organic compounds
1-Methyl-5-nitro-1H-imidazole
aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: wangjianlong@nuc.edu.cn
In the title compound, C4H5N3O2, the nitro group is twisted with respect to the imidazole ring by a dihedral angle of 5.60 (2)°. Weak intermolecular C—H⋯O and C—H⋯N hydrogen bonding is present in the crystal structure.
Related literature
For the biological properties of nitroimidazole derivatives, see: Hofmann (1953); Breccia et al. (1982); Boyer (1986). For their detonation properties, see: Storm et al. (1990); Katritzky et al. (1993); Bulusu et al. (1995). For the synthesis, see: Damavarapu et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811041705/xu5346sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811041705/xu5346Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811041705/xu5346Isup3.cml
The title compound was prepared according to literature method (Damavarapu et al., 2007). Single crystals were obtained by evaporation of a solution of the title compound in dichloromethane at room temperature.
All H atoms were positioned geometrically and treated as riding, with C—H = 0.95 ° for imidazole ring H and 0.98 ° for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for imidazole ring H atom and 1.5Ueq(C) for methyl H atoms.
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C4H5N3O2 | F(000) = 528 |
Mr = 127.11 | Dx = 1.566 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 3500 reflections |
a = 5.323 (3) Å | θ = 1.6–27.8° |
b = 12.664 (6) Å | µ = 0.13 mm−1 |
c = 15.993 (8) Å | T = 113 K |
V = 1078.1 (9) Å3 | Prism, colorless |
Z = 8 | 0.30 × 0.26 × 0.10 mm |
Rigaku Saturn724 CCD diffractometer | 1272 independent reflections |
Radiation source: rotating anode | 1030 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.059 |
Detector resolution: 14.22 pixels mm-1 | θmax = 27.8°, θmin = 2.6° |
ω and ϕ scans | h = −6→6 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | k = −16→16 |
Tmin = 0.963, Tmax = 0.987 | l = −21→21 |
10144 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0505P)2] where P = (Fo2 + 2Fc2)/3 |
1272 reflections | (Δ/σ)max < 0.001 |
83 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C4H5N3O2 | V = 1078.1 (9) Å3 |
Mr = 127.11 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 5.323 (3) Å | µ = 0.13 mm−1 |
b = 12.664 (6) Å | T = 113 K |
c = 15.993 (8) Å | 0.30 × 0.26 × 0.10 mm |
Rigaku Saturn724 CCD diffractometer | 1272 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | 1030 reflections with I > 2σ(I) |
Tmin = 0.963, Tmax = 0.987 | Rint = 0.059 |
10144 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.17 e Å−3 |
1272 reflections | Δρmin = −0.32 e Å−3 |
83 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.21610 (15) | 0.62227 (7) | 0.20073 (5) | 0.0222 (2) | |
O2 | 1.10195 (15) | 0.47117 (7) | 0.14851 (6) | 0.0272 (3) | |
N1 | 0.54173 (19) | 0.64301 (8) | 0.03187 (6) | 0.0201 (3) | |
N2 | 0.80463 (17) | 0.72006 (7) | 0.12271 (6) | 0.0150 (2) | |
N3 | 1.07644 (17) | 0.56758 (8) | 0.15745 (6) | 0.0175 (2) | |
C1 | 0.6053 (2) | 0.73142 (10) | 0.07171 (7) | 0.0179 (3) | |
H1 | 0.5183 | 0.7963 | 0.0648 | 0.021* | |
C2 | 0.7109 (2) | 0.56985 (9) | 0.05864 (7) | 0.0184 (3) | |
H2 | 0.7152 | 0.4980 | 0.0416 | 0.022* | |
C3 | 0.87376 (19) | 0.61580 (9) | 0.11396 (7) | 0.0154 (3) | |
C4 | 0.9175 (2) | 0.80490 (9) | 0.17239 (7) | 0.0194 (3) | |
H4A | 1.0842 | 0.8217 | 0.1501 | 0.029* | |
H4B | 0.9332 | 0.7819 | 0.2307 | 0.029* | |
H4C | 0.8105 | 0.8678 | 0.1696 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0187 (5) | 0.0260 (5) | 0.0220 (5) | −0.0025 (4) | −0.0049 (3) | −0.0034 (4) |
O2 | 0.0288 (5) | 0.0155 (5) | 0.0373 (6) | 0.0058 (4) | −0.0066 (4) | −0.0020 (4) |
N1 | 0.0223 (6) | 0.0185 (6) | 0.0196 (5) | −0.0001 (4) | −0.0043 (4) | 0.0009 (4) |
N2 | 0.0164 (5) | 0.0132 (5) | 0.0153 (5) | −0.0020 (4) | −0.0003 (4) | 0.0010 (4) |
N3 | 0.0170 (5) | 0.0176 (5) | 0.0179 (5) | 0.0002 (4) | 0.0003 (4) | 0.0000 (4) |
C1 | 0.0165 (6) | 0.0183 (6) | 0.0188 (6) | 0.0003 (5) | 0.0000 (4) | 0.0028 (5) |
C2 | 0.0208 (6) | 0.0157 (6) | 0.0186 (6) | −0.0012 (5) | −0.0016 (5) | −0.0007 (5) |
C3 | 0.0159 (6) | 0.0142 (6) | 0.0161 (5) | 0.0002 (4) | 0.0002 (4) | 0.0006 (4) |
C4 | 0.0217 (6) | 0.0150 (6) | 0.0215 (6) | −0.0037 (5) | −0.0003 (5) | −0.0028 (5) |
O1—N3 | 1.2294 (12) | N3—C3 | 1.4215 (14) |
O2—N3 | 1.2368 (14) | C1—H1 | 0.9500 |
N1—C1 | 1.3319 (16) | C2—C3 | 1.3687 (16) |
N1—C2 | 1.3610 (15) | C2—H2 | 0.9500 |
N2—C1 | 1.3459 (15) | C4—H4A | 0.9800 |
N2—C3 | 1.3778 (16) | C4—H4B | 0.9800 |
N2—C4 | 1.4651 (15) | C4—H4C | 0.9800 |
C1—N1—C2 | 104.69 (10) | N1—C2—H2 | 125.3 |
C1—N2—C3 | 104.56 (9) | C3—C2—H2 | 125.3 |
C1—N2—C4 | 124.99 (10) | C2—C3—N2 | 107.69 (10) |
C3—N2—C4 | 130.42 (10) | C2—C3—N3 | 127.92 (11) |
O1—N3—O2 | 123.70 (10) | N2—C3—N3 | 124.38 (10) |
O1—N3—C3 | 119.50 (10) | N2—C4—H4A | 109.5 |
O2—N3—C3 | 116.80 (10) | N2—C4—H4B | 109.5 |
N1—C1—N2 | 113.60 (10) | H4A—C4—H4B | 109.5 |
N1—C1—H1 | 123.2 | N2—C4—H4C | 109.5 |
N2—C1—H1 | 123.2 | H4A—C4—H4C | 109.5 |
N1—C2—C3 | 109.45 (11) | H4B—C4—H4C | 109.5 |
C2—N1—C1—N2 | −0.13 (13) | C4—N2—C3—C2 | −178.47 (10) |
C3—N2—C1—N1 | 0.39 (13) | C1—N2—C3—N3 | −179.24 (10) |
C4—N2—C1—N1 | 178.52 (10) | C4—N2—C3—N3 | 2.77 (18) |
C1—N1—C2—C3 | −0.19 (12) | O1—N3—C3—C2 | 174.93 (10) |
N1—C2—C3—N2 | 0.43 (13) | O2—N3—C3—C2 | −4.59 (17) |
N1—C2—C3—N3 | 179.13 (10) | O1—N3—C3—N2 | −6.56 (16) |
C1—N2—C3—C2 | −0.48 (12) | O2—N3—C3—N2 | 173.92 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 0.95 | 2.54 | 3.342 (2) | 143 |
C4—H4A···O2ii | 0.98 | 2.52 | 3.335 (2) | 140 |
C4—H4C···O2iii | 0.98 | 2.58 | 3.496 (2) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+5/2, y+1/2, z; (iii) −x+3/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C4H5N3O2 |
Mr | 127.11 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 113 |
a, b, c (Å) | 5.323 (3), 12.664 (6), 15.993 (8) |
V (Å3) | 1078.1 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.30 × 0.26 × 0.10 |
Data collection | |
Diffractometer | Rigaku Saturn724 CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.963, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10144, 1272, 1030 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.657 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.088, 1.01 |
No. of reflections | 1272 |
No. of parameters | 83 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.32 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 0.95 | 2.54 | 3.342 (2) | 143 |
C4—H4A···O2ii | 0.98 | 2.52 | 3.335 (2) | 140 |
C4—H4C···O2iii | 0.98 | 2.58 | 3.496 (2) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+5/2, y+1/2, z; (iii) −x+3/2, y+1/2, z. |
Acknowledgements
The authors thank China North Industries Group Corporation for financial support.
References
Boyer, J. H. (1986). Nitroazoles: The C-Nitro Derivatives of Five-Membered N- and N,O-Heterocycles. Deerfield Beach, FL: VCH Google Scholar
Breccia, A., Cavalleri, B. & Adams, G. E. (1982). Nitroimidazoles: Chemistry, Pharmacology, and Clinical Application. New York: Plenum. Google Scholar
Bulusu, S., Damavarapu, R., Autera, J. R., Behrens, R. Jr, Minier, L. M., Villanueva, J., Jayasuriya, K. & Axenrod, T. (1995). J. Phys. Chem. 99, 5009–5015. CrossRef CAS Web of Science Google Scholar
Damavarapu, R., Surapaneni, R. C., Gelber, N., Duddu, R. G., Zhang, M.-J. & Dave, P. R. (2007). US Patent No. 7304164. Google Scholar
Hofmann, K. (1953). Imidazole and Its Derivatives, Part I. New York: Interscience. Google Scholar
Katritzky, A. R., Cundy, D. J. & Chen, J. (1993). J. Energetic Mat. 11, 345–352. CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Storm, C. B., Stine, J. R. & Kramer, J. F. (1990). Chemistry and Physics of Energetic Materials. Dordrecht: Kluwer Academic. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitroimidazole derivatives have been investigated extensively owing to their biological activity (Hofmann, 1953; Breccia et al., 1982; Boyer, 1986). Recently, these so called "high energy density materials" have attracted renewed attention in conjunction with their favorable detonation performance (Storm et al., 1990; Katritzky et al., 1993; Bulusu et al., 1995). 1-methyl-2,4,5-trinitroimidazole is a promising candidate, as a intermediate, 1-methyl-5-nitroimidazole was synthesized by the nitration of 1-methylimidazole (Damavarapu et al., 2007). Here we report the crystal structure of the title compound (Fig. 1).
In the crystal structure, for the reason that the interaction of methyl group and nitro group, the nitro group is rotated out the imidazole plane, making dihedral angles of 5.60 (2)°.