bonded to O and C atoms were located in a difference
The hydroxy H atom and the Csp3 H atoms were freely refined, and the Csp2 H atoms repositioned geometrically and refined using a riding model, [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C14H9NO2S | F(000) = 528 |
Mr = 255.28 | Dx = 1.541 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2yn | Cell parameters from 2297 reflections |
a = 8.2645 (3) Å | θ = 2.5–25.7° |
b = 5.6449 (2) Å | µ = 0.29 mm−1 |
c = 23.8341 (9) Å | T = 150 K |
β = 98.147 (2)° | Plate, yellow |
V = 1100.69 (7) Å3 | 0.38 × 0.14 × 0.04 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 1943 independent reflections |
Radiation source: fine-focus sealed tube | 1333 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −9→9 |
Tmin = 0.882, Tmax = 0.992 | k = −6→3 |
8427 measured reflections | l = −28→28 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0251P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.90 | (Δ/σ)max < 0.001 |
1943 reflections | Δρmax = 0.22 e Å−3 |
168 parameters | Δρmin = −0.27 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0014 (2) |
C14H9NO2S | V = 1100.69 (7) Å3 |
Mr = 255.28 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.2645 (3) Å | µ = 0.29 mm−1 |
b = 5.6449 (2) Å | T = 150 K |
c = 23.8341 (9) Å | 0.38 × 0.14 × 0.04 mm |
β = 98.147 (2)° |
Bruker SMART CCD area-detector diffractometer | 1943 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1333 reflections with I > 2σ(I) |
Tmin = 0.882, Tmax = 0.992 | Rint = 0.042 |
8427 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 1 restraint |
wR(F2) = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.90 | Δρmax = 0.22 e Å−3 |
1943 reflections | Δρmin = −0.27 e Å−3 |
168 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.74344 (6) | 0.79801 (8) | 0.392532 (18) | 0.02213 (16) | |
O1 | 0.51794 (15) | 0.6205 (2) | 0.59718 (5) | 0.0317 (4) | |
O2 | 1.05490 (15) | 1.4470 (2) | 0.35839 (5) | 0.0272 (3) | |
N1 | 0.88683 (16) | 1.1973 (2) | 0.42282 (6) | 0.0183 (3) | |
C1 | 0.81872 (19) | 1.1165 (3) | 0.46928 (7) | 0.0167 (4) | |
C2 | 0.7362 (2) | 0.8986 (3) | 0.46067 (7) | 0.0169 (4) | |
C3 | 0.66326 (19) | 0.7940 (3) | 0.50315 (7) | 0.0189 (4) | |
H3 | 0.6076 | 0.6510 | 0.4970 | 0.023* | |
C4 | 0.67509 (19) | 0.9071 (3) | 0.55528 (7) | 0.0183 (4) | |
C5 | 0.7578 (2) | 1.1247 (3) | 0.56406 (7) | 0.0211 (4) | |
H5 | 0.7644 | 1.1987 | 0.5992 | 0.025* | |
C6 | 0.82896 (19) | 1.2299 (3) | 0.52162 (7) | 0.0204 (4) | |
H6 | 0.8830 | 1.3741 | 0.5277 | 0.024* | |
C7 | 0.5997 (2) | 0.7988 (3) | 0.60128 (7) | 0.0252 (4) | |
H7 | 0.6162 | 0.8736 | 0.6364 | 0.030* | |
C11 | 0.91907 (19) | 1.0821 (3) | 0.32631 (7) | 0.0168 (4) | |
C12 | 1.0157 (2) | 1.2802 (3) | 0.31764 (7) | 0.0190 (4) | |
C13 | 1.07588 (19) | 1.3083 (3) | 0.26659 (7) | 0.0219 (4) | |
H13 | 1.1400 | 1.4394 | 0.2611 | 0.026* | |
C14 | 1.04146 (19) | 1.1439 (3) | 0.22413 (7) | 0.0229 (5) | |
H14 | 1.0826 | 1.1644 | 0.1901 | 0.027* | |
C15 | 0.9459 (2) | 0.9477 (3) | 0.23149 (7) | 0.0239 (5) | |
H15 | 0.9225 | 0.8371 | 0.2026 | 0.029* | |
C16 | 0.8862 (2) | 0.9183 (3) | 0.28209 (7) | 0.0222 (4) | |
H16 | 0.8223 | 0.7863 | 0.2870 | 0.027* | |
C17 | 0.85778 (19) | 1.0478 (3) | 0.38021 (7) | 0.0180 (4) | |
H2 | 1.005 (2) | 1.407 (4) | 0.3877 (7) | 0.071 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0278 (3) | 0.0195 (3) | 0.0199 (3) | −0.0044 (2) | 0.0062 (2) | −0.0013 (2) |
O1 | 0.0349 (8) | 0.0318 (8) | 0.0295 (8) | −0.0074 (7) | 0.0085 (7) | 0.0053 (6) |
O2 | 0.0346 (8) | 0.0245 (8) | 0.0233 (8) | −0.0092 (6) | 0.0070 (7) | −0.0026 (6) |
N1 | 0.0198 (9) | 0.0164 (8) | 0.0186 (8) | 0.0005 (7) | 0.0025 (7) | 0.0009 (7) |
C1 | 0.0154 (10) | 0.0160 (10) | 0.0181 (10) | 0.0040 (8) | 0.0003 (8) | 0.0037 (8) |
C2 | 0.0172 (10) | 0.0169 (10) | 0.0165 (10) | 0.0029 (8) | 0.0016 (8) | 0.0006 (8) |
C3 | 0.0162 (10) | 0.0168 (10) | 0.0233 (11) | 0.0011 (8) | 0.0016 (8) | 0.0021 (9) |
C4 | 0.0170 (10) | 0.0194 (10) | 0.0187 (10) | 0.0043 (8) | 0.0034 (8) | 0.0037 (8) |
C5 | 0.0226 (11) | 0.0225 (11) | 0.0179 (11) | 0.0051 (9) | 0.0019 (9) | −0.0020 (8) |
C6 | 0.0209 (11) | 0.0178 (10) | 0.0220 (11) | −0.0004 (8) | 0.0011 (8) | −0.0001 (8) |
C7 | 0.0241 (12) | 0.0299 (11) | 0.0215 (11) | 0.0069 (10) | 0.0030 (9) | 0.0008 (9) |
C11 | 0.0162 (10) | 0.0173 (10) | 0.0171 (10) | 0.0008 (8) | 0.0028 (8) | 0.0023 (8) |
C12 | 0.0183 (10) | 0.0184 (10) | 0.0194 (10) | 0.0019 (9) | −0.0003 (8) | −0.0006 (9) |
C13 | 0.0207 (11) | 0.0220 (10) | 0.0233 (11) | −0.0037 (8) | 0.0048 (9) | 0.0048 (9) |
C14 | 0.0202 (11) | 0.0292 (12) | 0.0201 (11) | 0.0032 (9) | 0.0060 (9) | 0.0051 (9) |
C15 | 0.0279 (12) | 0.0240 (11) | 0.0198 (11) | 0.0016 (9) | 0.0040 (9) | −0.0030 (8) |
C16 | 0.0238 (11) | 0.0184 (10) | 0.0244 (11) | −0.0023 (9) | 0.0038 (9) | 0.0011 (9) |
C17 | 0.0146 (10) | 0.0163 (10) | 0.0228 (11) | 0.0030 (8) | 0.0016 (8) | 0.0022 (8) |
S—C2 | 1.7296 (16) | C5—H5 | 0.9300 |
S—C17 | 1.7454 (17) | C6—H6 | 0.9300 |
O1—C7 | 1.2087 (19) | C7—H7 | 0.9300 |
O2—C12 | 1.3588 (19) | C11—C16 | 1.400 (2) |
O2—H2 | 0.890 (14) | C11—C12 | 1.406 (2) |
N1—C17 | 1.3160 (18) | C11—C17 | 1.459 (2) |
N1—C1 | 1.3882 (19) | C12—C13 | 1.387 (2) |
C1—C6 | 1.394 (2) | C13—C14 | 1.373 (2) |
C1—C2 | 1.407 (2) | C13—H13 | 0.9300 |
C2—C3 | 1.382 (2) | C14—C15 | 1.386 (2) |
C3—C4 | 1.388 (2) | C14—H14 | 0.9300 |
C3—H3 | 0.9300 | C15—C16 | 1.376 (2) |
C4—C5 | 1.407 (2) | C15—H15 | 0.9300 |
C4—C7 | 1.469 (2) | C16—H16 | 0.9300 |
C5—C6 | 1.375 (2) | ||
C2—S—C17 | 89.10 (8) | C4—C7—H7 | 117.4 |
C12—O2—H2 | 107.2 (14) | C16—C11—C12 | 117.93 (15) |
C17—N1—C1 | 110.79 (14) | C16—C11—C17 | 121.39 (15) |
N1—C1—C6 | 125.67 (16) | C12—C11—C17 | 120.67 (15) |
N1—C1—C2 | 114.43 (15) | O2—C12—C13 | 117.94 (15) |
C6—C1—C2 | 119.88 (16) | O2—C12—C11 | 121.94 (15) |
C3—C2—C1 | 121.30 (16) | C13—C12—C11 | 120.11 (16) |
C3—C2—S | 128.62 (14) | C14—C13—C12 | 120.42 (16) |
C1—C2—S | 110.07 (12) | C14—C13—H13 | 119.8 |
C2—C3—C4 | 118.44 (16) | C12—C13—H13 | 119.8 |
C2—C3—H3 | 120.8 | C13—C14—C15 | 120.61 (16) |
C4—C3—H3 | 120.8 | C13—C14—H14 | 119.7 |
C3—C4—C5 | 120.40 (16) | C15—C14—H14 | 119.7 |
C3—C4—C7 | 119.55 (16) | C16—C15—C14 | 119.28 (16) |
C5—C4—C7 | 120.05 (16) | C16—C15—H15 | 120.4 |
C6—C5—C4 | 121.13 (16) | C14—C15—H15 | 120.4 |
C6—C5—H5 | 119.4 | C15—C16—C11 | 121.64 (16) |
C4—C5—H5 | 119.4 | C15—C16—H16 | 119.2 |
C5—C6—C1 | 118.84 (16) | C11—C16—H16 | 119.2 |
C5—C6—H6 | 120.6 | N1—C17—C11 | 123.12 (15) |
C1—C6—H6 | 120.6 | N1—C17—S | 115.59 (12) |
O1—C7—C4 | 125.29 (17) | C11—C17—S | 121.27 (12) |
O1—C7—H7 | 117.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.89 (2) | 1.81 (2) | 2.6228 (18) | 150 (2) |
C5—H5···O2i | 0.93 | 2.61 | 3.293 (2) | 130 |
Symmetry code: (i) −x+2, −y+3, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H9NO2S |
Mr | 255.28 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 8.2645 (3), 5.6449 (2), 23.8341 (9) |
β (°) | 98.147 (2) |
V (Å3) | 1100.69 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.38 × 0.14 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.882, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8427, 1943, 1333 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.058, 0.90 |
No. of reflections | 1943 |
No. of parameters | 168 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.27 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.889 (17) | 1.81 (2) | 2.6228 (18) | 150 (2) |
C5—H5···O2i | 0.93 | 2.61 | 3.293 (2) | 130 |
Symmetry code: (i) −x+2, −y+3, −z+1. |
Acknowledgements
This work was supported by the National Science Council and Feng Chia University in Taiwan.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, W.-H. & Pang, Y. (2009). Tetrahedron Lett. 50, 6680–6683. Web of Science CrossRef CAS Google Scholar
Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hahn, F. E., Imhof, L. & Lügger, T. (1998). Acta Cryst. C54, 668–669. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hrobáriková, V., Hrobárik, P., Gajdos, P., Fitilis, I., Fakis, M., Persephonis, P. & Zahradnik, P. (2010). J. Org. Chem. 75, 3053–3068. PubMed Google Scholar
Hsieh, C.-C., Cheng, Y.-M., Hsu, C.-J., Chen, K.-Y. & Chou, P.-T. (2008). J. Phys. Chem. A, 112, 8323–8332. Web of Science CrossRef PubMed CAS Google Scholar
Kim, T. H., Kwon, N. Y. & Lee, T. S. (2010a). Tetrahedron Lett. 51, 5596–5600. Web of Science CrossRef CAS Google Scholar
Kim, C. H., Park, J., Seo, J., Park, S. Y. & Joo, T. (2010b). J. Phys. Chem. A, 114, 5618–5629. Web of Science CrossRef CAS PubMed Google Scholar
Lijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603–1609. PubMed Google Scholar
Lim, C. K., Seo, J., Kim, S., Kwon, I. C., Ahn, C. H. & Park, S. Y. (2011). Dyes Pigments, 90, 284–289. Web of Science CrossRef CAS Google Scholar
López-Ruiz, H., Briseno-Ortega, H., Rojas-Lima, S., Santillan, R. & Farfán, N. (2011). Tetrahedron Lett. 52, 4308–4312. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanaka, K., Kumagai, T., Aoki, H., Deguchi, M. & Iwata, S. (2001). J. Org. Chem. 66, 7328–7333. Web of Science CrossRef PubMed CAS Google Scholar
Tong, Y.-P. (2005). Acta Cryst. E61, o3076–o3078. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The excited-state intramolecular proton transfer (ESIPT) reaction of 2-(2-hydroxyphenyl)benzoxazole and 2-(2-hydroxyphenyl)benzothiazole derivatives has been investigated for past years (Hsieh et al., 2008; Kim et al., 2010a,b; Lijima et al., 2010; López-Ruiz et al., 2011), which incorporates transfer of a hydroxy proton to the imine nitrogen through a intramolecular six-membered-ring hydrogen-bonding system (Chen et al., 2009, 2010). The unusual photophysical property of the resulting proton-transfer tautomer has found many important applications (Hrobáriková et al., 2010; Lim et al., 2011; Tanaka et al., 2001).
The molecular structure of the title compound (HBT) is shown in Figure 1. The molecule is nearly planar, which is consistent with previous studies (Tong, 2005; Hahn et al., 1998). HBT possesses an intramolecular O—H···N hydrogen bond (Table 1), which generates an S(6) ring motif (Bernstein et al., 1995). In the crystal (Figure 2), inversion-related molecules are linked by a pair of weak C—H···O hydrogen bonds, forming a cyclic dimers with R22(18) graph-set motif. π-π stacing is observed between thiazole and C1i-benzene rings of adjacent molecules [symmetry code: (i): 2-x,2-y,1-z], the centroid-to-centroid distance being 3.7679 (9) Å.