metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1589-m1590

Tris(2,2′-bi-1H-imidazole-κ2N3,N3′)­nickel(II) dinitrate N,N-di­methyl­formamide monosolvate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bKey Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 5 October 2011; accepted 17 October 2011; online 22 October 2011)

The reaction of nickel salts and 4,4′-bipyridine with 2,2′-bi­imidazole (H2biim) yielded the title complex, [Ni(C6H6N4)3](NO3)2·C3H7NO. The NiII atom is chelated by three H2biim ligands in a distorted octa­hedral coordination geometry. The two nitrate anions and one dimethyl­formamide (DMF) mol­ecule are not coordinated. The compound has a three-dimensional structure, formed by extensive hydrogen bonding between [Ni(H2biim)3]2+ cations and nitrate anions, each nitrate anion forming hydrogen bonds with an R12(4) motif. The DMF molecule is disordered over three sets of sites, with occupancy ratios of 0.341 (16):0.350 (17):0.309 (19).

Related literature

For related literature on the 2,2′-biimidazole ligand, see: Ding et al. (2005[Ding, B. B., Weng, Y. Q., Mao, Z. W., Lam, C. K., Chen, X. M. & Ye, B. H. (2005). Inorg. Chem. 44, 8836-8845.]); Gruia et al. (2007[Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825-1840.]); Martinez Lorente et al. (1995[Martinez Lorente, M. A., Dahan, F., Sanakis, Y., Petrouleas, V., Bousseksou, A. & Tuchagues, J. P. (1995). Inorg. Chem. 34, 5346-5357.]). For related structures, see: Dai et al. (2010[Dai, Y.-C., Jin, Q.-H., Cui, L.-N., Xu, L.-J. & Zhang, C.-L. (2010). Acta Cryst. E66, m1124-m1125.]); Jin et al. (2010[Jin, Q. H., Zhou, L. L., Xu, L. J., Zhang, Y. Y., Zhang, C. L. & Lu, X. M. (2010). Polyhedron, 29, 317-327.]); Yang et al. (2005[Yang, L.-N., Li, J. & Zhang, F.-X. (2005). Acta Cryst. E61, m2169-m2171.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H6N4)3](NO3)2·C3H7NO

  • Mr = 658.27

  • Monoclinic, C c

  • a = 12.2150 (11) Å

  • b = 20.864 (2) Å

  • c = 12.1080 (12) Å

  • β = 90.528 (1)°

  • V = 3085.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 298 K

  • 0.36 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]) Tmin = 0.788, Tmax = 0.921

  • 7496 measured reflections

  • 4289 independent reflections

  • 1969 reflections with I > 2σ(I)

  • Rint = 0.131

Refinement
  • R[F2 > 2σ(F2)] = 0.109

  • wR(F2) = 0.276

  • S = 1.06

  • 4289 reflections

  • 437 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2702 Friedel pairs

  • Flack parameter: 0.00 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5i 0.86 2.19 2.93 (2) 144
N2—H2⋯O4i 0.86 2.30 2.98 (2) 136
N4—H4⋯O1ii 0.86 1.91 2.77 (2) 176
N4—H4⋯O3ii 0.86 2.45 3.04 (3) 127
N6—H6⋯O6 0.86 2.05 2.90 (3) 171
N6—H6⋯O4 0.86 2.43 3.09 (2) 133
N8—H8⋯O2iii 0.86 2.09 2.82 (3) 141
N8—H8⋯O3iii 0.86 2.36 2.98 (2) 130
N10—H10⋯O5iv 0.86 2.17 2.98 (3) 156
N10—H10⋯O6iv 0.86 2.45 3.16 (2) 140
N12—H12⋯O2v 0.86 2.29 2.97 (2) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [x+1, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2'-Biimidazole is an excellent candidate for building a supramolecular structure involving directed hydrogen bonding interactions (Dai et al., 2010; Ding et al., 2005; Gruia et al., 2007; Jin et al., 2010; Yang et al., 2005). This versatile molecule can act as a non-deprotonated, mono-deprotonated or bis-deprotonated ligand (Martinez Lorente et al., 1995). Furthermore, the uncoordinated N—H groups in H2biim can participate in various patterns of hydrogen bonds with other acceptors. This may provides useful information to understand the complicated process in biological systems (Gruia et al., 2007; Ding et al., 2005). Herein we report the compound [Ni(H2biim)3(NO3)2].C3H7NO.

The asymmetry unit of the title compound consists of one [Ni(H2biim)3]2+ cation,two nitrate anions and one free N,N-dimethyl formamide molecule(Fig.1). The complex is monoclinic in Cc space group. In the title complex, the metal center allows the formation of a distorted octahedral geometry with six nitrogen atoms of three chelating H2biim ligands. The compound contains three bidentate H2biim ligands which provide six external N—H groups, which form hyfrogen bonds with the O atoms of NO3- anions to generate an extended hydrogen-bonded three-dimensional structure (Fig.2).

In [Ni(H2biim)3(NO3)2].C3H7NO, the Ni—N bond lengths are in the range 2.005 (2)–2.106 (2) Å, which agree with those in the compound [Ni(C6H6N4)3](C8H4O4) (C8H4O4 = phthalate dianions)(Yang et al., 2005). The distorted N—Ni—N bite angles of H2biim ligands [N3—Ni1—N1 = 81.1 (7)°, N5—Ni1—N7 = 81.6 (8)°, N9—Ni1—N11 = 80.2 (8)°] agree with the corresponding angles for [Ni(H2biim)3]2+ complexes (Yang et al., 2005). The hydrogen bonds are formed between the N—H donors of H2biim and the oxygen atoms from NO3- (O4 and O5), with d(N2···O4) = 2.979 Å, d(N2···O5) = 2.930 Å, N2—H2···O4 =136.28° and N2—H2···O5 = 144.29°.

It is interesting that the solvated DMF did not come from the starting materials. This phenomena also appeared in other similar reactions of H2biim with metal salts in the solvent CH3OH and H2O.

Related literature top

For related literature on the 2,2'-biimidazole ligand, see: Ding et al. (2005); Gruia et al. (2007); Martinez Lorente et al. (1995). For related structures, see: Dai et al. (2010); Jin et al. (2010); Yang et al. (2005).

Experimental top

The title complex has been prepared by adding 4,4'-bipyridine (0.2 mmol) and H2biim (0.4 mmol) into a stirred CH3OH (5 mL) and H2O (5 mL) containing Ni(NO3)2.6H2O (0.2 mmol). The mixture was refluxed for 30 min and then allowed to cool to ambient temperature. The filtrate was evaporated slowly at room temperature for several weeks to yield purple crystalline products.

Refinement top

Metal atom centers were located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. The final refinements were performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F2.

The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded.

Data collection: SMART (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. .1. The molecular entities of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The three-dimensional structure of the title complex formed through intermolecular N—H···O hydrogen bonds.
Tris(2,2'-bi-1H-imidazole-κ2N3,N3')nickel(II) dinitrate N,N-dimethylformamide monosolvate top
Crystal data top
[Ni(C6H6N4)3](NO3)2·C3H7NOF(000) = 1360
Mr = 658.27Dx = 1.417 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 12.2150 (11) ÅCell parameters from 1160 reflections
b = 20.864 (2) Åθ = 2.5–17.3°
c = 12.1080 (12) ŵ = 0.69 mm1
β = 90.528 (1)°T = 298 K
V = 3085.6 (5) Å3Block, purple
Z = 40.36 × 0.19 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4289 independent reflections
Radiation source: fine-focus sealed tube1969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.131
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1414
Tmin = 0.788, Tmax = 0.921k = 2324
7496 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.109H-atom parameters constrained
wR(F2) = 0.276 w = 1/[σ2(Fo2) + (0.117P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4289 reflectionsΔρmax = 0.54 e Å3
437 parametersΔρmin = 0.61 e Å3
3 restraintsAbsolute structure: Flack (1983), 1549 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (6)
Crystal data top
[Ni(C6H6N4)3](NO3)2·C3H7NOV = 3085.6 (5) Å3
Mr = 658.27Z = 4
Monoclinic, CcMo Kα radiation
a = 12.2150 (11) ŵ = 0.69 mm1
b = 20.864 (2) ÅT = 298 K
c = 12.1080 (12) Å0.36 × 0.19 × 0.12 mm
β = 90.528 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4289 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1969 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.921Rint = 0.131
7496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.109H-atom parameters constrained
wR(F2) = 0.276Δρmax = 0.54 e Å3
S = 1.06Δρmin = 0.61 e Å3
4289 reflectionsAbsolute structure: Flack (1983), 1549 Friedel pairs
437 parametersAbsolute structure parameter: 0.00 (6)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.6556 (2)0.33319 (8)0.3945 (2)0.0423 (5)
N10.7111 (15)0.2490 (8)0.3170 (16)0.065 (5)
N20.6946 (14)0.1433 (8)0.3119 (16)0.075 (5)
H20.68160.10450.33170.090*
N30.6035 (15)0.2688 (8)0.5051 (14)0.062 (5)
N40.5823 (19)0.1662 (7)0.5541 (19)0.072 (6)
H40.58000.12510.54810.086*
N50.5220 (19)0.3337 (7)0.2926 (18)0.068 (6)
N60.3559 (17)0.3726 (9)0.2553 (18)0.085 (6)
H60.29460.39220.26400.102*
N70.5692 (17)0.4055 (8)0.4700 (15)0.067 (5)
N80.4052 (15)0.4534 (8)0.4806 (16)0.079 (6)
H80.33840.46380.46660.095*
N90.7373 (16)0.3892 (8)0.2801 (16)0.065 (5)
N100.8848 (15)0.4446 (7)0.2328 (16)0.067 (5)
H100.95030.45960.23420.081*
N110.7983 (16)0.3544 (8)0.4856 (16)0.064 (5)
N120.9522 (14)0.4110 (8)0.4904 (17)0.076 (5)
H121.00470.43600.47120.091*
N130.161 (2)0.4854 (9)0.0305 (15)0.072 (5)
N140.154 (2)0.4795 (11)0.2929 (17)0.081 (6)
N150.102 (8)0.110 (4)0.383 (5)0.103 (14)0.341 (16)
N160.103 (6)0.237 (4)0.409 (5)0.103 (14)0.350 (17)
N170.266 (9)0.186 (4)0.395 (7)0.103 (14)0.309 (19)
O10.0657 (16)0.4662 (7)0.0412 (16)0.102 (5)
O20.1804 (15)0.5453 (8)0.0304 (14)0.093 (5)
O30.2365 (15)0.4472 (8)0.0272 (12)0.098 (5)
O40.2461 (15)0.5046 (7)0.2861 (11)0.081 (4)
O50.0835 (15)0.5192 (7)0.2951 (14)0.091 (5)
O60.1376 (15)0.4256 (8)0.2796 (14)0.097 (5)
O70.266 (6)0.077 (3)0.364 (4)0.104 (11)0.341 (16)
O80.002 (5)0.155 (3)0.400 (4)0.104 (11)0.350 (17)
O90.358 (5)0.104 (3)0.352 (5)0.104 (11)0.309 (19)
C10.6771 (18)0.1972 (8)0.3734 (19)0.066 (6)
C20.737 (3)0.1628 (11)0.212 (3)0.089 (9)
H2B0.75170.13680.15210.107*
C30.7530 (18)0.2277 (10)0.219 (2)0.071 (6)
H30.78670.25300.16630.086*
C40.6245 (18)0.2077 (10)0.4790 (18)0.068 (6)
C50.5439 (16)0.2016 (10)0.6411 (19)0.074 (6)
H50.51960.18460.70750.089*
C60.5468 (17)0.2652 (10)0.6160 (18)0.074 (6)
H6A0.51990.29910.65770.089*
C70.446 (2)0.3781 (10)0.321 (2)0.075 (7)
C80.380 (2)0.3300 (10)0.173 (2)0.088 (7)
H8A0.33790.32120.11040.106*
C90.479 (2)0.3029 (11)0.2000 (19)0.083 (7)
H90.51200.26920.16260.099*
C100.469 (2)0.4126 (10)0.422 (2)0.073 (7)
C110.469 (2)0.4745 (10)0.567 (2)0.080 (7)
H110.44840.50410.61990.096*
C120.5682 (19)0.4447 (9)0.5607 (19)0.071 (6)
H12A0.62590.45010.61050.085*
C130.833 (2)0.4131 (9)0.317 (2)0.064 (6)
C140.8125 (19)0.4477 (10)0.147 (2)0.082 (6)
H140.82340.46890.08010.099*
C150.7209 (19)0.4138 (9)0.1757 (19)0.073 (6)
H150.65840.40850.13240.088*
C160.8647 (18)0.3931 (10)0.427 (2)0.062 (6)
C170.9403 (19)0.3817 (11)0.591 (2)0.077 (7)
H170.98860.38490.65040.092*
C180.8452 (18)0.3468 (9)0.5885 (19)0.071 (6)
H180.81740.32240.64610.086*
C190.176 (8)0.065 (3)0.405 (7)0.097 (15)0.341 (16)
H190.16190.02860.44660.117*0.341 (16)
C200.126 (11)0.178 (6)0.403 (10)0.10 (2)0.341 (16)
H20A0.13470.18490.48110.143*0.341 (16)
H20B0.06570.20340.37600.143*0.341 (16)
H20C0.19140.18990.36570.143*0.341 (16)
C210.015 (7)0.094 (4)0.373 (6)0.100 (14)0.341 (16)
H21A0.03090.08040.29880.150*0.341 (16)
H21B0.05730.13150.38970.150*0.341 (16)
H21C0.03250.06040.42360.150*0.341 (16)
C220.001 (7)0.214 (4)0.413 (6)0.097 (15)0.350 (17)
H220.06040.23960.42460.117*0.350 (17)
C230.195 (11)0.192 (7)0.390 (9)0.10 (2)0.350 (17)
H23A0.16750.15340.35500.143*0.350 (17)
H23B0.22860.18090.45910.143*0.350 (17)
H23C0.24770.21160.34270.143*0.350 (17)
C240.135 (6)0.296 (3)0.467 (6)0.100 (14)0.350 (17)
H24A0.08300.32880.45180.150*0.350 (17)
H24B0.20630.30880.44250.150*0.350 (17)
H24C0.13800.28750.54520.150*0.350 (17)
C250.364 (9)0.159 (5)0.392 (7)0.097 (15)0.309 (19)
H250.42860.17810.41630.117*0.309 (19)
C260.166 (12)0.147 (6)0.386 (12)0.10 (2)0.309 (19)
H26A0.17950.11110.33750.143*0.309 (19)
H26B0.10770.17250.35590.143*0.309 (19)
H26C0.14630.13130.45740.143*0.309 (19)
C270.251 (8)0.256 (4)0.397 (6)0.100 (14)0.309 (19)
H27A0.25380.27090.47170.150*0.309 (19)
H27B0.18130.26630.36450.150*0.309 (19)
H27C0.30810.27600.35520.150*0.309 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0549 (11)0.0431 (10)0.0289 (10)0.0010 (13)0.0019 (7)0.0009 (13)
N10.083 (13)0.054 (10)0.059 (13)0.001 (9)0.002 (9)0.003 (10)
N20.113 (15)0.051 (9)0.061 (12)0.011 (8)0.017 (10)0.010 (9)
N30.084 (12)0.052 (10)0.051 (12)0.004 (8)0.005 (9)0.002 (8)
N40.108 (18)0.052 (11)0.055 (14)0.008 (10)0.012 (12)0.015 (10)
N50.084 (13)0.059 (10)0.061 (13)0.010 (10)0.014 (10)0.009 (9)
N60.096 (15)0.088 (14)0.072 (15)0.023 (12)0.014 (13)0.004 (11)
N70.084 (15)0.058 (10)0.058 (13)0.007 (9)0.001 (10)0.002 (9)
N80.094 (14)0.077 (11)0.067 (14)0.039 (10)0.001 (11)0.012 (10)
N90.073 (13)0.056 (10)0.066 (14)0.003 (8)0.001 (10)0.004 (9)
N100.069 (13)0.062 (10)0.071 (14)0.014 (9)0.005 (10)0.006 (10)
N110.076 (14)0.053 (9)0.061 (13)0.004 (9)0.014 (11)0.000 (9)
N120.070 (12)0.075 (12)0.084 (15)0.018 (9)0.011 (10)0.008 (11)
N130.096 (17)0.057 (12)0.064 (13)0.004 (12)0.018 (11)0.023 (9)
N140.101 (18)0.073 (15)0.071 (15)0.011 (15)0.015 (12)0.006 (12)
N150.14 (4)0.11 (3)0.05 (2)0.01 (3)0.01 (3)0.03 (2)
N160.14 (4)0.11 (3)0.05 (2)0.01 (3)0.01 (3)0.03 (2)
N170.14 (4)0.11 (3)0.05 (2)0.01 (3)0.01 (3)0.03 (2)
O10.114 (15)0.084 (11)0.107 (15)0.007 (10)0.011 (11)0.028 (10)
O20.121 (14)0.074 (10)0.085 (12)0.001 (9)0.003 (10)0.013 (9)
O30.131 (14)0.097 (11)0.065 (11)0.043 (11)0.005 (9)0.027 (8)
O40.107 (13)0.083 (10)0.054 (10)0.006 (10)0.009 (9)0.011 (8)
O50.111 (13)0.066 (9)0.094 (14)0.036 (9)0.010 (10)0.012 (8)
O60.124 (14)0.088 (11)0.080 (13)0.002 (11)0.006 (10)0.015 (10)
O70.14 (4)0.11 (3)0.056 (18)0.00 (2)0.01 (2)0.032 (18)
O80.14 (4)0.11 (3)0.056 (18)0.00 (2)0.01 (2)0.032 (18)
O90.14 (4)0.11 (3)0.056 (18)0.00 (2)0.01 (2)0.032 (18)
C10.092 (19)0.050 (10)0.057 (18)0.008 (11)0.004 (13)0.002 (11)
C20.12 (3)0.072 (18)0.07 (2)0.011 (13)0.013 (17)0.006 (14)
C30.100 (17)0.058 (14)0.056 (16)0.010 (11)0.008 (12)0.006 (11)
C40.089 (16)0.061 (14)0.054 (16)0.002 (11)0.002 (12)0.004 (12)
C50.101 (17)0.061 (13)0.060 (15)0.004 (11)0.030 (12)0.008 (11)
C60.101 (17)0.063 (13)0.058 (15)0.001 (11)0.019 (12)0.000 (10)
C70.084 (19)0.069 (14)0.071 (18)0.011 (13)0.008 (14)0.014 (12)
C80.101 (19)0.083 (15)0.081 (17)0.022 (15)0.014 (14)0.007 (15)
C90.096 (18)0.078 (15)0.074 (18)0.017 (13)0.009 (14)0.005 (13)
C100.086 (18)0.067 (13)0.066 (17)0.026 (12)0.008 (13)0.006 (12)
C110.10 (2)0.072 (14)0.066 (17)0.024 (13)0.008 (14)0.010 (12)
C120.098 (17)0.056 (12)0.059 (15)0.027 (12)0.004 (12)0.010 (11)
C130.073 (16)0.053 (11)0.066 (17)0.004 (11)0.004 (13)0.004 (11)
C140.088 (17)0.082 (15)0.077 (18)0.022 (13)0.007 (14)0.004 (13)
C150.090 (16)0.064 (13)0.066 (16)0.015 (11)0.001 (12)0.000 (11)
C160.067 (15)0.056 (13)0.064 (16)0.012 (10)0.002 (12)0.006 (11)
C170.073 (16)0.075 (14)0.083 (19)0.012 (12)0.018 (13)0.011 (14)
C180.078 (16)0.063 (12)0.073 (16)0.001 (11)0.017 (12)0.002 (11)
C190.14 (5)0.10 (3)0.05 (3)0.01 (3)0.01 (3)0.03 (3)
C200.14 (7)0.11 (6)0.04 (3)0.01 (5)0.02 (4)0.04 (4)
C210.14 (4)0.11 (3)0.05 (3)0.01 (3)0.01 (2)0.03 (3)
C220.14 (5)0.10 (3)0.05 (3)0.01 (3)0.01 (3)0.03 (3)
C230.14 (7)0.11 (6)0.04 (3)0.01 (5)0.02 (4)0.04 (4)
C240.14 (4)0.11 (3)0.05 (3)0.01 (3)0.01 (2)0.03 (3)
C250.14 (5)0.10 (3)0.05 (3)0.01 (3)0.01 (3)0.03 (3)
C260.14 (7)0.11 (6)0.04 (3)0.01 (5)0.02 (4)0.04 (4)
C270.14 (4)0.11 (3)0.05 (3)0.01 (3)0.01 (2)0.03 (3)
Geometric parameters (Å, º) top
Ni1—N32.005 (18)N17—C251.32 (11)
Ni1—N52.04 (2)N17—C271.47 (11)
Ni1—N72.060 (19)N17—C261.48 (16)
Ni1—N92.075 (19)O7—C191.24 (10)
Ni1—N112.101 (18)O8—C221.25 (8)
Ni1—N12.106 (18)O9—C251.24 (9)
N1—C11.35 (2)C1—C41.45 (3)
N1—C31.37 (3)C2—C31.37 (3)
N2—C11.37 (2)C2—H2B0.9300
N2—C21.38 (4)C3—H30.9300
N2—H20.8600C5—C61.36 (3)
N3—C41.34 (2)C5—H50.9300
N3—C61.52 (3)C6—H6A0.9300
N4—C41.36 (3)C7—C101.44 (3)
N4—C51.37 (3)C8—C91.37 (3)
N4—H40.8600C8—H8A0.9300
N5—C71.35 (3)C9—H90.9300
N5—C91.39 (3)C11—C121.36 (3)
N6—C71.36 (3)C11—H110.9300
N6—C81.37 (3)C12—H12A0.9300
N6—H60.8600C13—C161.45 (3)
N7—C101.36 (3)C14—C151.37 (3)
N7—C121.37 (3)C14—H140.9300
N8—C101.36 (3)C15—H150.9300
N8—C111.37 (3)C17—C181.37 (3)
N8—H80.8600C17—H170.9300
N9—C131.35 (3)C18—H180.9300
N9—C151.38 (3)C19—H190.9300
N10—C141.36 (3)C20—H20A0.9600
N10—C131.37 (3)C20—H20B0.9600
N10—H100.8600C20—H20C0.9600
N11—C161.35 (3)C21—H21A0.9600
N11—C181.38 (3)C21—H21B0.9600
N12—C161.36 (2)C21—H21C0.9600
N12—C171.37 (3)C22—H220.9300
N12—H120.8600C23—H23A0.9600
N13—O31.22 (2)C23—H23B0.9600
N13—O11.23 (2)C23—H23C0.9600
N13—O21.27 (2)C24—H24A0.9600
N14—O61.15 (2)C24—H24B0.9600
N14—O51.20 (2)C24—H24C0.9600
N14—O41.24 (3)C25—H250.9300
N15—C191.32 (8)C26—H26A0.9600
N15—C211.47 (11)C26—H26B0.9600
N15—C201.48 (12)C26—H26C0.9600
N16—C221.33 (9)C27—H27A0.9600
N16—C241.47 (9)C27—H27B0.9600
N16—C231.48 (13)C27—H27C0.9600
N3—Ni1—N598.6 (8)N2—C2—H2B126.5
N3—Ni1—N791.5 (8)N1—C3—C2109 (3)
N5—Ni1—N781.6 (8)N1—C3—H3125.7
N3—Ni1—N9168.8 (8)C2—C3—H3125.7
N5—Ni1—N988.9 (8)N3—C4—N4112 (2)
N7—Ni1—N997.8 (6)N3—C4—C1116.0 (19)
N3—Ni1—N1193.3 (7)N4—C4—C1132 (2)
N5—Ni1—N11166.6 (7)C6—C5—N4110 (2)
N7—Ni1—N1192.2 (8)C6—C5—H5125.0
N9—Ni1—N1180.2 (8)N4—C5—H5125.0
N3—Ni1—N181.1 (7)C5—C6—N3105.0 (18)
N5—Ni1—N189.7 (7)C5—C6—H6A127.5
N7—Ni1—N1167.6 (8)N3—C6—H6A127.5
N9—Ni1—N190.8 (7)N5—C7—N6110 (2)
N11—Ni1—N198.1 (7)N5—C7—C10115 (2)
C1—N1—C3107.2 (17)N6—C7—C10133 (3)
C1—N1—Ni1110.0 (15)C9—C8—N6107 (2)
C3—N1—Ni1141.4 (15)C9—C8—H8A126.6
C1—N2—C2107.2 (17)N6—C8—H8A126.6
C1—N2—H2126.4C8—C9—N5109 (2)
C2—N2—H2126.4C8—C9—H9125.4
C4—N3—C6104.5 (18)N5—C9—H9125.4
C4—N3—Ni1114.7 (15)N7—C10—N8111 (2)
C6—N3—Ni1140.7 (13)N7—C10—C7118 (2)
C4—N4—C5107.7 (16)N8—C10—C7130 (2)
C4—N4—H4126.1C12—C11—N8108 (2)
C5—N4—H4126.1C12—C11—H11125.8
C7—N5—C9105 (2)N8—C11—H11125.8
C7—N5—Ni1113.4 (16)C11—C12—N7109 (2)
C9—N5—Ni1141.2 (17)C11—C12—H12A125.4
C7—N6—C8107 (2)N7—C12—H12A125.4
C7—N6—H6126.3N9—C13—N10110 (2)
C8—N6—H6126.3N9—C13—C16115 (2)
C10—N7—C12105.4 (19)N10—C13—C16135 (2)
C10—N7—Ni1110.6 (15)N10—C14—C15108 (2)
C12—N7—Ni1143.3 (16)N10—C14—H14126.2
C10—N8—C11106 (2)C15—C14—H14126.2
C10—N8—H8127.1C14—C15—N9108 (2)
C11—N8—H8127.1C14—C15—H15125.8
C13—N9—C15106.4 (19)N9—C15—H15125.8
C13—N9—Ni1114.3 (16)N11—C16—N12110 (2)
C15—N9—Ni1139.1 (16)N11—C16—C13120 (2)
C14—N10—C13107.1 (19)N12—C16—C13130 (2)
C14—N10—H10126.5N12—C17—C18108 (2)
C13—N10—H10126.5N12—C17—H17125.8
C16—N11—C18107.3 (19)C18—C17—H17125.8
C16—N11—Ni1110.4 (15)C17—C18—N11108 (2)
C18—N11—Ni1142.0 (17)C17—C18—H18126.2
C16—N12—C17107 (2)N11—C18—H18126.2
C16—N12—H12126.6O7—C19—N15113 (8)
C17—N12—H12126.6O7—C19—H19123.6
O3—N13—O1120.2 (19)N15—C19—H19123.6
O3—N13—O2120 (2)O8—C22—N16112 (8)
O1—N13—O2120 (2)O8—C22—H22124.0
O6—N14—O5124 (3)N16—C22—H22124.0
O6—N14—O4124 (3)N16—C23—H23A109.5
O5—N14—O4111 (2)N16—C23—H23B109.5
C19—N15—C21122 (8)H23A—C23—H23B109.5
C19—N15—C20121 (9)N16—C23—H23C109.5
C21—N15—C20114 (8)H23A—C23—H23C109.5
C22—N16—C24122 (8)H23B—C23—H23C109.5
C22—N16—C23120 (9)N16—C24—H24A109.5
C24—N16—C23114 (8)N16—C24—H24B109.5
C25—N17—C27123 (10)H24A—C24—H24B109.5
C25—N17—C26120 (10)N16—C24—H24C109.5
C27—N17—C26116 (10)H24A—C24—H24C109.5
N1—C1—N2109.6 (18)H24B—C24—H24C109.5
N1—C1—C4117.7 (18)O9—C25—N17111 (10)
N2—C1—C4132.5 (18)O9—C25—H25124.5
C3—C2—N2107 (3)N17—C25—H25124.5
C3—C2—H2B126.5
N3—Ni1—N1—C14.9 (14)N2—C2—C3—N16 (3)
N5—Ni1—N1—C193.9 (15)C6—N3—C4—N44 (2)
N7—Ni1—N1—C149 (4)Ni1—N3—C4—N4176.8 (15)
N9—Ni1—N1—C1177.2 (14)C6—N3—C4—C1178.6 (17)
N11—Ni1—N1—C197.0 (14)Ni1—N3—C4—C13 (2)
N3—Ni1—N1—C3169 (2)C5—N4—C4—N38 (3)
N5—Ni1—N1—C370 (2)C5—N4—C4—C1179 (2)
N7—Ni1—N1—C3115 (4)N1—C1—C4—N37 (3)
N9—Ni1—N1—C319 (2)N2—C1—C4—N3168 (2)
N11—Ni1—N1—C399 (2)N1—C1—C4—N4180 (2)
N5—Ni1—N3—C487.1 (16)N2—C1—C4—N45 (4)
N7—Ni1—N3—C4168.8 (15)C4—N4—C5—C69 (3)
N9—Ni1—N3—C445 (5)N4—C5—C6—N36 (2)
N11—Ni1—N3—C498.9 (15)C4—N3—C6—C51 (2)
N1—Ni1—N3—C41.2 (15)Ni1—N3—C6—C5177.4 (17)
N5—Ni1—N3—C695 (2)C9—N5—C7—N65 (3)
N7—Ni1—N3—C613 (2)Ni1—N5—C7—N6175.1 (16)
N9—Ni1—N3—C6134 (4)C9—N5—C7—C10175 (2)
N11—Ni1—N3—C679 (2)Ni1—N5—C7—C105 (3)
N1—Ni1—N3—C6177 (2)C8—N6—C7—N59 (3)
N3—Ni1—N5—C790.6 (18)C8—N6—C7—C10176 (3)
N7—Ni1—N5—C70.3 (18)C7—N6—C8—C99 (3)
N9—Ni1—N5—C797.8 (18)N6—C8—C9—N57 (3)
N11—Ni1—N5—C763 (6)C7—N5—C9—C81 (3)
N1—Ni1—N5—C7171.5 (19)Ni1—N5—C9—C8179 (2)
N3—Ni1—N5—C989 (3)C12—N7—C10—N82 (2)
N7—Ni1—N5—C9179 (3)Ni1—N7—C10—N8171.0 (15)
N9—Ni1—N5—C983 (3)C12—N7—C10—C7178 (2)
N11—Ni1—N5—C9118 (4)Ni1—N7—C10—C79 (3)
N1—Ni1—N5—C98 (3)C11—N8—C10—N72 (3)
N3—Ni1—N7—C1093.7 (15)C11—N8—C10—C7177 (2)
N5—Ni1—N7—C104.8 (15)N5—C7—C10—N710 (3)
N9—Ni1—N7—C1092.5 (16)N6—C7—C10—N7177 (2)
N11—Ni1—N7—C10172.9 (16)N5—C7—C10—N8170 (2)
N1—Ni1—N7—C1041 (4)N6—C7—C10—N83 (5)
N3—Ni1—N7—C1274 (3)C10—N8—C11—C122 (3)
N5—Ni1—N7—C12173 (3)N8—C11—C12—N71 (3)
N9—Ni1—N7—C12100 (2)C10—N7—C12—C110 (2)
N11—Ni1—N7—C1219 (3)Ni1—N7—C12—C11168 (2)
N1—Ni1—N7—C12127 (4)C15—N9—C13—N108 (2)
N3—Ni1—N9—C1358 (4)Ni1—N9—C13—N10175.0 (13)
N5—Ni1—N9—C13169.8 (15)C15—N9—C13—C16179.3 (18)
N7—Ni1—N9—C1388.5 (16)Ni1—N9—C13—C163 (2)
N11—Ni1—N9—C132.4 (14)C14—N10—C13—N98 (2)
N1—Ni1—N9—C13100.5 (14)C14—N10—C13—C16178 (2)
N3—Ni1—N9—C15127 (4)C13—N10—C14—C154 (2)
N5—Ni1—N9—C155 (2)N10—C14—C15—N91 (2)
N7—Ni1—N9—C1587 (2)C13—N9—C15—C146 (2)
N11—Ni1—N9—C15177 (2)Ni1—N9—C15—C14179.2 (16)
N1—Ni1—N9—C1584 (2)C18—N11—C16—N121 (2)
N3—Ni1—N11—C16172.5 (15)Ni1—N11—C16—N12174.7 (13)
N5—Ni1—N11—C1634 (6)C18—N11—C16—C13176.3 (19)
N7—Ni1—N11—C1695.9 (15)Ni1—N11—C16—C131 (2)
N9—Ni1—N11—C161.7 (14)C17—N12—C16—N111 (2)
N1—Ni1—N11—C1691.0 (15)C17—N12—C16—C13176 (2)
N3—Ni1—N11—C1815 (2)N9—C13—C16—N111 (3)
N5—Ni1—N11—C18139 (4)N10—C13—C16—N11171 (2)
N7—Ni1—N11—C1877 (2)N9—C13—C16—N12176 (2)
N9—Ni1—N11—C18175 (2)N10—C13—C16—N1215 (4)
N1—Ni1—N11—C1896 (2)C16—N12—C17—C181 (2)
C3—N1—C1—N21 (2)N12—C17—C18—N110 (3)
Ni1—N1—C1—N2168.2 (14)C16—N11—C18—C170 (2)
C3—N1—C1—C4177.3 (19)Ni1—N11—C18—C17172.9 (18)
Ni1—N1—C1—C48 (2)C21—N15—C19—O7150 (7)
C2—N2—C1—N12 (3)C20—N15—C19—O751 (11)
C2—N2—C1—C4173 (3)C24—N16—C22—O8153 (6)
C1—N2—C2—C35 (3)C23—N16—C22—O80 (10)
C1—N1—C3—C25 (3)C27—N17—C25—O9156 (8)
Ni1—N1—C3—C2160 (2)C26—N17—C25—O918 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.862.192.93 (2)144
N2—H2···O4i0.862.302.98 (2)136
N4—H4···O1ii0.861.912.77 (2)176
N4—H4···O3ii0.862.453.04 (3)127
N6—H6···O60.862.052.90 (3)171
N6—H6···O40.862.433.09 (2)133
N8—H8···O2iii0.862.092.82 (3)141
N8—H8···O3iii0.862.362.98 (2)130
N10—H10···O5iv0.862.172.98 (3)156
N10—H10···O6iv0.862.453.16 (2)140
N12—H12···O2v0.862.292.97 (2)136
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2; (iv) x+1, y, z; (v) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H6N4)3](NO3)2·C3H7NO
Mr658.27
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)12.2150 (11), 20.864 (2), 12.1080 (12)
β (°) 90.528 (1)
V3)3085.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.36 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.788, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
7496, 4289, 1969
Rint0.131
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.109, 0.276, 1.06
No. of reflections4289
No. of parameters437
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.61
Absolute structureFlack (1983), 1549 Friedel pairs
Absolute structure parameter0.00 (6)

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.862.192.93 (2)144.3
N2—H2···O4i0.862.302.98 (2)136.3
N4—H4···O1ii0.861.912.77 (2)175.8
N4—H4···O3ii0.862.453.04 (3)126.7
N6—H6···O60.862.052.90 (3)171.2
N6—H6···O40.862.433.09 (2)133.2
N8—H8···O2iii0.862.092.82 (3)141.3
N8—H8···O3iii0.862.362.98 (2)129.9
N10—H10···O5iv0.862.172.98 (3)155.5
N10—H10···O6iv0.862.453.16 (2)140.0
N12—H12···O2v0.862.292.97 (2)135.9
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2; (iv) x+1, y, z; (v) x+1, y+1, z+1/2.
 

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (grant No. 21171119), the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of the Beijing Municipality Program for Excellent Talents of Beijing City (grant No. 2010D005016000002).

References

First citationBruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.  Google Scholar
First citationDai, Y.-C., Jin, Q.-H., Cui, L.-N., Xu, L.-J. & Zhang, C.-L. (2010). Acta Cryst. E66, m1124–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, B. B., Weng, Y. Q., Mao, Z. W., Lam, C. K., Chen, X. M. & Ye, B. H. (2005). Inorg. Chem. 44, 8836–8845.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q. H., Zhou, L. L., Xu, L. J., Zhang, Y. Y., Zhang, C. L. & Lu, X. M. (2010). Polyhedron, 29, 317–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartinez Lorente, M. A., Dahan, F., Sanakis, Y., Petrouleas, V., Bousseksou, A. & Tuchagues, J. P. (1995). Inorg. Chem. 34, 5346–5357.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L.-N., Li, J. & Zhang, F.-X. (2005). Acta Cryst. E61, m2169–m2171.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1589-m1590
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds