organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Sulfanyl­idene-1,3-di­thiolo[4,5-b]naphtho­[2,3-e][1,4]dithiine-5,10-dione

aDepartamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, ExHda. de Sta. Catarina Mártir, 72820 San Andrés Cholula, Pue., Mexico, bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico, and cFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y av. San Claudio, Col. San Manuel, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 6 September 2011; accepted 23 September 2011; online 5 October 2011)

The title mol­ecule, C13H4O2S5, is folded by 47.83 (6)° along the S⋯S vector of the [1,4]dithiine six-membered ring, with the naphtho­quinone and [1,3]dithiole-2-thione moieties being nearly planar [largest deviations from least-squares planes = 0.028 (2) and 0.016 (1) Å, respectively]. This boat conformation is close to that observed in the analogous compound [Mendez-Rojas et al. (2001). J. Chem. Crystallogr. 31, 17–28] including a 2-oxo group [folding angle: 42.3 (1)° at 213 (2) K]. Both compounds are indeed isomorphous, and the small difference in the folding angle probably results from the involvement of the thioxo group of the title compound in inter­molecular S⋯S contacts [3.5761 (13) Å]. In the crystal structure, mol­ecules are stacked in the [100] direction, with dithiole rings making ππ inter­actions. In a stack, alternating short and long separations are observed between the centroids of dithiole rings, 3.5254 (17) and 4.7010 (18) Å.

Related literature

For general background to sulfur-containing heterocycles in organic conductors, see: Wudl (1984[Wudl, F. (1984). Acc. Chem. Res. 17, 227-232.]); Jérome (2007[Jérome, D. (2007). Physics of organic superconductors and conductors, edited by A. G. Lebed, pp. 3-16. Berlin: Springer.]). For dithiine derivatives and their redox behavior, see: Hayakawa et al. (1982[Hayakawa, K., Mibu, N., Ōsawa, E. & Kanematsu, K. (1982). J. Am. Chem. Soc. 104, 7136-7142.]); Kao et al. (1985[Kao, J., Eyermann, C., Southwick, E. & Leister, D. (1985). J. Am. Chem. Soc. 107, 5323-5332.]); Kniess & Mayer (1996[Kniess, T. & Mayer, R. (1996). Z. Naturforsch. Teil B, 51, 901-904.]); Brisse et al. (2000[Brisse, F., Atfani, M., Bergeron, J.-Y., Bélanger-Gariépy, F. & Armand, M. (2000). Acta Cryst. C56, 190-192.]); Mendez-Rojas et al. (2001[Mendez-Rojas, M. A., Bodige, S. G., Ejsmont, K. & Watson, W. H. (2001). J. Chem. Crystallogr. 31, 17-28.]). For the synthesis of the precursor of the title dithiine, see: Wang et al. (1998[Wang, C. S., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615-1618.]).

[Scheme 1]

Experimental

Crystal data
  • C13H4O2S5

  • Mr = 352.46

  • Triclinic, [P \overline 1]

  • a = 7.8527 (8) Å

  • b = 8.0281 (9) Å

  • c = 12.0022 (13) Å

  • α = 97.934 (9)°

  • β = 89.227 (9)°

  • γ = 117.867 (8)°

  • V = 661.37 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 296 K

  • 0.48 × 0.12 × 0.08 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.679, Tmax = 0.733

  • 3881 measured reflections

  • 2323 independent reflections

  • 1748 reflections with I > 2σ(I)

  • Rint = 0.026

  • 2 standard reflections every 48 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.02

  • 2323 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The development of new types of π-electron donors and acceptors with high polarizability continues to be an attractive topic in material sciences. Such compounds are not only interesting as candidates for single-component conductors, but also because they have low excitation energies and promising applications as NLO materials and near-IR absorbing dyes. Sulfur-based heterocycles are good candidates for building such materials, and donors like TTF and BEDT-TTF became emblematic systems in the 70's, after they allowed to synthesize molecular metals and superconductor materials (Wudl, 1984; Jérome, 2007).

The title compound belongs to the 1,4-dithiine derivatives, which have a particular conformational flexibility, because the energy barrier between the planar and boat conformations is very low (Hayakawa et al., 1982). Ab initio computations showed for example that for 1,4-dithiine, the C2v(boat) D2h(planar) conformational interconversion requires less than 3 kcal/mol (see Table II and Fig. 4 in Kao et al., 1985). A fine tuning of the geometry and electron distribution may thus be expected by varying the substituents of this heterocycle. For example, electron withdrawing groups seem to stabilize the unfolded conformer (Brisse et al., 2000).

In contrast, the title molecule (Kniess & Mayer, 1996; Mendez-Rojas et al., 2001) adopts a folded conformation (Fig. 1). The dihedral angle between the essentially planar naphthoquinone ring (C4a/C5/C5a/C6···C9/C9a/C10/C10a; max. deviation: 0.028 Å for C4a) and the five membered 1,3-dithiole ring (S1/C2/S3/C3a/C11a; max. deviation: 0.016 Å for C2) is 47.83 (6)°. This boat conformation is favored by intramolecular S···O repulsion effects, characterized by non-bonding distances S11···O10 = 2.874 (2) and S4···O5 = 2.868 (2) Å. Heteroatoms are also involved in intermolecular contacts. Molecules form centrosymmetric dimers through S1···S2i contacts [3.5761 (13) Å; symmetry code (i): 1 - x, 3 - y, 1 - z] between the thioxo group and one S atom of the dithiole heterocycle. The contacts pattern is completed by bifurcated S1/S11···O5ii interactions [3.158 (2) and 3.159 (2) Å; symmetry code (ii): 1 + x, 1 + y, z], forming a two-dimensional network of contacts in the crystal (Fig. 2). This arrangement is compatible with a stacking structure for molecules, in the [100] direction: two dithiole rings related by inversion give a π···π interaction characterized by a centroid to centroid separation of 3.5254 (17) Å. However, as a consequence of the triclinic symmetry, the following stacked ring generated by inversion is found at a different distance, 4.7010 (18) Å. Short and long separations thus alternate along the stack (Fig. 2, inset), a common situation for one-dimensional materials affected by a Peierls distortion.

The title molecule is isomorphous with the 2-oxo analogue (Mendez-Rojas et al., 2001). However, it is interesting to note that both the molecular and the crystal structures present significantly different metrics for the 2-thioxo and the 2-oxo compounds. In the latter, the folding angle is 42.3 (1)°, and the separations in the dithiole stacks parallel to [100] are 3.566 and 4.345 Å. Despite of the clear dimerization along the stacks for both compounds, the title molecule seems to be more prone to Peierls instability, compared to its 2-oxo analogue.

Related literature top

For general background to sulfur-containing heterocycles in organic conductors, see: Wudl (1984); Jérome (2007). For dithiine derivatives and their redox behavior, see: Hayakawa et al. (1982); Kao et al. (1985); Kniess & Mayer (1996); Brisse et al. (2000); Mendez-Rojas et al. (2001). For the synthesis of the precursor of the title dithiine, see: Wang et al. (1998).

Experimental top

The precursor (NBu4)2[Zn(dmit)2], where H2dmit is 4,5-dimercapto-1,3-dithiole-2-thione, was prepared as previously reported (Wang et al., 1998). This complex (1.68 g, 2.20 mmol in 20 ml acetone) was reacted with 2,3-dichloro-1,4-naphthoquinone (1 g, 4.40 mmol) at room temperature, forming immediately a dark precipitate. The mixture was stirred overnight and the precipitate was then recovered by vacuum filtration (1.50 g, 99%) and recrystallized from CH2Cl2. Small black shiny needles suitable for X-ray diffraction were obtained after several days. M.p. 354–355 °C. IR (KBr, cm-1) 1663 (vs), 1586 (m), 1553 (m), 1493 (m), 1385 (sm), 1275 (vs), 1134 (m), 1073 (vs), 794 (m), 706 (s), 635 (sm), 505 (sm); 1H-NMR (CDCl3, p.p.m.) δ, 7.80 (dd, 2H), 8.16 (dd, 2H). Anal. calcd. for C13H4O2S5: C 44.3%; found: C 42.9%.

Refinement top

The four aromatic H atoms of the naphthoquinone were placed in idealized positions and refined with C—H bond lengths fixed to 0.93 Å and isotropic displacement parameters fixed to 1.2 times the equivalent displacement of the carrier C atom.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level.
[Figure 2] Fig. 2. A partial view of the crystal structure for the title compound, with intermolecular S···S and S···O contacts showed as dashed lines. The inset is a view of the crystal normal to the b* axis. Quoted distances are separations between the centroids of neighboring dithiole rings, stacked along the a axis.
2-Sulfanylidene-1,3-dithiolo[4,5-b]naphtho[2,3-e][1,4]dithiine- 5,10-dione top
Crystal data top
C13H4O2S5Z = 2
Mr = 352.46F(000) = 356
Triclinic, P1Dx = 1.770 Mg m3
Hall symbol: -P 1Melting point: 627 K
a = 7.8527 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0281 (9) ÅCell parameters from 68 reflections
c = 12.0022 (13) Åθ = 4.8–12.3°
α = 97.934 (9)°µ = 0.87 mm1
β = 89.227 (9)°T = 296 K
γ = 117.867 (8)°Needle, brown
V = 661.37 (12) Å30.48 × 0.12 × 0.08 mm
Data collection top
Siemens P4
diffractometer
1748 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.1°, θmin = 2.9°
ω scansh = 58
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 98
Tmin = 0.679, Tmax = 0.733l = 1414
3881 measured reflections2 standard reflections every 48 reflections
2323 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.1487P]
where P = (Fo2 + 2Fc2)/3
2323 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
0 constraints
Crystal data top
C13H4O2S5γ = 117.867 (8)°
Mr = 352.46V = 661.37 (12) Å3
Triclinic, P1Z = 2
a = 7.8527 (8) ÅMo Kα radiation
b = 8.0281 (9) ŵ = 0.87 mm1
c = 12.0022 (13) ÅT = 296 K
α = 97.934 (9)°0.48 × 0.12 × 0.08 mm
β = 89.227 (9)°
Data collection top
Siemens P4
diffractometer
1748 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.026
Tmin = 0.679, Tmax = 0.7332 standard reflections every 48 reflections
3881 measured reflections intensity decay: 2%
2323 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
2323 reflectionsΔρmin = 0.28 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44687 (11)1.23625 (11)0.59078 (6)0.0435 (2)
C20.3040 (4)1.1337 (4)0.4656 (2)0.0430 (7)
S20.30632 (14)1.25421 (13)0.36621 (8)0.0631 (3)
S30.15541 (11)0.88891 (11)0.45820 (6)0.0439 (2)
C3A0.2361 (4)0.8652 (4)0.5872 (2)0.0375 (7)
S40.12380 (12)0.64220 (10)0.63387 (6)0.0463 (2)
C4A0.1022 (4)0.7202 (4)0.7760 (2)0.0369 (7)
C50.0767 (4)0.5886 (4)0.8258 (2)0.0383 (7)
O50.1952 (3)0.4454 (3)0.76730 (18)0.0604 (7)
C5A0.0991 (4)0.6353 (4)0.9471 (2)0.0372 (7)
C60.2599 (4)0.5131 (4)0.9978 (3)0.0459 (8)
H6A0.35510.40370.95520.055*
C70.2798 (4)0.5531 (5)1.1123 (3)0.0525 (9)
H7A0.38790.47081.14640.063*
C80.1369 (4)0.7168 (5)1.1754 (3)0.0521 (9)
H8A0.15000.74371.25190.063*
C90.0245 (4)0.8404 (5)1.1260 (2)0.0443 (7)
H9A0.11920.94951.16920.053*
C9A0.0449 (4)0.8014 (4)1.0116 (2)0.0363 (7)
C100.2197 (4)0.9333 (4)0.9599 (2)0.0364 (7)
O100.3465 (3)1.0782 (3)1.01299 (16)0.0490 (6)
C10A0.2389 (4)0.8801 (4)0.8376 (2)0.0353 (6)
S110.45668 (10)1.03981 (11)0.78538 (6)0.0444 (2)
C11A0.3701 (4)1.0256 (4)0.6482 (2)0.0376 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0400 (4)0.0385 (4)0.0406 (4)0.0090 (3)0.0052 (3)0.0064 (3)
C20.0377 (16)0.0456 (17)0.0435 (16)0.0176 (14)0.0072 (13)0.0073 (14)
S20.0727 (6)0.0530 (5)0.0559 (5)0.0202 (5)0.0066 (4)0.0183 (4)
S30.0421 (4)0.0420 (4)0.0388 (4)0.0127 (3)0.0030 (3)0.0046 (3)
C3A0.0347 (15)0.0379 (15)0.0363 (15)0.0146 (13)0.0046 (12)0.0039 (12)
S40.0571 (5)0.0334 (4)0.0363 (4)0.0125 (4)0.0006 (3)0.0004 (3)
C4A0.0337 (15)0.0350 (15)0.0354 (15)0.0105 (13)0.0030 (12)0.0054 (12)
C50.0325 (15)0.0316 (15)0.0408 (15)0.0062 (13)0.0062 (12)0.0061 (12)
O50.0494 (13)0.0469 (13)0.0490 (13)0.0065 (11)0.0059 (11)0.0038 (11)
C5A0.0288 (15)0.0384 (15)0.0416 (15)0.0124 (12)0.0029 (12)0.0092 (12)
C60.0318 (16)0.0468 (18)0.0549 (19)0.0128 (14)0.0009 (14)0.0160 (14)
C70.0346 (17)0.066 (2)0.059 (2)0.0211 (17)0.0104 (15)0.0259 (17)
C80.0460 (19)0.075 (2)0.0421 (17)0.0331 (18)0.0108 (15)0.0153 (16)
C90.0414 (17)0.0533 (19)0.0381 (16)0.0228 (15)0.0007 (13)0.0037 (14)
C9A0.0323 (15)0.0418 (16)0.0362 (15)0.0179 (13)0.0013 (12)0.0080 (12)
C100.0333 (15)0.0379 (16)0.0350 (15)0.0144 (13)0.0056 (12)0.0047 (12)
O100.0412 (12)0.0455 (12)0.0388 (11)0.0047 (10)0.0066 (9)0.0021 (9)
C10A0.0302 (15)0.0337 (15)0.0349 (14)0.0089 (12)0.0003 (12)0.0057 (12)
S110.0287 (4)0.0493 (5)0.0367 (4)0.0032 (3)0.0019 (3)0.0060 (3)
C11A0.0327 (15)0.0392 (16)0.0349 (14)0.0122 (13)0.0048 (12)0.0053 (12)
Geometric parameters (Å, º) top
S1—C21.742 (3)C6—C71.392 (4)
S1—C11A1.748 (3)C6—H6A0.9300
C2—S21.631 (3)C7—C81.389 (5)
C2—S31.744 (3)C7—H7A0.9300
S3—C3A1.747 (3)C8—C91.381 (4)
C3A—C11A1.340 (4)C8—H8A0.9300
C3A—S41.756 (3)C9—C9A1.389 (4)
S4—C4A1.768 (3)C9—H9A0.9300
C4A—C10A1.349 (4)C9A—C101.480 (4)
C4A—C51.487 (4)C10—O101.216 (3)
C5—O51.215 (3)C10—C10A1.497 (4)
C5—C5A1.482 (4)C10A—S111.762 (3)
C5A—C61.383 (4)S11—C11A1.758 (3)
C5A—C9A1.409 (4)
C2—S1—C11A96.73 (14)C8—C7—H7A120.3
S2—C2—S1123.61 (18)C6—C7—H7A120.3
S2—C2—S3123.38 (18)C9—C8—C7120.9 (3)
S1—C2—S3113.00 (17)C9—C8—H8A119.5
C2—S3—C3A96.94 (14)C7—C8—H8A119.5
C11A—C3A—S3116.4 (2)C8—C9—C9A119.8 (3)
C11A—C3A—S4124.4 (2)C8—C9—H9A120.1
S3—C3A—S4118.94 (16)C9A—C9—H9A120.1
C3A—S4—C4A98.37 (13)C9—C9A—C5A119.6 (3)
C10A—C4A—C5121.6 (3)C9—C9A—C10119.4 (3)
C10A—C4A—S4123.9 (2)C5A—C9A—C10121.0 (2)
C5—C4A—S4114.4 (2)O10—C10—C9A122.8 (2)
O5—C5—C5A122.6 (3)O10—C10—C10A120.0 (2)
O5—C5—C4A119.4 (3)C9A—C10—C10A117.3 (2)
C5A—C5—C4A118.0 (2)C4A—C10A—C10121.8 (2)
C6—C5A—C9A119.9 (3)C4A—C10A—S11124.2 (2)
C6—C5A—C5119.9 (3)C10—C10A—S11113.92 (19)
C9A—C5A—C5120.3 (2)C11A—S11—C10A98.74 (13)
C5A—C6—C7120.3 (3)C3A—C11A—S1116.9 (2)
C5A—C6—H6A119.8C3A—C11A—S11124.3 (2)
C7—C6—H6A119.8S1—C11A—S11118.53 (16)
C8—C7—C6119.5 (3)
C11A—S1—C2—S2178.7 (2)C5—C5A—C9A—C9178.1 (3)
C11A—S1—C2—S32.07 (19)C6—C5A—C9A—C10179.2 (3)
S2—C2—S3—C3A178.6 (2)C5—C5A—C9A—C100.8 (4)
S1—C2—S3—C3A2.19 (19)C9—C9A—C10—O101.4 (4)
C2—S3—C3A—C11A1.5 (3)C5A—C9A—C10—O10179.7 (3)
C2—S3—C3A—S4175.85 (18)C9—C9A—C10—C10A177.3 (3)
C11A—C3A—S4—C4A38.1 (3)C5A—C9A—C10—C10A1.6 (4)
S3—C3A—S4—C4A135.80 (18)C5—C4A—C10A—C100.7 (4)
C3A—S4—C4A—C10A39.0 (3)S4—C4A—C10A—C10175.8 (2)
C3A—S4—C4A—C5144.2 (2)C5—C4A—C10A—S11178.5 (2)
C10A—C4A—C5—O5179.5 (3)S4—C4A—C10A—S111.9 (4)
S4—C4A—C5—O52.6 (4)O10—C10—C10A—C4A179.6 (3)
C10A—C4A—C5—C5A1.6 (4)C9A—C10—C10A—C4A0.9 (4)
S4—C4A—C5—C5A175.3 (2)O10—C10—C10A—S111.6 (4)
O5—C5—C5A—C60.2 (5)C9A—C10—C10A—S11177.1 (2)
C4A—C5—C5A—C6177.6 (3)C4A—C10A—S11—C11A36.5 (3)
O5—C5—C5A—C9A178.6 (3)C10—C10A—S11—C11A145.6 (2)
C4A—C5—C5A—C9A0.8 (4)S3—C3A—C11A—S10.3 (3)
C9A—C5A—C6—C70.1 (5)S4—C3A—C11A—S1174.26 (16)
C5—C5A—C6—C7178.3 (3)S3—C3A—C11A—S11174.17 (16)
C5A—C6—C7—C80.0 (5)S4—C3A—C11A—S110.2 (4)
C6—C7—C8—C90.0 (5)C2—S1—C11A—C3A1.1 (3)
C7—C8—C9—C9A0.1 (5)C2—S1—C11A—S11175.89 (18)
C8—C9—C9A—C5A0.2 (5)C10A—S11—C11A—C3A37.8 (3)
C8—C9—C9A—C10179.1 (3)C10A—S11—C11A—S1136.56 (18)
C6—C5A—C9A—C90.3 (4)

Experimental details

Crystal data
Chemical formulaC13H4O2S5
Mr352.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.8527 (8), 8.0281 (9), 12.0022 (13)
α, β, γ (°)97.934 (9), 89.227 (9), 117.867 (8)
V3)661.37 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.48 × 0.12 × 0.08
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.679, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
3881, 2323, 1748
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.02
No. of reflections2323
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

 

Acknowledgements

Financial support from CONACyT-48038-R and VIPE-UDLA are gratefully acknowledged.

References

First citationBrisse, F., Atfani, M., Bergeron, J.-Y., Bélanger-Gariépy, F. & Armand, M. (2000). Acta Cryst. C56, 190–192.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHayakawa, K., Mibu, N., Ōsawa, E. & Kanematsu, K. (1982). J. Am. Chem. Soc. 104, 7136–7142.  CrossRef CAS Web of Science Google Scholar
First citationJérome, D. (2007). Physics of organic superconductors and conductors, edited by A. G. Lebed, pp. 3–16. Berlin: Springer.  Google Scholar
First citationKao, J., Eyermann, C., Southwick, E. & Leister, D. (1985). J. Am. Chem. Soc. 107, 5323–5332.  CrossRef CAS Web of Science Google Scholar
First citationKniess, T. & Mayer, R. (1996). Z. Naturforsch. Teil B, 51, 901–904.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMendez-Rojas, M. A., Bodige, S. G., Ejsmont, K. & Watson, W. H. (2001). J. Chem. Crystallogr. 31, 17–28.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, C. S., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615–1618.  CSD CrossRef Google Scholar
First citationWudl, F. (1984). Acc. Chem. Res. 17, 227–232.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds