organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-5-nitro-1H-imidazole

aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: wangjianlong@nuc.edu.cn

(Received 2 October 2011; accepted 10 October 2011; online 29 October 2011)

In the title compound, C4H5N3O2, the nitro group is twisted with respect to the imidazole ring by a dihedral angle of 5.60 (2)°. Weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonding is present in the crystal structure.

Related literature

For the biological properties of nitro­imidazole derivatives, see: Hofmann (1953[Hofmann, K. (1953). Imidazole and Its Derivatives, Part I. New York: Interscience.]); Breccia et al. (1982[Breccia, A., Cavalleri, B. & Adams, G. E. (1982). Nitroimidazoles: Chemistry, Pharmacology, and Clinical Application. New York: Plenum.]); Boyer (1986[Boyer, J. H. (1986). Nitroazoles: The C-Nitro Derivatives of Five-Membered N- and N,O-Heterocycles. Deerfield Beach, FL: VCH]). For their detonation properties, see: Storm et al. (1990[Storm, C. B., Stine, J. R. & Kramer, J. F. (1990). Chemistry and Physics of Energetic Materials. Dordrecht: Kluwer Academic.]); Katritzky et al. (1993[Katritzky, A. R., Cundy, D. J. & Chen, J. (1993). J. Energetic Mat. 11, 345-352.]); Bulusu et al. (1995[Bulusu, S., Damavarapu, R., Autera, J. R., Behrens, R. Jr, Minier, L. M., Villanueva, J., Jayasuriya, K. & Axenrod, T. (1995). J. Phys. Chem. 99, 5009-5015.]). For the synthesis, see: Damavarapu et al. (2007[Damavarapu, R., Surapaneni, R. C., Gelber, N., Duddu, R. G., Zhang, M.-J. & Dave, P. R. (2007). US Patent No. 7304164.]).

[Scheme 1]

Experimental

Crystal data
  • C4H5N3O2

  • Mr = 127.11

  • Orthorhombic, P b c a

  • a = 5.323 (3) Å

  • b = 12.664 (6) Å

  • c = 15.993 (8) Å

  • V = 1078.1 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 113 K

  • 0.30 × 0.26 × 0.10 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.987

  • 10144 measured reflections

  • 1272 independent reflections

  • 1030 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.01

  • 1272 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 0.95 2.54 3.342 (2) 143
C4—H4A⋯O2ii 0.98 2.52 3.335 (2) 140
C4—H4C⋯O2iii 0.98 2.58 3.496 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitroimidazole derivatives have been investigated extensively owing to their biological activity (Hofmann, 1953; Breccia et al., 1982; Boyer, 1986). Recently, these so called "high energy density materials" have attracted renewed attention in conjunction with their favorable detonation performance (Storm et al., 1990; Katritzky et al., 1993; Bulusu et al., 1995). 1-methyl-2,4,5-trinitroimidazole is a promising candidate, as a intermediate, 1-methyl-5-nitroimidazole was synthesized by the nitration of 1-methylimidazole (Damavarapu et al., 2007). Here we report the crystal structure of the title compound (Fig. 1).

In the crystal structure, for the reason that the interaction of methyl group and nitro group, the nitro group is rotated out the imidazole plane, making dihedral angles of 5.60 (2)°.

Related literature top

For the biological properties of nitroimidazole derivatives, see: Hofmann (1953); Breccia et al. (1982); Boyer (1986). For their detonation properties, see: Storm et al. (1990); Katritzky et al. (1993); Bulusu et al. (1995). For the synthesis, see: Damavarapu et al. (2007).

Experimental top

The title compound was prepared according to literature method (Damavarapu et al., 2007). Single crystals were obtained by evaporation of a solution of the title compound in dichloromethane at room temperature.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H = 0.95 ° for imidazole ring H and 0.98 ° for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for imidazole ring H atom and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound.
1-Methyl-5-nitro-1H-imidazole top
Crystal data top
C4H5N3O2F(000) = 528
Mr = 127.11Dx = 1.566 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3500 reflections
a = 5.323 (3) Åθ = 1.6–27.8°
b = 12.664 (6) ŵ = 0.13 mm1
c = 15.993 (8) ÅT = 113 K
V = 1078.1 (9) Å3Prism, colorless
Z = 80.30 × 0.26 × 0.10 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
1272 independent reflections
Radiation source: rotating anode1030 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.059
Detector resolution: 14.22 pixels mm-1θmax = 27.8°, θmin = 2.6°
ω and ϕ scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1616
Tmin = 0.963, Tmax = 0.987l = 2121
10144 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.088H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0505P)2]
where P = (Fo2 + 2Fc2)/3
1272 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C4H5N3O2V = 1078.1 (9) Å3
Mr = 127.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 5.323 (3) ŵ = 0.13 mm1
b = 12.664 (6) ÅT = 113 K
c = 15.993 (8) Å0.30 × 0.26 × 0.10 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
1272 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1030 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.987Rint = 0.059
10144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
1272 reflectionsΔρmin = 0.32 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.21610 (15)0.62227 (7)0.20073 (5)0.0222 (2)
O21.10195 (15)0.47117 (7)0.14851 (6)0.0272 (3)
N10.54173 (19)0.64301 (8)0.03187 (6)0.0201 (3)
N20.80463 (17)0.72006 (7)0.12271 (6)0.0150 (2)
N31.07644 (17)0.56758 (8)0.15745 (6)0.0175 (2)
C10.6053 (2)0.73142 (10)0.07171 (7)0.0179 (3)
H10.51830.79630.06480.021*
C20.7109 (2)0.56985 (9)0.05864 (7)0.0184 (3)
H20.71520.49800.04160.022*
C30.87376 (19)0.61580 (9)0.11396 (7)0.0154 (3)
C40.9175 (2)0.80490 (9)0.17239 (7)0.0194 (3)
H4A1.08420.82170.15010.029*
H4B0.93320.78190.23070.029*
H4C0.81050.86780.16960.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0187 (5)0.0260 (5)0.0220 (5)0.0025 (4)0.0049 (3)0.0034 (4)
O20.0288 (5)0.0155 (5)0.0373 (6)0.0058 (4)0.0066 (4)0.0020 (4)
N10.0223 (6)0.0185 (6)0.0196 (5)0.0001 (4)0.0043 (4)0.0009 (4)
N20.0164 (5)0.0132 (5)0.0153 (5)0.0020 (4)0.0003 (4)0.0010 (4)
N30.0170 (5)0.0176 (5)0.0179 (5)0.0002 (4)0.0003 (4)0.0000 (4)
C10.0165 (6)0.0183 (6)0.0188 (6)0.0003 (5)0.0000 (4)0.0028 (5)
C20.0208 (6)0.0157 (6)0.0186 (6)0.0012 (5)0.0016 (5)0.0007 (5)
C30.0159 (6)0.0142 (6)0.0161 (5)0.0002 (4)0.0002 (4)0.0006 (4)
C40.0217 (6)0.0150 (6)0.0215 (6)0.0037 (5)0.0003 (5)0.0028 (5)
Geometric parameters (Å, º) top
O1—N31.2294 (12)N3—C31.4215 (14)
O2—N31.2368 (14)C1—H10.9500
N1—C11.3319 (16)C2—C31.3687 (16)
N1—C21.3610 (15)C2—H20.9500
N2—C11.3459 (15)C4—H4A0.9800
N2—C31.3778 (16)C4—H4B0.9800
N2—C41.4651 (15)C4—H4C0.9800
C1—N1—C2104.69 (10)N1—C2—H2125.3
C1—N2—C3104.56 (9)C3—C2—H2125.3
C1—N2—C4124.99 (10)C2—C3—N2107.69 (10)
C3—N2—C4130.42 (10)C2—C3—N3127.92 (11)
O1—N3—O2123.70 (10)N2—C3—N3124.38 (10)
O1—N3—C3119.50 (10)N2—C4—H4A109.5
O2—N3—C3116.80 (10)N2—C4—H4B109.5
N1—C1—N2113.60 (10)H4A—C4—H4B109.5
N1—C1—H1123.2N2—C4—H4C109.5
N2—C1—H1123.2H4A—C4—H4C109.5
N1—C2—C3109.45 (11)H4B—C4—H4C109.5
C2—N1—C1—N20.13 (13)C4—N2—C3—C2178.47 (10)
C3—N2—C1—N10.39 (13)C1—N2—C3—N3179.24 (10)
C4—N2—C1—N1178.52 (10)C4—N2—C3—N32.77 (18)
C1—N1—C2—C30.19 (12)O1—N3—C3—C2174.93 (10)
N1—C2—C3—N20.43 (13)O2—N3—C3—C24.59 (17)
N1—C2—C3—N3179.13 (10)O1—N3—C3—N26.56 (16)
C1—N2—C3—C20.48 (12)O2—N3—C3—N2173.92 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.952.543.342 (2)143
C4—H4A···O2ii0.982.523.335 (2)140
C4—H4C···O2iii0.982.583.496 (2)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+5/2, y+1/2, z; (iii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC4H5N3O2
Mr127.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)5.323 (3), 12.664 (6), 15.993 (8)
V3)1078.1 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.26 × 0.10
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.963, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
10144, 1272, 1030
Rint0.059
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.01
No. of reflections1272
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.32

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.952.543.342 (2)143
C4—H4A···O2ii0.982.523.335 (2)140
C4—H4C···O2iii0.982.583.496 (2)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+5/2, y+1/2, z; (iii) x+3/2, y+1/2, z.
 

Acknowledgements

The authors thank China North Industries Group Corporation for financial support.

References

First citationBoyer, J. H. (1986). Nitroazoles: The C-Nitro Derivatives of Five-Membered N- and N,O-Heterocycles. Deerfield Beach, FL: VCH  Google Scholar
First citationBreccia, A., Cavalleri, B. & Adams, G. E. (1982). Nitroimidazoles: Chemistry, Pharmacology, and Clinical Application. New York: Plenum.  Google Scholar
First citationBulusu, S., Damavarapu, R., Autera, J. R., Behrens, R. Jr, Minier, L. M., Villanueva, J., Jayasuriya, K. & Axenrod, T. (1995). J. Phys. Chem. 99, 5009–5015.  CrossRef CAS Web of Science Google Scholar
First citationDamavarapu, R., Surapaneni, R. C., Gelber, N., Duddu, R. G., Zhang, M.-J. & Dave, P. R. (2007). US Patent No. 7304164.  Google Scholar
First citationHofmann, K. (1953). Imidazole and Its Derivatives, Part I. New York: Interscience.  Google Scholar
First citationKatritzky, A. R., Cundy, D. J. & Chen, J. (1993). J. Energetic Mat. 11, 345–352.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorm, C. B., Stine, J. R. & Kramer, J. F. (1990). Chemistry and Physics of Energetic Materials. Dordrecht: Kluwer Academic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds