organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N-(4-meth­­oxy­phen­yl)propanamide

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, and bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 27 September 2011; accepted 3 October 2011; online 8 October 2011)

The title compound, C10H12ClNO2, is a halogenated derivative of a secondary amide bearing an aromatic substituent. The C(=O)—N(H)—Car—Car torsion angle of −33.70 (18)° rules out the presence of resonance spanning the amide as well as the aromatic system. In the crystal, classical N—H⋯O hydrogen bonds, as well as C–H⋯O contacts connect the mol­ecules into chains propagating along the a axis.

Related literature

For structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For related structures, see: Akkurt et al. (2010[Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1559-o1560.]); Huang & Xu, (2006[Huang, J.-Y. & Xu, W. (2006). Acta Cryst. E62, o2651-o2652.]); Moreno-Fuquen et al. (2011[Moreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Haiduke, R. L. A. & Kennedy, A. R. (2011). Acta Cryst. E67, o659.]); Praveen et al. (2011[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.]). For the crystal structure of another compound featuring C—H⋯O contacts, see: Betz et al. (2011[Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1207.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12ClNO2

  • Mr = 213.66

  • Orthorhombic, P b c a

  • a = 9.6326 (3) Å

  • b = 8.6650 (2) Å

  • c = 25.7944 (8) Å

  • V = 2152.97 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.53 × 0.50 × 0.39 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 1.000

  • 19180 measured reflections

  • 2668 independent reflections

  • 2401 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.07

  • 2668 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯O1i 0.861 (18) 2.009 (18) 2.8643 (13) 172.1 (15)
C2—H2B⋯O1i 0.99 2.55 3.4203 (15) 147
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Amides are pervasive in nature and technology as structural materials. Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008; 2010). N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2008; Mijin & Marinkovic, 2006). The crystal structure studies of some closely related compounds, viz., N-(2-bromophenyl)-2-phenylpropanamide (Huang & Xu, 2006), 3-chloro-N-(4-sulfamoylphenyl) propanamide (Akkurt et al., 2010), 2-bromo-2-methyl-N-(4-nitrophenyl)propanamide (Moreno-Fuquen et al., 2011) and N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011) have been reported. Recently, the crystal structure of another compound featuring C–H···O contacts has been published (Betz et al., 2011). In view of the importance of amides, the crystal structure of the title compound is reported.

The C=O bond length as well as the C(=O)—N(H) bond length of 1.2326 (14) Å and 1.3416 (15) Å, respectively, are indicative of typical amide-type resonance. The aromatic system of the phenyl moiety bonded to the amide's nitrogen atom, on the other hand, does not participate in this resonance as becomes apparent by the corresponding C(=O)—N(H)—Car—Car dihedral angle of -33.70 (18) ° (Fig. 1).

In the crystal, classical hydrogen bonds of the N–H···O type as well as C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating are observed in form of two homodromic chains. The C–H···O contacts stem from the methylene group adjacent to the C=O group and – in combination with the nitrogen-bond hydrogen atom – chelate the oxygen atom of the amide functionality. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds as well as the C–H···O contacts is each C11(4) on the unitary level. In total, the molecules are connected to chains along the crystallographic a axis. The shortest intercentroid distance between two centers of gravity was found at 4.8194 (8) Å (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Akkurt et al. (2010); Huang & Xu, (2006); Moreno-Fuquen et al. (2011); Praveen et al. (2011). For the crystal structure of another compound featuring C—H···O contacts, see: Betz et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title compound was obtained from R. L. Fine Chem., Bengaluru, India. X-ray quality crystals were obtained from dichloromethane by slow evaporation at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl group were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5Ueq(C). The nitrogen-bound H atom was located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 - 1 0]. Blue dashed lines indicate classical hydrogen bonds of the N–H···O type, green dashed lines indicate C–H···O contacts. Symmetry operators: i x - 1/2, y, -z + 1/2; ii x + 1/2, y, -z + 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
3-Chloro-N-(4-methoxyphenyl)propanamide top
Crystal data top
C10H12ClNO2Dx = 1.318 Mg m3
Mr = 213.66Melting point = 388–391 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9900 reflections
a = 9.6326 (3) Åθ = 2.4–28.3°
b = 8.6650 (2) ŵ = 0.33 mm1
c = 25.7944 (8) ÅT = 200 K
V = 2152.97 (11) Å3Block, violet
Z = 80.53 × 0.50 × 0.39 mm
F(000) = 896
Data collection top
Bruker APEXII CCD
diffractometer
2668 independent reflections
Radiation source: fine-focus sealed tube2401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1112
Tmin = 0.921, Tmax = 1.000k = 118
19180 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.8819P]
where P = (Fo2 + 2Fc2)/3
2668 reflections(Δ/σ)max = 0.001
132 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C10H12ClNO2V = 2152.97 (11) Å3
Mr = 213.66Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.6326 (3) ŵ = 0.33 mm1
b = 8.6650 (2) ÅT = 200 K
c = 25.7944 (8) Å0.53 × 0.50 × 0.39 mm
Data collection top
Bruker APEXII CCD
diffractometer
2668 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2401 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 1.000Rint = 0.016
19180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.28 e Å3
2668 reflectionsΔρmin = 0.33 e Å3
132 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63232 (4)0.05020 (5)0.363132 (15)0.05120 (13)
O10.45550 (9)0.07866 (13)0.24620 (4)0.0401 (2)
O20.60693 (14)0.17364 (14)0.01725 (4)0.0571 (3)
N10.67622 (10)0.06661 (12)0.21589 (4)0.0278 (2)
H710.7614 (19)0.0778 (18)0.2253 (6)0.039 (4)*
C10.58029 (12)0.10651 (14)0.25114 (5)0.0277 (2)
C20.63650 (13)0.19487 (15)0.29700 (5)0.0333 (3)
H2A0.61600.30590.29220.040*
H2B0.73870.18280.29800.040*
C30.57679 (14)0.14268 (16)0.34808 (5)0.0359 (3)
H3A0.60730.21380.37590.043*
H3B0.47420.14600.34640.043*
C40.7094 (3)0.2727 (3)0.00413 (8)0.0945 (9)
H4A0.71850.36500.01760.142*
H4B0.68190.30300.03930.142*
H4C0.79860.21840.00550.142*
C110.65289 (11)0.00051 (13)0.16640 (4)0.0257 (2)
C120.53648 (12)0.03409 (14)0.13633 (5)0.0301 (2)
H120.46540.09850.14980.036*
C130.52506 (13)0.02579 (15)0.08680 (5)0.0344 (3)
H130.44580.00220.06640.041*
C140.62854 (15)0.12028 (15)0.06655 (5)0.0367 (3)
C150.74430 (15)0.15511 (16)0.09623 (5)0.0368 (3)
H150.81540.21940.08270.044*
C160.75527 (13)0.09486 (15)0.14610 (5)0.0315 (3)
H160.83440.11890.16650.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0490 (2)0.0532 (2)0.0513 (2)0.01414 (17)0.00088 (16)0.01065 (16)
O10.0182 (4)0.0644 (6)0.0378 (5)0.0037 (4)0.0018 (3)0.0059 (5)
O20.0822 (8)0.0580 (7)0.0312 (5)0.0186 (6)0.0137 (5)0.0072 (5)
N10.0168 (4)0.0368 (5)0.0298 (5)0.0016 (4)0.0016 (4)0.0002 (4)
C10.0203 (5)0.0319 (5)0.0308 (5)0.0004 (4)0.0000 (4)0.0018 (5)
C20.0274 (6)0.0336 (6)0.0389 (6)0.0003 (5)0.0003 (5)0.0068 (5)
C30.0330 (6)0.0398 (7)0.0350 (6)0.0080 (5)0.0002 (5)0.0094 (5)
C40.141 (2)0.0964 (17)0.0463 (10)0.0596 (17)0.0198 (12)0.0292 (11)
C110.0219 (5)0.0283 (5)0.0268 (5)0.0030 (4)0.0009 (4)0.0046 (4)
C120.0240 (5)0.0326 (6)0.0337 (6)0.0012 (4)0.0024 (4)0.0044 (5)
C130.0331 (6)0.0376 (6)0.0324 (6)0.0000 (5)0.0089 (5)0.0066 (5)
C140.0501 (8)0.0333 (6)0.0268 (5)0.0015 (6)0.0033 (5)0.0043 (5)
C150.0411 (7)0.0376 (7)0.0318 (6)0.0104 (6)0.0034 (5)0.0030 (5)
C160.0266 (5)0.0364 (6)0.0315 (5)0.0051 (5)0.0003 (5)0.0058 (5)
Geometric parameters (Å, º) top
Cl1—C31.7973 (14)C4—H4A0.9800
O1—C11.2326 (14)C4—H4B0.9800
O2—C141.3690 (16)C4—H4C0.9800
O2—C41.419 (2)C11—C161.3838 (17)
N1—C11.3416 (15)C11—C121.3961 (16)
N1—C111.4207 (15)C12—C131.3832 (18)
N1—H710.861 (18)C12—H120.9500
C1—C21.5096 (17)C13—C141.3917 (19)
C2—C31.5070 (18)C13—H130.9500
C2—H2A0.9900C14—C151.3858 (19)
C2—H2B0.9900C15—C161.3923 (18)
C3—H3A0.9900C15—H150.9500
C3—H3B0.9900C16—H160.9500
C14—O2—C4117.35 (13)O2—C4—H4C109.5
C1—N1—C11127.26 (10)H4A—C4—H4C109.5
C1—N1—H71115.8 (11)H4B—C4—H4C109.5
C11—N1—H71116.8 (11)C16—C11—C12119.28 (11)
O1—C1—N1123.45 (11)C16—C11—N1117.98 (10)
O1—C1—C2122.01 (11)C12—C11—N1122.57 (11)
N1—C1—C2114.50 (10)C13—C12—C11119.76 (11)
C3—C2—C1113.33 (10)C13—C12—H12120.1
C3—C2—H2A108.9C11—C12—H12120.1
C1—C2—H2A108.9C12—C13—C14120.69 (11)
C3—C2—H2B108.9C12—C13—H13119.7
C1—C2—H2B108.9C14—C13—H13119.7
H2A—C2—H2B107.7O2—C14—C15124.19 (13)
C2—C3—Cl1110.75 (9)O2—C14—C13116.00 (12)
C2—C3—H3A109.5C15—C14—C13119.80 (12)
Cl1—C3—H3A109.5C14—C15—C16119.33 (12)
C2—C3—H3B109.5C14—C15—H15120.3
Cl1—C3—H3B109.5C16—C15—H15120.3
H3A—C3—H3B108.1C11—C16—C15121.13 (11)
O2—C4—H4A109.5C11—C16—H16119.4
O2—C4—H4B109.5C15—C16—H16119.4
H4A—C4—H4B109.5
C11—N1—C1—O15.5 (2)C4—O2—C14—C150.9 (2)
C11—N1—C1—C2172.15 (11)C4—O2—C14—C13178.85 (18)
O1—C1—C2—C345.01 (17)C12—C13—C14—O2179.87 (12)
N1—C1—C2—C3137.26 (11)C12—C13—C14—C150.1 (2)
C1—C2—C3—Cl166.96 (12)O2—C14—C15—C16179.73 (13)
C1—N1—C11—C16151.11 (12)C13—C14—C15—C160.1 (2)
C1—N1—C11—C1233.70 (18)C12—C11—C16—C150.27 (18)
C16—C11—C12—C130.14 (18)N1—C11—C16—C15175.08 (11)
N1—C11—C12—C13174.99 (11)C14—C15—C16—C110.2 (2)
C11—C12—C13—C140.03 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O1i0.861 (18)2.009 (18)2.8643 (13)172.1 (15)
C2—H2B···O1i0.992.553.4203 (15)147
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12ClNO2
Mr213.66
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)9.6326 (3), 8.6650 (2), 25.7944 (8)
V3)2152.97 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.53 × 0.50 × 0.39
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.921, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19180, 2668, 2401
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.07
No. of reflections2668
No. of parameters132
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O1i0.861 (18)2.009 (18)2.8643 (13)172.1 (15)
C2—H2B···O1i0.992.553.4203 (15)147.3
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

MSS thanks University of Mysore for research facilities. HSY thanks R. L. Fine Chem., Bengaluru, for the gift sample of the title compound.

References

First citationAkkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1559–o1560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, J.-Y. & Xu, W. (2006). Acta Cryst. E62, o2651–o2652.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationMoreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Haiduke, R. L. A. & Kennedy, A. R. (2011). Acta Cryst. E67, o659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds