organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(2,4,6-tri­nitro­phen­yl)ethane

aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: wangjianlong@nuc.edu.cn

(Received 2 October 2011; accepted 15 October 2011; online 29 October 2011)

The title compound, C14H8N6O12, is centrosymmetric, the mid-point of the central C—C bond being located on an inversion centre. Two of the three independent nitro groups are disordered over two sites, with a site-occupancy ratio of 0.513 (3):0.487 (3). Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the synthesis of the title compound, see: Shipp (1964[Shipp, K. G. (1964). J. Org. Chem. 29, 2620-2623.]); Gilbert & Morristown (1980[Gilbert, E. E. & Morristown, N. J. (1980). US Patent 4221745.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8N6O12

  • Mr = 452.26

  • Monoclinic, P 21 /c

  • a = 5.8468 (5) Å

  • b = 8.1253 (11) Å

  • c = 17.977 (2) Å

  • β = 97.154 (8)°

  • V = 847.38 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.966, Tmax = 0.975

  • 7531 measured reflections

  • 2013 independent reflections

  • 1503 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.099

  • S = 1.04

  • 2013 reflections

  • 186 parameters

  • 70 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4i 0.99 2.43 3.3669 (15) 158
C1—H1B⋯O5ii 0.99 2.37 3.147 (2) 134
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2',4,4',6,6'-Hexanitrostilbene is one of the most important heat resistant explosives. It can be prepared by treating the solution of TNT in tetrahydrofuran–methanol mixture with 5% sodium hypochlorite (Shipp, 1964). Later on its synthesis method was improved by Gilbert & Morristown (1980). As an intermediate, 2,2',4,4',6,6'-hexanitrobibenzyl was synthesized by the oxidation of TNT. Here we report the crystal structure of the title compound.

In the crystal structure, there is an inversion center in the molecule. Weak intermolecular C—H···O hydrogen bonding is present in the crystal structure.

Related literature top

For the synthesis of the title compound, see: Shipp (1964); Gilbert & Morristown (1980).

Experimental top

The title compound was prepared according to literature method (Gilbert & Morristown, 1980). Single crystals were obtained by evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

N1-Nitro and N3-nitro groups are disordered over two sites, occupancy ratio was refined to 0.513 (3):0.487 (3). For the disordered components, thermal parameters of the primed atoms were set to those of the unprimed ones, and all anisotropic thermal parameters were restrained to be nearly isotropic. The N—O distances were restrained to within 0.01 Å in the N1-nitro and N3-nitro groups. H atoms were positioned geometrically with C—H = 0.95 Å for benzene ring H and 0.99 Å for methylene H atoms, refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2000); cell refinement: CrystalClear (Rigaku/MSC, 2000); data reduction: CrystalClear (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound.
1,2-Bis(2,4,6-trinitrophenyl)ethane top
Crystal data top
C14H8N6O12F(000) = 460
Mr = 452.26Dx = 1.773 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3228 reflections
a = 5.8468 (5) Åθ = 2.3–27.9°
b = 8.1253 (11) ŵ = 0.16 mm1
c = 17.977 (2) ÅT = 113 K
β = 97.154 (8)°Prism, colourless
V = 847.38 (17) Å30.22 × 0.20 × 0.16 mm
Z = 2
Data collection top
Rigaku Saturn724 CCD
diffractometer
2013 independent reflections
Radiation source: rotating anode1503 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.034
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω and ϕ scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2000)
k = 810
Tmin = 0.966, Tmax = 0.975l = 2323
7531 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.0176P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2013 reflectionsΔρmax = 0.26 e Å3
186 parametersΔρmin = 0.25 e Å3
70 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (5)
Crystal data top
C14H8N6O12V = 847.38 (17) Å3
Mr = 452.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.8468 (5) ŵ = 0.16 mm1
b = 8.1253 (11) ÅT = 113 K
c = 17.977 (2) Å0.22 × 0.20 × 0.16 mm
β = 97.154 (8)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
2013 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2000)
1503 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.975Rint = 0.034
7531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03470 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
2013 reflectionsΔρmin = 0.25 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.788 (2)0.4687 (13)0.1645 (5)0.0296 (16)0.513 (3)
O10.8771 (5)0.5628 (3)0.12216 (13)0.0302 (6)0.513 (3)
O20.815 (3)0.489 (2)0.2328 (6)0.0260 (15)0.513 (3)
N1'0.824 (2)0.4472 (14)0.1631 (5)0.0296 (16)0.487 (3)
O1'0.9430 (5)0.4872 (4)0.11433 (14)0.0355 (7)0.487 (3)
O2'0.822 (3)0.503 (2)0.2263 (7)0.035 (3)0.487 (3)
O30.72410 (17)0.11091 (14)0.26187 (5)0.0387 (3)
O40.48405 (19)0.23368 (11)0.17726 (5)0.0344 (3)
N30.15225 (18)0.19328 (12)0.00293 (5)0.0229 (3)
O50.0105 (3)0.2748 (3)0.01446 (10)0.0295 (6)0.513 (3)
O60.1555 (3)0.0949 (3)0.04988 (9)0.0301 (7)0.513 (3)
O5'0.0438 (3)0.1733 (4)0.01768 (11)0.0328 (6)0.487 (3)
O6'0.2022 (4)0.2111 (3)0.06168 (10)0.0345 (7)0.487 (3)
N20.59258 (19)0.11271 (15)0.20272 (6)0.0299 (3)
C10.4345 (2)0.49440 (15)0.03484 (6)0.0222 (3)
H1A0.47970.58850.06850.027*
H1B0.26680.50290.01850.027*
C20.4834 (2)0.33521 (15)0.07792 (6)0.0226 (3)
C30.6575 (2)0.31668 (17)0.13844 (6)0.0267 (3)
C40.6978 (2)0.17462 (17)0.18056 (6)0.0271 (3)
H40.81680.16920.22160.033*
C50.5584 (2)0.04194 (16)0.16040 (7)0.0263 (3)
C60.3810 (2)0.04812 (17)0.10198 (7)0.0268 (3)
H60.28500.04450.08920.032*
C70.3490 (2)0.19428 (16)0.06306 (6)0.0229 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.011 (3)0.047 (2)0.0282 (8)0.005 (2)0.0062 (11)0.0187 (11)
O10.0339 (14)0.0303 (14)0.0260 (10)0.0121 (10)0.0020 (9)0.0048 (10)
O20.027 (3)0.024 (3)0.026 (2)0.0047 (19)0.001 (2)0.002 (3)
N1'0.011 (3)0.047 (2)0.0282 (8)0.005 (2)0.0062 (11)0.0187 (11)
O1'0.0315 (16)0.0473 (18)0.0260 (12)0.0210 (12)0.0031 (10)0.0114 (12)
O2'0.028 (3)0.031 (4)0.048 (5)0.004 (2)0.010 (3)0.008 (2)
O30.0289 (6)0.0549 (7)0.0298 (5)0.0031 (5)0.0069 (4)0.0208 (5)
O40.0452 (7)0.0309 (5)0.0262 (5)0.0059 (4)0.0002 (4)0.0024 (4)
N30.0192 (6)0.0277 (6)0.0213 (5)0.0009 (4)0.0011 (4)0.0056 (4)
O50.0182 (10)0.0352 (14)0.0345 (10)0.0056 (9)0.0009 (8)0.0059 (9)
O60.0282 (11)0.0410 (15)0.0203 (9)0.0031 (9)0.0001 (7)0.0006 (8)
O5'0.0170 (11)0.0421 (16)0.0390 (12)0.0004 (10)0.0016 (9)0.0030 (11)
O6'0.0379 (13)0.0474 (16)0.0169 (9)0.0111 (10)0.0022 (8)0.0054 (9)
N20.0254 (6)0.0418 (7)0.0225 (5)0.0051 (5)0.0030 (4)0.0104 (5)
C10.0214 (7)0.0296 (6)0.0155 (5)0.0056 (5)0.0013 (5)0.0023 (5)
C20.0172 (6)0.0361 (7)0.0151 (5)0.0018 (5)0.0039 (4)0.0053 (5)
C30.0194 (7)0.0426 (8)0.0182 (6)0.0075 (5)0.0026 (5)0.0063 (5)
C40.0170 (7)0.0473 (8)0.0166 (6)0.0013 (5)0.0003 (5)0.0089 (5)
C50.0235 (7)0.0370 (7)0.0186 (6)0.0023 (6)0.0033 (5)0.0108 (5)
C60.0235 (7)0.0347 (7)0.0220 (6)0.0040 (5)0.0016 (5)0.0066 (5)
C70.0162 (6)0.0371 (7)0.0149 (5)0.0006 (5)0.0004 (4)0.0052 (5)
Geometric parameters (Å, º) top
N1—O21.231 (8)N2—C51.4697 (16)
N1—O11.238 (7)C1—C21.5164 (16)
N1—C31.496 (7)C1—C1i1.550 (2)
N1'—O2'1.226 (8)C1—H1A0.9900
N1'—O1'1.228 (8)C1—H1B0.9900
N1'—C31.471 (7)C2—C71.3957 (17)
O3—N21.2323 (13)C2—C31.4024 (16)
O4—N21.2271 (15)C3—C41.3846 (18)
N3—O51.199 (2)C4—C51.3728 (19)
N3—O5'1.219 (2)C4—H40.9500
N3—O6'1.241 (2)C5—C61.3820 (17)
N3—O61.243 (2)C6—C71.3792 (18)
N3—C71.4772 (14)C6—H60.9500
O2—N1—O1121.2 (11)C1i—C1—H1B109.1
O2—N1—C3114.9 (9)H1A—C1—H1B107.8
O1—N1—C3123.7 (6)C7—C2—C3113.41 (11)
O2'—N1'—O1'129.5 (12)C7—C2—C1122.43 (10)
O2'—N1'—C3117.6 (10)C3—C2—C1124.07 (11)
O1'—N1'—C3112.9 (6)C4—C3—C2124.86 (12)
O5—N3—O5'41.21 (12)C4—C3—N1'112.0 (6)
O5—N3—O6'112.46 (16)C2—C3—N1'123.1 (6)
O5'—N3—O6'123.81 (15)C4—C3—N1118.2 (5)
O5—N3—O6125.15 (16)C2—C3—N1116.5 (5)
O5'—N3—O6100.65 (16)N1'—C3—N110.7 (11)
O6'—N3—O648.11 (12)C5—C4—C3117.07 (11)
O5—N3—C7115.66 (13)C5—C4—H4121.5
O5'—N3—C7120.60 (13)C3—C4—H4121.5
O6'—N3—C7115.58 (13)C4—C5—C6122.48 (11)
O6—N3—C7118.54 (12)C4—C5—N2119.78 (11)
O4—N2—O3124.71 (11)C6—C5—N2117.73 (12)
O4—N2—C5117.46 (10)C7—C6—C5117.28 (12)
O3—N2—C5117.81 (11)C7—C6—H6121.4
C2—C1—C1i112.47 (13)C5—C6—H6121.4
C2—C1—H1A109.1C6—C7—C2124.88 (11)
C1i—C1—H1A109.1C6—C7—N3114.24 (11)
C2—C1—H1B109.1C2—C7—N3120.87 (10)
C1i—C1—C2—C790.86 (16)C3—C4—C5—C61.5 (2)
C1i—C1—C2—C392.64 (16)C3—C4—C5—N2179.85 (11)
C7—C2—C3—C40.13 (18)O4—N2—C5—C4171.13 (12)
C1—C2—C3—C4176.91 (12)O3—N2—C5—C410.35 (18)
C7—C2—C3—N1'178.3 (5)O4—N2—C5—C610.15 (18)
C1—C2—C3—N1'4.9 (5)O3—N2—C5—C6168.36 (12)
C7—C2—C3—N1172.0 (4)C4—C5—C6—C70.7 (2)
C1—C2—C3—N14.8 (5)N2—C5—C6—C7179.42 (11)
O2'—N1'—C3—C464.8 (15)C5—C6—C7—C20.6 (2)
O1'—N1'—C3—C4117.4 (9)C5—C6—C7—N3178.30 (11)
O2'—N1'—C3—C2116.8 (13)C3—C2—C7—C60.98 (18)
O1'—N1'—C3—C261.0 (13)C1—C2—C7—C6177.82 (12)
O2'—N1'—C3—N162 (4)C3—C2—C7—N3177.83 (10)
O1'—N1'—C3—N1116 (5)C1—C2—C7—N30.99 (18)
O2—N1—C3—C438.7 (14)O5—N3—C7—C6109.24 (19)
O1—N1—C3—C4136.6 (10)O5'—N3—C7—C662.5 (2)
O2—N1—C3—C2134.0 (11)O6'—N3—C7—C6116.35 (17)
O1—N1—C3—C250.7 (13)O6—N3—C7—C661.96 (18)
O2—N1—C3—N1'96 (4)O5—N3—C7—C269.7 (2)
O1—N1—C3—N1'79 (3)O5'—N3—C7—C2116.4 (2)
C2—C3—C4—C51.1 (2)O6'—N3—C7—C264.72 (19)
N1'—C3—C4—C5177.3 (5)O6—N3—C7—C2119.11 (17)
N1—C3—C4—C5173.0 (5)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4ii0.992.433.3669 (15)158
C1—H1B···O5iii0.992.373.147 (2)134
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H8N6O12
Mr452.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)5.8468 (5), 8.1253 (11), 17.977 (2)
β (°) 97.154 (8)
V3)847.38 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2000)
Tmin, Tmax0.966, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7531, 2013, 1503
Rint0.034
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.04
No. of reflections2013
No. of parameters186
No. of restraints70
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: CrystalClear (Rigaku/MSC, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.992.433.3669 (15)158
C1—H1B···O5ii0.992.373.147 (2)134
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank China North Industries Group Corporation for financial support.

References

First citationGilbert, E. E. & Morristown, N. J. (1980). US Patent 4221745.  Google Scholar
First citationRigaku/MSC (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShipp, K. G. (1964). J. Org. Chem. 29, 2620–2623.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds