organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′,6,6′-Tetra-tert-butyl-2,2′-[butane-1,4-diylbis(nitrilo­methanylyl­­idene)]diphenol

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 7 October 2011; accepted 10 October 2011; online 12 October 2011)

The title compound, C34H52N2O2, is centrosymmetric, the mid-point of the central C—C bond being located on an inversion centre. Intra­molecular O—H⋯N and weak C—H⋯O hydrogen bonds are observed, but no significant inter­molecular inter­actions occur in the crystal structure.

Related literature

For structures of some metal complexes of the title Schiff base, see: Doyle et al. (2007[Doyle, D. J., Gibson, V. C. & White, A. J. P. (2007). Dalton Trans. pp. 358-363.]); Keizer et al. (2002a[Keizer, T. S., De Pue, L. J., Parkin, S. & Atwood, D. A. (2002a). J. Cluster Sci. 13, 609-620.],b[Keizer, T. S., De Pue, L. J., Parkin, S. & Atwood, D. A. (2002b). J. Am. Chem. Soc. 124, 1864-1865.]).

[Scheme 1]

Experimental

Crystal data
  • C34H52N2O2

  • Mr = 520.78

  • Monoclinic, P 21 /c

  • a = 19.1255 (4) Å

  • b = 9.5702 (2) Å

  • c = 8.6312 (1) Å

  • β = 90.383 (1)°

  • V = 1579.78 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.26 × 0.15 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.996

  • 14602 measured reflections

  • 3631 independent reflections

  • 3039 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.03

  • 3631 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.927 (16) 1.735 (17) 2.5840 (13) 150.8 (14)
C8—H8B⋯O1 0.98 2.29 2.9546 (16) 125
C9—H9A⋯O1 0.98 2.44 3.0720 (15) 122

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title Schiff base has been displayed ambidentate ligation behavior towards metal ions (Doyle et al., 2007; Keizer et al., 2002a,b). Herein, wish to report the crystal structure of the free ligand, obtained through the condensation reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde and 1,4-diaminobutane. The molecule lies across a crystallographic inversion centre. The imino group is almost coplanar with the phenyl ring [dihedral angle = 3.00 (13)] and adopts an E configuration. The hydroxyl group is engaged in an intramolecular O—H···N hydrogen bond with the imine group. Moreover, it acts as an acceptor in two intramolecular C—H···O hydrogen bonds (Table 1). The structure does not display any significant intermolecular interactions.

Related literature top

For structures of some metal complexes of the title Schiff base, see: Doyle et al. (2007); Keizer et al. (2002a,b).

Experimental top

3,5-Di-tert-butyl-2-hydroxybenzaldehyde (5.86 g, 25 mmol) was dissolved in methanol (50 ml) in a round-bottomed flask fitted with a reflux condenser. The solution was heated, followed by portionwise addition of 1,4-diaminobutane (1.10 g; 12.5 mmol). The pale yellow solution formed was then gently refluxed for 3 h. The product obtained on cooling was recrystallized from ethanol at room temperature to give X-ray quality crystals of the title compound.

Refinement top

The C-bound H atoms were placed at calculated positions and refined as riding on their parent atoms, with C–H = 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å. The O-bound H atom was located in a difference Fourier map and refined freely. For all H atoms Uiso(H) were set to 1.2–1.5Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
4,4',6,6'-Tetra-tert-butyl-2,2'-[butane-1,4- diylbis(nitrilomethanylylidene)]diphenol top
Crystal data top
C34H52N2O2F(000) = 572
Mr = 520.78Dx = 1.095 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4857 reflections
a = 19.1255 (4) Åθ = 2.4–30.3°
b = 9.5702 (2) ŵ = 0.07 mm1
c = 8.6312 (1) ÅT = 100 K
β = 90.383 (1)°Plate, yellow
V = 1579.78 (5) Å30.26 × 0.15 × 0.06 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3631 independent reflections
Radiation source: fine-focus sealed tube3039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.983, Tmax = 0.996k = 1212
14602 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.5079P]
where P = (Fo2 + 2Fc2)/3
3631 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C34H52N2O2V = 1579.78 (5) Å3
Mr = 520.78Z = 2
Monoclinic, P21/cMo Kα radiation
a = 19.1255 (4) ŵ = 0.07 mm1
b = 9.5702 (2) ÅT = 100 K
c = 8.6312 (1) Å0.26 × 0.15 × 0.06 mm
β = 90.383 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3631 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3039 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.996Rint = 0.024
14602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
3631 reflectionsΔρmin = 0.16 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38365 (4)0.98230 (9)0.47339 (10)0.0267 (2)
H10.4145 (8)0.9488 (17)0.3998 (19)0.040*
N10.43079 (5)0.86964 (11)0.22286 (12)0.0276 (2)
C10.31824 (6)0.96886 (11)0.41401 (12)0.0198 (2)
C20.26044 (6)1.01998 (11)0.49629 (12)0.0193 (2)
C30.19476 (6)1.00283 (11)0.42796 (12)0.0203 (2)
H30.15531.03730.48240.024*
C40.18292 (6)0.93820 (12)0.28429 (12)0.0197 (2)
C50.24129 (6)0.88907 (11)0.20702 (12)0.0196 (2)
H50.23530.84430.10960.024*
C60.30834 (6)0.90361 (11)0.26843 (12)0.0194 (2)
C70.26927 (7)1.09122 (12)0.65518 (12)0.0230 (3)
C80.31935 (8)1.21639 (13)0.64423 (15)0.0348 (3)
H8A0.30041.28490.57070.052*
H8B0.36511.18420.60850.052*
H8C0.32441.25990.74650.052*
C90.29756 (7)0.98400 (12)0.77258 (13)0.0254 (3)
H9A0.34300.94920.73770.038*
H9B0.26470.90580.78070.038*
H9C0.30301.02860.87410.038*
C100.19963 (7)1.14567 (14)0.71697 (14)0.0323 (3)
H10A0.20741.19150.81720.049*
H10B0.16721.06740.73000.049*
H10C0.17971.21300.64340.049*
C110.10988 (6)0.92199 (13)0.21236 (13)0.0246 (3)
C120.09358 (7)0.76642 (15)0.19055 (17)0.0357 (3)
H12A0.09320.72000.29180.053*
H12B0.12940.72370.12520.053*
H12C0.04770.75600.14070.053*
C130.10838 (7)0.99276 (15)0.05301 (15)0.0339 (3)
H13A0.06300.97570.00290.051*
H13B0.14570.95420.01140.051*
H13C0.11541.09360.06560.051*
C140.05296 (7)0.9870 (2)0.31222 (17)0.0449 (4)
H14A0.05260.94130.41380.067*
H14B0.00740.97450.26150.067*
H14C0.06231.08700.32550.067*
C150.36766 (6)0.85464 (12)0.17746 (13)0.0225 (2)
H150.35890.81000.08100.027*
C160.48707 (6)0.82786 (14)0.11850 (16)0.0312 (3)
H16A0.46760.77140.03240.037*
H16B0.52140.76970.17550.037*
C170.52336 (6)0.95676 (14)0.05349 (15)0.0294 (3)
H17A0.56530.92680.00450.035*
H17B0.53931.01630.14070.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0244 (4)0.0311 (5)0.0246 (4)0.0036 (4)0.0030 (3)0.0032 (3)
N10.0240 (5)0.0289 (6)0.0299 (5)0.0012 (4)0.0047 (4)0.0003 (4)
C10.0244 (6)0.0152 (5)0.0196 (5)0.0026 (4)0.0019 (4)0.0027 (4)
C20.0299 (6)0.0126 (5)0.0155 (5)0.0009 (4)0.0011 (4)0.0015 (4)
C30.0273 (6)0.0173 (5)0.0163 (5)0.0051 (4)0.0019 (4)0.0010 (4)
C40.0241 (6)0.0183 (5)0.0167 (5)0.0011 (4)0.0012 (4)0.0022 (4)
C50.0271 (6)0.0169 (5)0.0149 (5)0.0014 (4)0.0005 (4)0.0011 (4)
C60.0245 (6)0.0150 (5)0.0188 (5)0.0013 (4)0.0023 (4)0.0014 (4)
C70.0365 (7)0.0163 (5)0.0163 (5)0.0007 (5)0.0025 (4)0.0011 (4)
C80.0597 (9)0.0205 (6)0.0241 (6)0.0090 (6)0.0021 (6)0.0033 (5)
C90.0379 (7)0.0204 (6)0.0178 (5)0.0002 (5)0.0058 (5)0.0004 (4)
C100.0474 (8)0.0301 (7)0.0195 (5)0.0118 (6)0.0011 (5)0.0064 (5)
C110.0242 (6)0.0301 (6)0.0194 (5)0.0025 (5)0.0021 (4)0.0005 (4)
C120.0289 (7)0.0346 (7)0.0434 (8)0.0081 (6)0.0053 (6)0.0044 (6)
C130.0378 (7)0.0374 (7)0.0263 (6)0.0042 (6)0.0118 (5)0.0057 (5)
C140.0272 (7)0.0746 (12)0.0327 (7)0.0171 (7)0.0063 (6)0.0116 (7)
C150.0276 (6)0.0184 (5)0.0215 (5)0.0020 (4)0.0035 (4)0.0001 (4)
C160.0245 (6)0.0314 (7)0.0377 (7)0.0021 (5)0.0075 (5)0.0009 (5)
C170.0192 (6)0.0355 (7)0.0334 (6)0.0014 (5)0.0037 (5)0.0032 (5)
Geometric parameters (Å, º) top
O1—C11.3549 (14)C9—H9C0.9800
O1—H10.927 (16)C10—H10A0.9800
N1—C151.2749 (15)C10—H10B0.9800
N1—C161.4638 (15)C10—H10C0.9800
C1—C21.4058 (16)C11—C141.5257 (18)
C1—C61.4147 (15)C11—C121.5325 (18)
C2—C31.3939 (16)C11—C131.5332 (16)
C2—C71.5398 (14)C12—H12A0.9800
C3—C41.4028 (15)C12—H12B0.9800
C3—H30.9500C12—H12C0.9800
C4—C51.3863 (15)C13—H13A0.9800
C4—C111.5328 (16)C13—H13B0.9800
C5—C61.3914 (16)C13—H13C0.9800
C5—H50.9500C14—H14A0.9800
C6—C151.4613 (15)C14—H14B0.9800
C7—C101.5295 (17)C14—H14C0.9800
C7—C81.5371 (17)C15—H150.9500
C7—C91.5380 (15)C16—C171.5244 (18)
C8—H8A0.9800C16—H16A0.9900
C8—H8B0.9800C16—H16B0.9900
C8—H8C0.9800C17—C17i1.525 (3)
C9—H9A0.9800C17—H17A0.9900
C9—H9B0.9800C17—H17B0.9900
C1—O1—H1107.4 (10)H10A—C10—H10C109.5
C15—N1—C16118.61 (11)H10B—C10—H10C109.5
O1—C1—C2120.20 (10)C14—C11—C12108.67 (12)
O1—C1—C6119.71 (10)C14—C11—C4112.44 (10)
C2—C1—C6120.09 (10)C12—C11—C4109.40 (10)
C3—C2—C1117.05 (10)C14—C11—C13108.51 (11)
C3—C2—C7121.48 (10)C12—C11—C13108.45 (10)
C1—C2—C7121.47 (10)C4—C11—C13109.28 (10)
C2—C3—C4124.44 (10)C11—C12—H12A109.5
C2—C3—H3117.8C11—C12—H12B109.5
C4—C3—H3117.8H12A—C12—H12B109.5
C5—C4—C3116.69 (10)C11—C12—H12C109.5
C5—C4—C11120.36 (10)H12A—C12—H12C109.5
C3—C4—C11122.95 (10)H12B—C12—H12C109.5
C4—C5—C6121.73 (10)C11—C13—H13A109.5
C4—C5—H5119.1C11—C13—H13B109.5
C6—C5—H5119.1H13A—C13—H13B109.5
C5—C6—C1120.00 (10)C11—C13—H13C109.5
C5—C6—C15118.70 (10)H13A—C13—H13C109.5
C1—C6—C15121.27 (10)H13B—C13—H13C109.5
C10—C7—C8107.48 (10)C11—C14—H14A109.5
C10—C7—C9107.51 (10)C11—C14—H14B109.5
C8—C7—C9110.11 (10)H14A—C14—H14B109.5
C10—C7—C2111.77 (10)C11—C14—H14C109.5
C8—C7—C2110.79 (9)H14A—C14—H14C109.5
C9—C7—C2109.11 (9)H14B—C14—H14C109.5
C7—C8—H8A109.5N1—C15—C6122.40 (10)
C7—C8—H8B109.5N1—C15—H15118.8
H8A—C8—H8B109.5C6—C15—H15118.8
C7—C8—H8C109.5N1—C16—C17110.12 (11)
H8A—C8—H8C109.5N1—C16—H16A109.6
H8B—C8—H8C109.5C17—C16—H16A109.6
C7—C9—H9A109.5N1—C16—H16B109.6
C7—C9—H9B109.5C17—C16—H16B109.6
H9A—C9—H9B109.5H16A—C16—H16B108.1
C7—C9—H9C109.5C16—C17—C17i113.31 (13)
H9A—C9—H9C109.5C16—C17—H17A108.9
H9B—C9—H9C109.5C17i—C17—H17A108.9
C7—C10—H10A109.5C16—C17—H17B108.9
C7—C10—H10B109.5C17i—C17—H17B108.9
H10A—C10—H10B109.5H17A—C17—H17B107.7
C7—C10—H10C109.5
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.927 (16)1.735 (17)2.5840 (13)150.8 (14)
C8—H8B···O10.982.292.9546 (16)125
C9—H9A···O10.982.443.0720 (15)122

Experimental details

Crystal data
Chemical formulaC34H52N2O2
Mr520.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)19.1255 (4), 9.5702 (2), 8.6312 (1)
β (°) 90.383 (1)
V3)1579.78 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.26 × 0.15 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
14602, 3631, 3039
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.03
No. of reflections3631
No. of parameters181
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.927 (16)1.735 (17)2.5840 (13)150.8 (14)
C8—H8B···O10.982.292.9546 (16)124.6
C9—H9A···O10.982.443.0720 (15)122.2
 

Acknowledgements

Financial support from the University of Malaya is highly appreciated (PPP grant No. PS342/2009 C)

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoyle, D. J., Gibson, V. C. & White, A. J. P. (2007). Dalton Trans. pp. 358–363.  Web of Science CSD CrossRef Google Scholar
First citationKeizer, T. S., De Pue, L. J., Parkin, S. & Atwood, D. A. (2002a). J. Cluster Sci. 13, 609–620.  Web of Science CSD CrossRef CAS Google Scholar
First citationKeizer, T. S., De Pue, L. J., Parkin, S. & Atwood, D. A. (2002b). J. Am. Chem. Soc. 124, 1864–1865.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds