organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-(4-Nitro­benzyl­­idene)-1-benzo­furan-3(2H)-one

aSankar Foundation Research Institute, Naiduthota, Vepagunta, Visakhapatnam, Andhra pradesh 530 047, India
*Correspondence e-mail: anand.dcb@gmail.com

(Received 15 September 2011; accepted 11 October 2011; online 12 October 2011)

In the crystal structure of the title compound, C15H9NO4, weak C—H⋯O inter­actions generate rings with R22(8) motifs. The supra­molecular aggregation is completed by the presence of C—H⋯O and van der Waals inter­actions.

Related literature

For the synthesis and biological activity of substituted aurones, see: Varma & Varma (1992[Varma, R. S. & Varma, M. (1992). Tetrahedron Lett. 33, 5937-5940.]); Beney et al. (2001[Beney, C., Mariotte, A. M. & Boumendjel, A. (2001). Heterocycles, 55, 967-972.]); Sim et al. (2008[Sim, H. M., Lee, C. Y., Ee, P. L. & Go, M. L. (2008). Eur. J. Pharm. Sci. 35, 293-306.]). For the assignment of conformations and the orientation of the substituents, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.], 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]); Klyne & Prelog (1960[Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-568.]). For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. A. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the diverse theraputic properties of aurones, see: Villemin et al. (1998[Villemin, D., Martin, B. & Bar, N. (1998). Molecules, 3, 88-93.]). Several multifunctionalized aurones have been reported to exhibit anti-malarial (Souard et al. 2010[Souard, F., Okombi, S., Beney, C., Chevalley, S., Valentin, A. & Boumendjel, A. (2010). Bioorg. Med. Chem. 1, 5724-5731.]) and anti-histamine (Wang et al. 2007[Wang, J., Wang, N., Yao, X. & Kitanaka, S. (2007). J. Trad. Med, 2, 23-29.]) properties.

[Scheme 1]

Experimental

Crystal data
  • C15H9NO4

  • Mr = 267.23

  • Triclinic, [P \overline 1]

  • a = 6.6916 (2) Å

  • b = 7.4708 (2) Å

  • c = 12.6414 (3) Å

  • α = 100.459 (1)°

  • β = 93.019 (2)°

  • γ = 102.043 (1)°

  • V = 605.09 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 303 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004)[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.932, Tmax = 0.955

  • 12519 measured reflections

  • 2116 independent reflections

  • 1869 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.03

  • 2116 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1 0.93 2.32 2.9547 (16) 125
C9—H9⋯O2i 0.93 2.50 3.2951 (14) 143
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aurones belong flavonoids family, which are structurally isomers of flavones. They form essential structural scaffolds in many natural and synthetic molecules possessing diverse therapeutic properties (Villemin et al. 1998) Several multifunctionalized aurones were reported to exhibit anti-malarial (Souard et al. 2010) and anti-histamine (Wang et al. 2007) properties.

The title compound (Fig.1),C15H9NO4,crystallized in triclinic space group P-1 with two molecules in the assymetric unit (Fig.2).The crystal structure of (I) is stabilized by C—H···O interactions.The range of H···O distances (Table 1) found in (I) agrees with those found for C—H···O hydrogen bonds (Desiraju & Steiner,1999). The coumaranone moiety at C10 is in co-planar conformation [C7—C8—C9—C10=179.55 (13)°].The translational related molecules interact with each other via weak C—H···O [C9—H9···O2: H9···O2 = 2.50 Å, θ = 143°] hydrogen bonds along the c axis, and form a one dimensional chain (Fig. 3).

Related literature top

For the synthesis and biological activity of substituted aurones, see: Varma et al. (1992); Beney et al. (2001); Sim et al. (2008). For the assignment of conformations and the orientation of the substituents, see: Nardelli (1983, 1995); Klyne & Prelog (1960). For hydrogen bonds, see: Desiraju & Steiner (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the diverse theraputic properties of aurones, see: Villemin et al. (1998). Several multifunctionalized aurones have been reported to exhibit anti-malarial (Souard et al. 2010) and anti-histamine (Wang et al. 2007) properties.

Experimental top

3-coumaranone was allowed to react with 4-nitrobenzaldehyde in ethanolic solution of potassium hydroxide for 30 minutes to yield the title compound (Fig.4). The pure product was obtained by recrystallization in methanol.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of (Z)-2-(4-nitrobenzylidene)benzofuran-3(2H)-one. (Thermal ellipsoids are at 50% probability level).
[Figure 2] Fig. 2. Crystal packing diagram of the title compound.
[Figure 3] Fig. 3. The synthetic scheme of the title compound.
(Z)-2-(4-Nitrobenzylidene)-1-benzofuran-3(2H)-one top
Crystal data top
C15H9NO4Z = 2
Mr = 267.23F(000) = 276
Triclinic, P1Dx = 1.467 Mg m3
Hall symbol: -P 1Melting point: 460 K
a = 6.6916 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4708 (2) ÅCell parameters from 7266 reflections
c = 12.6414 (3) Åθ = 2.8–30.5°
α = 100.459 (1)°µ = 0.11 mm1
β = 93.019 (2)°T = 303 K
γ = 102.043 (1)°Block, yellow
V = 605.09 (3) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2116 independent reflections
Radiation source: fine-focus sealed tube1869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.932, Tmax = 0.955k = 88
12519 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.1178P]
where P = (Fo2 + 2Fc2)/3
2116 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H9NO4γ = 102.043 (1)°
Mr = 267.23V = 605.09 (3) Å3
Triclinic, P1Z = 2
a = 6.6916 (2) ÅMo Kα radiation
b = 7.4708 (2) ŵ = 0.11 mm1
c = 12.6414 (3) ÅT = 303 K
α = 100.459 (1)°0.30 × 0.20 × 0.20 mm
β = 93.019 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1869 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.955Rint = 0.020
12519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2116 reflectionsΔρmin = 0.25 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8384 (2)0.28398 (18)0.19093 (11)0.0456 (3)
C20.7837 (2)0.3025 (2)0.29555 (11)0.0548 (4)
H20.64690.27290.32340.066*
C30.9366 (3)0.3652 (2)0.35600 (12)0.0595 (4)
H30.90370.37900.42600.071*
C41.1407 (3)0.4087 (2)0.31413 (12)0.0586 (4)
H41.24170.45190.35690.070*
C51.1987 (2)0.3898 (2)0.21071 (12)0.0526 (4)
H51.33550.41790.18300.063*
C61.0423 (2)0.32720 (17)0.15171 (10)0.0431 (3)
C70.88073 (19)0.22680 (18)0.01762 (11)0.0429 (3)
C80.7214 (2)0.21929 (19)0.10621 (12)0.0485 (3)
C90.8470 (2)0.17046 (18)0.07516 (11)0.0452 (3)
H90.71020.12170.08320.054*
C100.9913 (2)0.17343 (17)0.16591 (10)0.0411 (3)
C110.9136 (2)0.11596 (19)0.25736 (11)0.0470 (3)
H110.77270.07330.25740.056*
C121.0401 (2)0.12085 (19)0.34749 (11)0.0477 (3)
H120.98660.08290.40830.057*
C131.2473 (2)0.18320 (18)0.34544 (10)0.0444 (3)
C141.3322 (2)0.23746 (19)0.25581 (11)0.0475 (3)
H141.47360.27690.25620.057*
C151.2041 (2)0.23210 (18)0.16603 (11)0.0452 (3)
H151.25920.26770.10500.054*
N11.3855 (2)0.19263 (19)0.44088 (10)0.0575 (3)
O11.07162 (13)0.29789 (13)0.04757 (7)0.0459 (3)
O20.53638 (16)0.16865 (18)0.10414 (10)0.0732 (4)
O31.5647 (2)0.2687 (3)0.44252 (12)0.1051 (6)
O41.31586 (19)0.12304 (19)0.51458 (9)0.0760 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0521 (8)0.0404 (7)0.0431 (7)0.0118 (6)0.0073 (6)0.0070 (5)
C20.0648 (9)0.0512 (8)0.0466 (8)0.0140 (7)0.0133 (7)0.0092 (6)
C30.0845 (11)0.0537 (8)0.0392 (7)0.0150 (8)0.0068 (7)0.0108 (6)
C40.0747 (10)0.0542 (8)0.0465 (8)0.0093 (7)0.0062 (7)0.0142 (6)
C50.0543 (8)0.0539 (8)0.0483 (8)0.0072 (6)0.0001 (6)0.0135 (6)
C60.0513 (8)0.0395 (7)0.0382 (7)0.0108 (5)0.0043 (5)0.0084 (5)
C70.0404 (7)0.0435 (7)0.0439 (7)0.0085 (5)0.0025 (5)0.0090 (5)
C80.0443 (8)0.0499 (8)0.0513 (8)0.0110 (6)0.0058 (6)0.0121 (6)
C90.0406 (7)0.0476 (7)0.0468 (8)0.0085 (5)0.0004 (6)0.0102 (6)
C100.0443 (7)0.0385 (6)0.0405 (7)0.0092 (5)0.0016 (5)0.0084 (5)
C110.0424 (7)0.0525 (8)0.0481 (8)0.0108 (6)0.0064 (6)0.0143 (6)
C120.0537 (8)0.0522 (8)0.0414 (7)0.0143 (6)0.0092 (6)0.0159 (6)
C130.0511 (8)0.0451 (7)0.0378 (7)0.0124 (6)0.0011 (6)0.0098 (5)
C140.0418 (7)0.0547 (8)0.0450 (8)0.0055 (6)0.0003 (6)0.0145 (6)
C150.0463 (7)0.0510 (7)0.0385 (7)0.0067 (6)0.0023 (5)0.0145 (6)
N10.0585 (8)0.0713 (8)0.0436 (7)0.0123 (6)0.0027 (6)0.0187 (6)
O10.0426 (5)0.0546 (5)0.0400 (5)0.0067 (4)0.0041 (4)0.0154 (4)
O20.0437 (6)0.1012 (9)0.0775 (8)0.0093 (6)0.0083 (5)0.0363 (7)
O30.0651 (8)0.1611 (15)0.0821 (9)0.0170 (9)0.0255 (7)0.0637 (10)
O40.0768 (8)0.1133 (10)0.0450 (6)0.0215 (7)0.0047 (5)0.0342 (6)
Geometric parameters (Å, º) top
C1—C61.3780 (19)C9—C101.4541 (18)
C1—C21.3922 (19)C9—H90.9300
C1—C81.453 (2)C10—C111.3935 (19)
C2—C31.365 (2)C10—C151.3993 (19)
C2—H20.9300C11—C121.3736 (19)
C3—C41.388 (2)C11—H110.9300
C3—H30.9300C12—C131.371 (2)
C4—C51.384 (2)C12—H120.9300
C4—H40.9300C13—C141.3816 (19)
C5—C61.369 (2)C13—N11.4628 (18)
C5—H50.9300C14—C151.3752 (19)
C6—O11.3837 (16)C14—H140.9300
C7—C91.331 (2)C15—H150.9300
C7—O11.3777 (16)N1—O31.2127 (17)
C7—C81.4900 (18)N1—O41.2150 (17)
C8—O21.2200 (17)
C6—C1—C2119.87 (14)C7—C9—H9115.1
C6—C1—C8106.79 (12)C10—C9—H9115.1
C2—C1—C8133.31 (13)C11—C10—C15118.52 (12)
C3—C2—C1118.13 (14)C11—C10—C9118.28 (12)
C3—C2—H2120.9C15—C10—C9123.20 (12)
C1—C2—H2120.9C12—C11—C10121.54 (13)
C2—C3—C4120.73 (14)C12—C11—H11119.2
C2—C3—H3119.6C10—C11—H11119.2
C4—C3—H3119.6C13—C12—C11118.23 (13)
C5—C4—C3122.12 (15)C13—C12—H12120.9
C5—C4—H4118.9C11—C12—H12120.9
C3—C4—H4118.9C12—C13—C14122.37 (13)
C6—C5—C4115.94 (14)C12—C13—N1119.42 (12)
C6—C5—H5122.0C14—C13—N1118.21 (13)
C4—C5—H5122.0C15—C14—C13118.91 (13)
C5—C6—C1123.20 (13)C15—C14—H14120.5
C5—C6—O1123.91 (12)C13—C14—H14120.5
C1—C6—O1112.89 (12)C14—C15—C10120.40 (13)
C9—C7—O1124.72 (12)C14—C15—H15119.8
C9—C7—C8126.03 (13)C10—C15—H15119.8
O1—C7—C8109.24 (11)O3—N1—O4122.99 (13)
O2—C8—C1130.02 (13)O3—N1—C13118.44 (13)
O2—C8—C7125.87 (14)O4—N1—C13118.57 (13)
C1—C8—C7104.10 (11)C7—O1—C6106.90 (10)
C7—C9—C10129.88 (13)
C6—C1—C2—C30.5 (2)C7—C9—C10—C11176.04 (13)
C8—C1—C2—C3178.41 (14)C7—C9—C10—C153.6 (2)
C1—C2—C3—C40.2 (2)C15—C10—C11—C121.8 (2)
C2—C3—C4—C50.4 (2)C9—C10—C11—C12177.82 (12)
C3—C4—C5—C60.6 (2)C10—C11—C12—C130.4 (2)
C4—C5—C6—C10.2 (2)C11—C12—C13—C141.2 (2)
C4—C5—C6—O1179.20 (12)C11—C12—C13—N1179.06 (12)
C2—C1—C6—C50.3 (2)C12—C13—C14—C151.2 (2)
C8—C1—C6—C5178.73 (12)N1—C13—C14—C15179.02 (12)
C2—C1—C6—O1178.73 (11)C13—C14—C15—C100.3 (2)
C8—C1—C6—O10.35 (15)C11—C10—C15—C141.8 (2)
C6—C1—C8—O2178.90 (15)C9—C10—C15—C14177.86 (12)
C2—C1—C8—O23.0 (3)C12—C13—N1—O3171.28 (15)
C6—C1—C8—C71.28 (14)C14—C13—N1—O39.0 (2)
C2—C1—C8—C7176.79 (14)C12—C13—N1—O49.1 (2)
C9—C7—C8—O23.7 (2)C14—C13—N1—O4170.61 (13)
O1—C7—C8—O2177.66 (13)C9—C7—O1—C6175.88 (12)
C9—C7—C8—C1176.09 (13)C8—C7—O1—C62.75 (13)
O1—C7—C8—C12.52 (14)C5—C6—O1—C7177.09 (12)
O1—C7—C9—C102.1 (2)C1—C6—O1—C71.98 (14)
C8—C7—C9—C10179.55 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.322.9547 (16)125
C9—H9···O2i0.932.503.2951 (14)143
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H9NO4
Mr267.23
Crystal system, space groupTriclinic, P1
Temperature (K)303
a, b, c (Å)6.6916 (2), 7.4708 (2), 12.6414 (3)
α, β, γ (°)100.459 (1), 93.019 (2), 102.043 (1)
V3)605.09 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.932, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
12519, 2116, 1869
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.03
No. of reflections2116
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.322.9547 (16)125
C9—H9···O2i0.932.503.2951 (14)143
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Managing Trustee and the Founder Trustee of the Sankar Foundation for their financial support and encouragement. We also acknowledge, The Head, SAIF, IIT-Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeney, C., Mariotte, A. M. & Boumendjel, A. (2001). Heterocycles, 55, 967–972.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. A. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKlyne, W. & Prelog, V. (1960). Experientia, 16, 521–568.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSim, H. M., Lee, C. Y., Ee, P. L. & Go, M. L. (2008). Eur. J. Pharm. Sci. 35, 293–306.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSouard, F., Okombi, S., Beney, C., Chevalley, S., Valentin, A. & Boumendjel, A. (2010). Bioorg. Med. Chem. 1, 5724–5731.  Web of Science CrossRef Google Scholar
First citationVarma, R. S. & Varma, M. (1992). Tetrahedron Lett. 33, 5937–5940.  CrossRef CAS Web of Science Google Scholar
First citationVillemin, D., Martin, B. & Bar, N. (1998). Molecules, 3, 88–93.  Web of Science CrossRef Google Scholar
First citationWang, J., Wang, N., Yao, X. & Kitanaka, S. (2007). J. Trad. Med, 2, 23–29.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds