organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Hy­dr­oxy­phen­yl)-1,3-benzo­thia­zole-6-carbaldehyde

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 30 September 2011; accepted 3 October 2011; online 8 October 2011)

The mol­ecule of the title compound, C14H9NO2S, is nearly planar, the maximum atomic deviation being 0.081 (2) Å. An intra­molecular O—H⋯N bond generates an S(6) ring motif. In the crystal, inversion-related mol­ecules linked by a pair of weak C—H⋯O hydrogen bonds form a supra­molecular dimer. ππ stacking is observed between the thia­zole and benzene rings of adjacent mol­ecules, the centroid–centroid distance being 3.7679 (9) Å.

Related literature

For the spectroscopy and preparation of the title compound, see: Hsieh et al. (2008[Hsieh, C.-C., Cheng, Y.-M., Hsu, C.-J., Chen, K.-Y. & Chou, P.-T. (2008). J. Phys. Chem. A, 112, 8323-8332.]). For the spectroscopy and applications of benzoxazole and benzothia­zole derivatives, see: Chen & Pang (2009[Chen, W.-H. & Pang, Y. (2009). Tetrahedron Lett. 50, 6680-6683.], 2010[Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914-1918.]); Hrobáriková et al. (2010[Hrobáriková, V., Hrobárik, P., Gajdos, P., Fitilis, I., Fakis, M., Persephonis, P. & Zahradnik, P. (2010). J. Org. Chem. 75, 3053-3068.]); Kim et al. (2010a[Kim, T. H., Kwon, N. Y. & Lee, T. S. (2010a). Tetrahedron Lett. 51, 5596-5600.],b[Kim, C. H., Park, J., Seo, J., Park, S. Y. & Joo, T. (2010b). J. Phys. Chem. A, 114, 5618-5629.]); Lijima et al. (2010[Lijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603-1609.]); Lim et al. (2011[Lim, C. K., Seo, J., Kim, S., Kwon, I. C., Ahn, C. H. & Park, S. Y. (2011). Dyes Pigments, 90, 284-289.]); López-Ruiz et al. (2011[López-Ruiz, H., Briseno-Ortega, H., Rojas-Lima, S., Santillan, R. & Farfán, N. (2011). Tetrahedron Lett. 52, 4308-4312.]); Tanaka et al. (2001[Tanaka, K., Kumagai, T., Aoki, H., Deguchi, M. & Iwata, S. (2001). J. Org. Chem. 66, 7328-7333.]). For related structures, see: Tong (2005[Tong, Y.-P. (2005). Acta Cryst. E61, o3076-o3078.]); Hahn et al. (1998[Hahn, F. E., Imhof, L. & Lügger, T. (1998). Acta Cryst. C54, 668-669.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9NO2S

  • Mr = 255.28

  • Monoclinic, P 21 /n

  • a = 8.2645 (3) Å

  • b = 5.6449 (2) Å

  • c = 23.8341 (9) Å

  • β = 98.147 (2)°

  • V = 1100.69 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 K

  • 0.38 × 0.14 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.992

  • 8427 measured reflections

  • 1943 independent reflections

  • 1333 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.058

  • S = 0.90

  • 1943 reflections

  • 168 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.89 (2) 1.81 (2) 2.6228 (18) 150 (2)
C5—H5⋯O2i 0.93 2.61 3.293 (2) 130
Symmetry code: (i) -x+2, -y+3, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The excited-state intramolecular proton transfer (ESIPT) reaction of 2-(2-hydroxyphenyl)benzoxazole and 2-(2-hydroxyphenyl)benzothiazole derivatives has been investigated for past years (Hsieh et al., 2008; Kim et al., 2010a,b; Lijima et al., 2010; López-Ruiz et al., 2011), which incorporates transfer of a hydroxy proton to the imine nitrogen through a intramolecular six-membered-ring hydrogen-bonding system (Chen et al., 2009, 2010). The unusual photophysical property of the resulting proton-transfer tautomer has found many important applications (Hrobáriková et al., 2010; Lim et al., 2011; Tanaka et al., 2001).

The molecular structure of the title compound (HBT) is shown in Figure 1. The molecule is nearly planar, which is consistent with previous studies (Tong, 2005; Hahn et al., 1998). HBT possesses an intramolecular O—H···N hydrogen bond (Table 1), which generates an S(6) ring motif (Bernstein et al., 1995). In the crystal (Figure 2), inversion-related molecules are linked by a pair of weak C—H···O hydrogen bonds, forming a cyclic dimers with R22(18) graph-set motif. π-π stacing is observed between thiazole and C1i-benzene rings of adjacent molecules [symmetry code: (i): 2-x,2-y,1-z], the centroid-to-centroid distance being 3.7679 (9) Å.

Related literature top

For the spectroscopy and preparation of the title compound, see: Hsieh et al. (2008). For the spectroscopy and applications of benzoxazole and benzothiazole derivatives, see: Chen & Pang (2009, 2010); Hrobáriková et al. (2010); Kim et al. (2010a,b); Lijima et al. (2010); Lim et al. (2011); López-Ruiz et al. (2011); Tanaka et al. (2001). For related structures, see: Tong (2005); Hahn et al. (1998). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the literature (Hsieh et al., 2008). Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from the chloroform solution.

Refinement top

H atoms bonded to O and C atoms were located in a difference electron density map. The hydroxy H atom and the Csp3 H atoms were freely refined, and the Csp2 H atoms repositioned geometrically and refined using a riding model, [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed down the b axis. Green dashed lines denote the intermolecular C—H···O hydrogen bonds.
2-(2-Hydroxyphenyl)-1,3-benzothiazole-6-carbaldehyde top
Crystal data top
C14H9NO2SF(000) = 528
Mr = 255.28Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 2297 reflections
a = 8.2645 (3) Åθ = 2.5–25.7°
b = 5.6449 (2) ŵ = 0.29 mm1
c = 23.8341 (9) ÅT = 150 K
β = 98.147 (2)°Plate, yellow
V = 1100.69 (7) Å30.38 × 0.14 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1943 independent reflections
Radiation source: fine-focus sealed tube1333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.882, Tmax = 0.992k = 63
8427 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0251P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
1943 reflectionsΔρmax = 0.22 e Å3
168 parametersΔρmin = 0.27 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (2)
Crystal data top
C14H9NO2SV = 1100.69 (7) Å3
Mr = 255.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2645 (3) ŵ = 0.29 mm1
b = 5.6449 (2) ÅT = 150 K
c = 23.8341 (9) Å0.38 × 0.14 × 0.04 mm
β = 98.147 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1943 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1333 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.992Rint = 0.042
8427 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.22 e Å3
1943 reflectionsΔρmin = 0.27 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.74344 (6)0.79801 (8)0.392532 (18)0.02213 (16)
O10.51794 (15)0.6205 (2)0.59718 (5)0.0317 (4)
O21.05490 (15)1.4470 (2)0.35839 (5)0.0272 (3)
N10.88683 (16)1.1973 (2)0.42282 (6)0.0183 (3)
C10.81872 (19)1.1165 (3)0.46928 (7)0.0167 (4)
C20.7362 (2)0.8986 (3)0.46067 (7)0.0169 (4)
C30.66326 (19)0.7940 (3)0.50315 (7)0.0189 (4)
H30.60760.65100.49700.023*
C40.67509 (19)0.9071 (3)0.55528 (7)0.0183 (4)
C50.7578 (2)1.1247 (3)0.56406 (7)0.0211 (4)
H50.76441.19870.59920.025*
C60.82896 (19)1.2299 (3)0.52162 (7)0.0204 (4)
H60.88301.37410.52770.024*
C70.5997 (2)0.7988 (3)0.60128 (7)0.0252 (4)
H70.61620.87360.63640.030*
C110.91907 (19)1.0821 (3)0.32631 (7)0.0168 (4)
C121.0157 (2)1.2802 (3)0.31764 (7)0.0190 (4)
C131.07588 (19)1.3083 (3)0.26659 (7)0.0219 (4)
H131.14001.43940.26110.026*
C141.04146 (19)1.1439 (3)0.22413 (7)0.0229 (5)
H141.08261.16440.19010.027*
C150.9459 (2)0.9477 (3)0.23149 (7)0.0239 (5)
H150.92250.83710.20260.029*
C160.8862 (2)0.9183 (3)0.28209 (7)0.0222 (4)
H160.82230.78630.28700.027*
C170.85778 (19)1.0478 (3)0.38021 (7)0.0180 (4)
H21.005 (2)1.407 (4)0.3877 (7)0.071 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0278 (3)0.0195 (3)0.0199 (3)0.0044 (2)0.0062 (2)0.0013 (2)
O10.0349 (8)0.0318 (8)0.0295 (8)0.0074 (7)0.0085 (7)0.0053 (6)
O20.0346 (8)0.0245 (8)0.0233 (8)0.0092 (6)0.0070 (7)0.0026 (6)
N10.0198 (9)0.0164 (8)0.0186 (8)0.0005 (7)0.0025 (7)0.0009 (7)
C10.0154 (10)0.0160 (10)0.0181 (10)0.0040 (8)0.0003 (8)0.0037 (8)
C20.0172 (10)0.0169 (10)0.0165 (10)0.0029 (8)0.0016 (8)0.0006 (8)
C30.0162 (10)0.0168 (10)0.0233 (11)0.0011 (8)0.0016 (8)0.0021 (9)
C40.0170 (10)0.0194 (10)0.0187 (10)0.0043 (8)0.0034 (8)0.0037 (8)
C50.0226 (11)0.0225 (11)0.0179 (11)0.0051 (9)0.0019 (9)0.0020 (8)
C60.0209 (11)0.0178 (10)0.0220 (11)0.0004 (8)0.0011 (8)0.0001 (8)
C70.0241 (12)0.0299 (11)0.0215 (11)0.0069 (10)0.0030 (9)0.0008 (9)
C110.0162 (10)0.0173 (10)0.0171 (10)0.0008 (8)0.0028 (8)0.0023 (8)
C120.0183 (10)0.0184 (10)0.0194 (10)0.0019 (9)0.0003 (8)0.0006 (9)
C130.0207 (11)0.0220 (10)0.0233 (11)0.0037 (8)0.0048 (9)0.0048 (9)
C140.0202 (11)0.0292 (12)0.0201 (11)0.0032 (9)0.0060 (9)0.0051 (9)
C150.0279 (12)0.0240 (11)0.0198 (11)0.0016 (9)0.0040 (9)0.0030 (8)
C160.0238 (11)0.0184 (10)0.0244 (11)0.0023 (9)0.0038 (9)0.0011 (9)
C170.0146 (10)0.0163 (10)0.0228 (11)0.0030 (8)0.0016 (8)0.0022 (8)
Geometric parameters (Å, º) top
S—C21.7296 (16)C5—H50.9300
S—C171.7454 (17)C6—H60.9300
O1—C71.2087 (19)C7—H70.9300
O2—C121.3588 (19)C11—C161.400 (2)
O2—H20.890 (14)C11—C121.406 (2)
N1—C171.3160 (18)C11—C171.459 (2)
N1—C11.3882 (19)C12—C131.387 (2)
C1—C61.394 (2)C13—C141.373 (2)
C1—C21.407 (2)C13—H130.9300
C2—C31.382 (2)C14—C151.386 (2)
C3—C41.388 (2)C14—H140.9300
C3—H30.9300C15—C161.376 (2)
C4—C51.407 (2)C15—H150.9300
C4—C71.469 (2)C16—H160.9300
C5—C61.375 (2)
C2—S—C1789.10 (8)C4—C7—H7117.4
C12—O2—H2107.2 (14)C16—C11—C12117.93 (15)
C17—N1—C1110.79 (14)C16—C11—C17121.39 (15)
N1—C1—C6125.67 (16)C12—C11—C17120.67 (15)
N1—C1—C2114.43 (15)O2—C12—C13117.94 (15)
C6—C1—C2119.88 (16)O2—C12—C11121.94 (15)
C3—C2—C1121.30 (16)C13—C12—C11120.11 (16)
C3—C2—S128.62 (14)C14—C13—C12120.42 (16)
C1—C2—S110.07 (12)C14—C13—H13119.8
C2—C3—C4118.44 (16)C12—C13—H13119.8
C2—C3—H3120.8C13—C14—C15120.61 (16)
C4—C3—H3120.8C13—C14—H14119.7
C3—C4—C5120.40 (16)C15—C14—H14119.7
C3—C4—C7119.55 (16)C16—C15—C14119.28 (16)
C5—C4—C7120.05 (16)C16—C15—H15120.4
C6—C5—C4121.13 (16)C14—C15—H15120.4
C6—C5—H5119.4C15—C16—C11121.64 (16)
C4—C5—H5119.4C15—C16—H16119.2
C5—C6—C1118.84 (16)C11—C16—H16119.2
C5—C6—H6120.6N1—C17—C11123.12 (15)
C1—C6—H6120.6N1—C17—S115.59 (12)
O1—C7—C4125.29 (17)C11—C17—S121.27 (12)
O1—C7—H7117.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.89 (2)1.81 (2)2.6228 (18)150 (2)
C5—H5···O2i0.932.613.293 (2)130
Symmetry code: (i) x+2, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC14H9NO2S
Mr255.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)8.2645 (3), 5.6449 (2), 23.8341 (9)
β (°) 98.147 (2)
V3)1100.69 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.38 × 0.14 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.882, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
8427, 1943, 1333
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.058, 0.90
No. of reflections1943
No. of parameters168
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.889 (17)1.81 (2)2.6228 (18)150 (2)
C5—H5···O2i0.932.613.293 (2)130
Symmetry code: (i) x+2, y+3, z+1.
 

Acknowledgements

This work was supported by the National Science Council and Feng Chia University in Taiwan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W.-H. & Pang, Y. (2009). Tetrahedron Lett. 50, 6680–6683.  Web of Science CrossRef CAS Google Scholar
First citationChen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHahn, F. E., Imhof, L. & Lügger, T. (1998). Acta Cryst. C54, 668–669.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHrobáriková, V., Hrobárik, P., Gajdos, P., Fitilis, I., Fakis, M., Persephonis, P. & Zahradnik, P. (2010). J. Org. Chem. 75, 3053–3068.  PubMed Google Scholar
First citationHsieh, C.-C., Cheng, Y.-M., Hsu, C.-J., Chen, K.-Y. & Chou, P.-T. (2008). J. Phys. Chem. A, 112, 8323–8332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, T. H., Kwon, N. Y. & Lee, T. S. (2010a). Tetrahedron Lett. 51, 5596–5600.  Web of Science CrossRef CAS Google Scholar
First citationKim, C. H., Park, J., Seo, J., Park, S. Y. & Joo, T. (2010b). J. Phys. Chem. A, 114, 5618–5629.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603–1609.  PubMed Google Scholar
First citationLim, C. K., Seo, J., Kim, S., Kwon, I. C., Ahn, C. H. & Park, S. Y. (2011). Dyes Pigments, 90, 284–289.  Web of Science CrossRef CAS Google Scholar
First citationLópez-Ruiz, H., Briseno-Ortega, H., Rojas-Lima, S., Santillan, R. & Farfán, N. (2011). Tetrahedron Lett. 52, 4308–4312.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Kumagai, T., Aoki, H., Deguchi, M. & Iwata, S. (2001). J. Org. Chem. 66, 7328–7333.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTong, Y.-P. (2005). Acta Cryst. E61, o3076–o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds