organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2945-o2946

Paliperidone: 3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]eth­yl}-9-hy­dr­oxy-2-methyl-1,6,7,8,9,9a-hexa­hydro­pyrido[1,2-a]pyrimidin-4-one

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and cJubilant Life Sciences Ltd, C-26, Sector 59, Noida 201 301, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 21 September 2011; accepted 10 October 2011; online 12 October 2011)

The title compound (also known as 9-hy­droxy­risperidone), C23H27FN4O3, is a heterocyclic compound with manifold pharmacological properties. The hy­droxy group shows disorder over two positions, with site-occupancy factors of 0.856 (2) and 0.144 (2). The piperidine ring adopts a chair conformation, while the annulated ring bearing the hy­droxy group is present in a half-chair conformation. Classical O—H⋯O hydrogen bonds as well as C—H⋯N contacts connect the mol­ecules into undulating sheets lying perpendicular to the crystallographic b axis. The shortest centroid–centroid distance between two centers of gravity is 3.5867 (8) Å and is apparent between the benzoxazole moiety and the six-membered ring bearing the keto substituent.

Related literature

For pharmacological background, see: de Leon et al. (2010[Leon, J. de, Wynn, G. & Sandson, N. B. (2010). Psychosomatics, 51, 80-88.]); Spina & Crupi (2011[Spina, E. & Crupi, R. (2011). J. Cent. Nerv. Syst. Dis. 3, 27-41.]). For related structures, see: Peeters et al. (1993[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1698-1700.]); Ravikumar et al. (2005[Ravikumar, K., Sridhar, B., Manjunatha, S. G. & Thomas, S. (2005). Acta Cryst. E61, o2515-o2517.]); Sun & Zhang (2009[Sun, Y. & Zhang, H.-H. (2009). Acta Cryst. E65, o1647.]); Wang & Pan (2006[Wang, D.-H. & Pan, Y.-J. (2006). Acta Cryst. E62, o768-o770.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27FN4O3

  • Mr = 426.49

  • Monoclinic, P 21 /c

  • a = 6.8537 (1) Å

  • b = 21.5613 (5) Å

  • c = 15.3472 (3) Å

  • β = 113.857 (1)°

  • V = 2074.15 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.52 × 0.37 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 1.000

  • 19267 measured reflections

  • 5138 independent reflections

  • 4130 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.07

  • 5138 reflections

  • 291 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.86 2.6945 (16) 174
O1B—H1B⋯O2i 0.84 2.39 3.153 (8) 152
C4—H4A⋯N4ii 0.99 2.55 3.4830 (19) 157
Symmetry codes: (i) x+1, y, z; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Paliperidone, or 9-hydroxyrisperidone, is one of the most recently available atypical antipsychotics (Spina & Crupi, 2011). It is a benzisoxazole derivative and the major active metabolite of risperidone, a widely used atypical antipsychotic approved for the treatment of schizophrenia and other psychiatric disorders. The pharmacokinetics of paliperidone versus risperidone have been published (de Leon et al., 2010). Related crystal structures, viz. 3-{2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidino]ethyl}-6,7,8,9-tetrahydro-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one [risperidone] (Peeters et al., 1993), risperidone N-oxide hydrogen peroxide methanol solvate (Ravikumar et al., 2005), risperidone chloride 2.5 hydrate (Wang & Pan, 2006), 4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-[2-(2-methyl-4-oxo- 6,7,8,9-tetrahydro-4H-pyrido[1,2-a] pyrimidin-3-yl)ethyl]piperidinium nitrate (Sun & Zhang, 2009) have been reported. In view of the importance of the title compound we herein report its molecular and crystal structure.

The hydroxy group as well as the hydrogen atoms of the methyl group show disorder. While the hydroxy group is disordered over two defined positions with site occupancy factors of of 0.856 (2) and 0.144 (2), rotational disorder is observed for the hydrogen atoms of the methyl group (occupancy ratio 0.68 (2) to 0.32 (2)). The low puckering amplitude of the six-membered ring bearing the keto group preculdes a conformational analysis (Cremer & Pople, 1975). The piperidine ring is present in a 1C4 conformation (N3CC23) and the hydroxy-tetrahydropyrido ring annulated on the pyrimidin-4-one ring adopts a 5H4 conformation (C4HC3) (Fig. 1). Proton NMR spectra of dissolved crystals of the title compound do not indicate the presence of the two stereoisomers as became apparent upon modelling the disorder for the hydroxy group in an axial-equatorial configuration.

In the crystal, classical hydrogen bonds of the O–H···O type as well as C–H···N contacts whose range falls by 0.2 Å below the sum of van-der-Waals radii can be observed. While the classical hydrogen bonds are apparent between the hydroxy group as donor and the keto group as acceptor, the C–H···N contacts appear between one of the methylene groups of the central aza-cyclohexane moiety and the nitrogen atom of the oxazol subunit. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is C11(7) whereas the C–H···N contacts necessitate a C11(14) descriptor on the same level. In total, the molecules are connected to undulated sheets perpendicular to the crystallographic b axis. The shortest intercentroid distance between two centers of gravity was found at 3.5871 (8) Å and is observed between the oxazol subunit and the six-membered heterocycle bearing the keto-group (Fig. 2). Furthermore, a F···Cg contact (dF···Cg: 3.2038 (12) Å) is observed between the fluorine atom and the six-membered ring bearing the keto group.

The packing of the title compound is shown in Figure 3.

Related literature top

For pharmacological background, see: de Leon et al. (2010); Spina & Crupi (2011). For related structures, see: Peeters et al. (1993); Ravikumar et al. (2005); Sun & Zhang (2009); Wang & Pan (2006). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

The title compound was obtained as a gift sample from Jubilant Life Sciences Ltd., Noida, India. Paliperidone was recrystallized from N,N-dimethylformamide by slow evaporation at room temperature.

Refinement top

Four reflections, 1 0 4, -1 3 1, 0 4 4 and 0 1 1 were found to be obstructed by the beam stop and were omitted from the refinement. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å for aromatic carbon atoms and C—H = 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were refined as rotationally disordered over two positions (orientations separated by 60° rotation of the H atoms) and allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density and to account for rotational disorder (HFIX 127 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). Occupancies refined to 0.68 (2) and 0.32 (2). The H atom of the hydroxy group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O). The disorder of the hydroxy group was handled with a disorder model over two positions and site occupancy factors of 0.856 (2) and 0.144 (2). The anisotropic displacement parameters of the two oxygen atoms and of the two carbon atoms of the disordered group were each constrained to be identical. Equivalent bond distances in the disordered sections (C2—O1 and C2b—O1b, C1—C2 and C1—C2b, and C2—C3 and C2b—C3) were restrained to be the same within a standard deviation of 0.02 Å. Some minor residual electron density – that could not be resolved in any chemically meaningful way – remained.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Selected intermolecular contacts, viewed along [0 0 - 1]. For clarity, only the main components of the disordered parts of the molecule are depicted. Blue dashed lines indicate classical hydrogen bonds of the O–H···O type, green dashed lines indicate C–H···N contacts. Symmetry operators: i x - 1, y, z; ii x - 1, -y + 1/2, z - 1/2; iii x + 1, -y + 1/2, z + 1/2; iv x + 1, y, z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level). For clarity, only the main components of the disordered part of the molecule are depicted.
3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-9- hydroxy-2-methyl-1,6,7,8,9,9a-hexahydropyrido[1,2-a]pyrimidin-4-one top
Crystal data top
C23H27FN4O3F(000) = 904
Mr = 426.49Dx = 1.366 Mg m3
Monoclinic, P21/cMelting point = 431–433 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.8537 (1) ÅCell parameters from 8433 reflections
b = 21.5613 (5) Åθ = 2.4–28.3°
c = 15.3472 (3) ŵ = 0.10 mm1
β = 113.857 (1)°T = 200 K
V = 2074.15 (7) Å3Platelet, colourless
Z = 40.52 × 0.37 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
5138 independent reflections
Radiation source: fine-focus sealed tube4130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 95
Tmin = 0.944, Tmax = 1.000k = 2828
19267 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.7502P]
where P = (Fo2 + 2Fc2)/3
5138 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.39 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
C23H27FN4O3V = 2074.15 (7) Å3
Mr = 426.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8537 (1) ŵ = 0.10 mm1
b = 21.5613 (5) ÅT = 200 K
c = 15.3472 (3) Å0.52 × 0.37 × 0.23 mm
β = 113.857 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5138 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4130 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 1.000Rint = 0.015
19267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
5138 reflectionsΔρmin = 0.30 e Å3
291 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.9472 (2)0.23734 (5)0.06766 (8)0.0637 (3)
C10.3065 (2)0.34124 (6)0.10562 (9)0.0263 (3)
C20.4057 (3)0.38777 (13)0.0575 (3)0.0303 (5)0.856 (2)
H20.53630.40760.10610.036*0.856 (2)
O10.4566 (2)0.35414 (7)0.00902 (10)0.0441 (4)0.856 (2)
H10.56760.33320.01970.066*0.856 (2)
C2B0.371 (2)0.3800 (9)0.0602 (19)0.0303 (5)0.144 (2)
H2B0.38360.35310.00960.036*0.144 (2)
O1B0.5863 (13)0.4016 (4)0.1090 (6)0.0441 (4)0.144 (2)
H1B0.67070.37140.12040.066*0.144 (2)
O20.19649 (16)0.28148 (5)0.07163 (8)0.0385 (3)
O30.98743 (17)0.07016 (5)0.27657 (8)0.0355 (2)
N10.09124 (17)0.33395 (5)0.07005 (8)0.0243 (2)
N20.43993 (18)0.30815 (6)0.17546 (9)0.0304 (3)
N30.19463 (19)0.10440 (5)0.16460 (8)0.0297 (3)
N40.8250 (2)0.02973 (6)0.27986 (10)0.0358 (3)
C30.2461 (2)0.43659 (7)0.00112 (11)0.0352 (3)
H3A0.21850.46520.04530.042*
H3B0.30520.46110.03710.042*
C40.0400 (2)0.40636 (7)0.06404 (10)0.0343 (3)
H4A0.05870.43820.10500.041*
H4B0.06870.37600.10580.041*
C50.0608 (2)0.37407 (7)0.00587 (10)0.0310 (3)
H5A0.11950.40560.02380.037*
H5B0.18110.34840.04860.037*
C60.0004 (2)0.28750 (6)0.10498 (10)0.0257 (3)
C70.1457 (2)0.24916 (6)0.17907 (10)0.0256 (3)
C80.3594 (2)0.26122 (6)0.21256 (10)0.0283 (3)
C90.5251 (2)0.22464 (8)0.29070 (12)0.0410 (4)
H9A0.64440.25190.32780.061*0.68 (2)
H9B0.57690.19090.26290.061*0.68 (2)
H9C0.46230.20730.33250.061*0.68 (2)
H9D0.47800.18150.28770.061*0.32 (2)
H9E0.54550.24250.35250.061*0.32 (2)
H9F0.66010.22610.28300.061*0.32 (2)
C100.0456 (2)0.19768 (6)0.21276 (11)0.0321 (3)
H10A0.09030.21260.21350.038*
H10B0.14160.18640.27880.038*
C110.0019 (2)0.13990 (7)0.14944 (12)0.0365 (3)
H11A0.10000.11280.16240.044*
H11B0.06590.15280.08180.044*
C210.1578 (3)0.06087 (7)0.08649 (12)0.0398 (4)
H21A0.10670.08390.02550.048*
H21B0.04530.03100.08330.048*
C220.3598 (3)0.02553 (7)0.09942 (11)0.0370 (3)
H22A0.46950.05500.09830.044*
H22B0.32860.00400.04610.044*
C230.4457 (2)0.01007 (7)0.19418 (11)0.0325 (3)
H230.33530.04110.19200.039*
C240.4728 (3)0.03595 (7)0.27396 (11)0.0370 (3)
H24A0.51800.01340.33520.044*
H24B0.58600.06620.27940.044*
C250.2667 (3)0.07031 (7)0.25493 (11)0.0371 (3)
H25A0.15530.04030.25260.044*
H25B0.28890.09970.30760.044*
C310.6466 (2)0.04472 (6)0.20962 (10)0.0299 (3)
C320.6772 (2)0.09575 (6)0.15598 (10)0.0300 (3)
C330.8930 (2)0.10890 (6)0.20159 (10)0.0296 (3)
C340.9956 (3)0.15634 (7)0.17502 (11)0.0346 (3)
H341.14400.16460.20680.041*
C350.8610 (3)0.19004 (7)0.09821 (12)0.0415 (4)
C360.6432 (3)0.17991 (8)0.04974 (12)0.0480 (4)
H360.56040.20550.00260.058*
C370.5487 (3)0.13217 (7)0.07852 (12)0.0414 (4)
H370.40010.12420.04650.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0769 (8)0.0536 (7)0.0580 (7)0.0184 (6)0.0246 (6)0.0218 (5)
C10.0285 (7)0.0250 (6)0.0276 (6)0.0007 (5)0.0135 (5)0.0010 (5)
C20.0238 (10)0.0304 (11)0.0399 (8)0.0053 (8)0.0161 (9)0.0069 (7)
O10.0381 (7)0.0552 (8)0.0450 (8)0.0164 (6)0.0231 (6)0.0159 (6)
C2B0.0238 (10)0.0304 (11)0.0399 (8)0.0053 (8)0.0161 (9)0.0069 (7)
O1B0.0381 (7)0.0552 (8)0.0450 (8)0.0164 (6)0.0231 (6)0.0159 (6)
O20.0243 (5)0.0380 (6)0.0518 (7)0.0046 (4)0.0138 (5)0.0109 (5)
O30.0336 (5)0.0306 (5)0.0390 (6)0.0009 (4)0.0111 (4)0.0088 (4)
N10.0258 (5)0.0229 (5)0.0244 (5)0.0036 (4)0.0105 (4)0.0017 (4)
N20.0257 (6)0.0310 (6)0.0342 (6)0.0010 (5)0.0118 (5)0.0038 (5)
N30.0293 (6)0.0254 (5)0.0320 (6)0.0026 (4)0.0099 (5)0.0025 (5)
N40.0368 (7)0.0295 (6)0.0396 (7)0.0040 (5)0.0137 (6)0.0069 (5)
C30.0407 (8)0.0291 (7)0.0355 (8)0.0008 (6)0.0153 (6)0.0053 (6)
C40.0366 (8)0.0336 (7)0.0306 (7)0.0041 (6)0.0114 (6)0.0057 (6)
C50.0289 (7)0.0325 (7)0.0286 (7)0.0055 (5)0.0085 (5)0.0061 (5)
C60.0260 (6)0.0237 (6)0.0305 (6)0.0032 (5)0.0146 (5)0.0000 (5)
C70.0275 (6)0.0229 (6)0.0297 (6)0.0043 (5)0.0151 (5)0.0021 (5)
C80.0280 (7)0.0271 (6)0.0300 (7)0.0037 (5)0.0118 (5)0.0020 (5)
C90.0302 (8)0.0421 (9)0.0441 (9)0.0054 (6)0.0082 (7)0.0151 (7)
C100.0314 (7)0.0280 (7)0.0419 (8)0.0047 (5)0.0201 (6)0.0080 (6)
C110.0264 (7)0.0284 (7)0.0512 (9)0.0004 (5)0.0120 (6)0.0038 (6)
C210.0369 (8)0.0350 (8)0.0362 (8)0.0028 (6)0.0031 (6)0.0050 (6)
C220.0392 (8)0.0373 (8)0.0293 (7)0.0052 (6)0.0086 (6)0.0032 (6)
C230.0336 (7)0.0256 (6)0.0385 (8)0.0021 (5)0.0148 (6)0.0002 (5)
C240.0460 (9)0.0348 (8)0.0297 (7)0.0147 (6)0.0149 (6)0.0054 (6)
C250.0453 (9)0.0310 (7)0.0407 (8)0.0096 (6)0.0233 (7)0.0089 (6)
C310.0349 (7)0.0238 (6)0.0316 (7)0.0001 (5)0.0141 (6)0.0001 (5)
C320.0352 (7)0.0249 (6)0.0294 (7)0.0002 (5)0.0125 (6)0.0011 (5)
C330.0367 (7)0.0237 (6)0.0292 (7)0.0020 (5)0.0144 (6)0.0012 (5)
C340.0396 (8)0.0301 (7)0.0367 (8)0.0040 (6)0.0182 (6)0.0000 (6)
C350.0566 (10)0.0321 (8)0.0377 (8)0.0082 (7)0.0211 (7)0.0054 (6)
C360.0575 (11)0.0385 (9)0.0383 (9)0.0000 (8)0.0093 (8)0.0139 (7)
C370.0396 (8)0.0360 (8)0.0385 (8)0.0001 (6)0.0055 (7)0.0071 (6)
Geometric parameters (Å, º) top
F1—C351.3537 (18)C9—H9A0.9800
C1—C2B1.277 (18)C9—H9B0.9800
C1—N21.3042 (18)C9—H9C0.9800
C1—N11.3596 (17)C9—H9D0.9800
C1—C21.556 (2)C9—H9E0.9800
C2—O11.406 (4)C9—H9F0.9800
C2—C31.512 (3)C10—C111.533 (2)
C2—H21.0000C10—H10A0.9900
O1—H10.8400C10—H10B0.9900
C2B—O1B1.434 (16)C11—H11A0.9900
C2B—C31.555 (15)C11—H11B0.9900
C2B—H2B1.0000C21—C221.521 (2)
O1B—H1B0.8400C21—H21A0.9900
O2—C61.2363 (16)C21—H21B0.9900
O3—C331.3559 (16)C22—C231.536 (2)
O3—N41.4309 (16)C22—H22A0.9900
N1—C61.3990 (17)C22—H22B0.9900
N1—C51.4865 (16)C23—C311.499 (2)
N2—C81.3811 (18)C23—C241.528 (2)
N3—C111.4615 (18)C23—H231.0000
N3—C211.4619 (19)C24—C251.515 (2)
N3—C251.4671 (18)C24—H24A0.9900
N4—C311.3019 (19)C24—H24B0.9900
C3—C41.509 (2)C25—H25A0.9900
C3—H3A0.9900C25—H25B0.9900
C3—H3B0.9900C31—C321.4392 (19)
C4—C51.503 (2)C32—C331.386 (2)
C4—H4A0.9900C32—C371.399 (2)
C4—H4B0.9900C33—C341.392 (2)
C5—H5A0.9900C34—C351.374 (2)
C5—H5B0.9900C34—H340.9500
C6—C71.4344 (18)C35—C361.390 (3)
C7—C81.3667 (19)C36—C371.381 (2)
C7—C101.5023 (19)C36—H360.9500
C8—C91.4994 (19)C37—H370.9500
C2B—C1—N2121.6 (7)H9D—C9—H9E109.5
C2B—C1—N1114.6 (7)C8—C9—H9F109.5
N2—C1—N1123.57 (12)H9A—C9—H9F56.3
N2—C1—C2116.57 (14)H9B—C9—H9F56.3
N1—C1—C2119.70 (13)H9C—C9—H9F141.1
O1—C2—C3106.2 (2)H9D—C9—H9F109.5
O1—C2—C1107.2 (2)H9E—C9—H9F109.5
C3—C2—C1111.50 (15)C7—C10—C11112.43 (12)
O1—C2—H2110.6C7—C10—H10A109.1
C3—C2—H2110.6C11—C10—H10A109.1
C1—C2—H2110.6C7—C10—H10B109.1
C1—C2B—O1B116.0 (15)C11—C10—H10B109.1
C1—C2B—C3126.9 (14)H10A—C10—H10B107.9
O1B—C2B—C3104.9 (11)N3—C11—C10113.10 (12)
C1—C2B—H2B101.6N3—C11—H11A109.0
O1B—C2B—H2B101.6C10—C11—H11A109.0
C3—C2B—H2B101.6N3—C11—H11B109.0
C2B—O1B—H1B109.5C10—C11—H11B109.0
C33—O3—N4107.11 (10)H11A—C11—H11B107.8
C1—N1—C6120.76 (11)N3—C21—C22111.62 (12)
C1—N1—C5123.39 (11)N3—C21—H21A109.3
C6—N1—C5115.84 (11)C22—C21—H21A109.3
C1—N2—C8118.38 (12)N3—C21—H21B109.3
C11—N3—C21111.13 (12)C22—C21—H21B109.3
C11—N3—C25110.49 (12)H21A—C21—H21B108.0
C21—N3—C25109.50 (12)C21—C22—C23110.76 (13)
C31—N4—O3107.63 (11)C21—C22—H22A109.5
C4—C3—C2110.17 (15)C23—C22—H22A109.5
C4—C3—C2B101.3 (7)C21—C22—H22B109.5
C4—C3—H3A109.6C23—C22—H22B109.5
C2—C3—H3A109.6H22A—C22—H22B108.1
C2B—C3—H3A107.6C31—C23—C24113.02 (12)
C4—C3—H3B109.6C31—C23—C22112.03 (12)
C2—C3—H3B109.6C24—C23—C22108.06 (12)
C2B—C3—H3B120.2C31—C23—H23107.8
H3A—C3—H3B108.1C24—C23—H23107.8
C5—C4—C3109.78 (12)C22—C23—H23107.8
C5—C4—H4A109.7C25—C24—C23111.19 (13)
C3—C4—H4A109.7C25—C24—H24A109.4
C5—C4—H4B109.7C23—C24—H24A109.4
C3—C4—H4B109.7C25—C24—H24B109.4
H4A—C4—H4B108.2C23—C24—H24B109.4
N1—C5—C4112.96 (12)H24A—C24—H24B108.0
N1—C5—H5A109.0N3—C25—C24111.00 (12)
C4—C5—H5A109.0N3—C25—H25A109.4
N1—C5—H5B109.0C24—C25—H25A109.4
C4—C5—H5B109.0N3—C25—H25B109.4
H5A—C5—H5B107.8C24—C25—H25B109.4
O2—C6—N1119.85 (12)H25A—C25—H25B108.0
O2—C6—C7124.13 (12)N4—C31—C32111.00 (13)
N1—C6—C7116.02 (11)N4—C31—C23120.13 (13)
C8—C7—C6119.12 (12)C32—C31—C23128.87 (13)
C8—C7—C10125.46 (12)C33—C32—C37119.37 (13)
C6—C7—C10115.42 (12)C33—C32—C31103.89 (12)
C7—C8—N2122.05 (12)C37—C32—C31136.70 (14)
C7—C8—C9123.40 (13)O3—C33—C32110.37 (12)
N2—C8—C9114.54 (12)O3—C33—C34125.22 (13)
C8—C9—H9A109.5C32—C33—C34124.39 (13)
C8—C9—H9B109.5C35—C34—C33113.34 (14)
H9A—C9—H9B109.5C35—C34—H34123.3
C8—C9—H9C109.5C33—C34—H34123.3
H9A—C9—H9C109.5F1—C35—C34117.38 (15)
H9B—C9—H9C109.5F1—C35—C36117.24 (15)
C8—C9—H9D109.5C34—C35—C36125.38 (14)
H9A—C9—H9D141.1C37—C36—C35119.17 (15)
H9B—C9—H9D56.3C37—C36—H36120.4
H9C—C9—H9D56.3C35—C36—H36120.4
C8—C9—H9E109.5C36—C37—C32118.34 (15)
H9A—C9—H9E56.3C36—C37—H37120.8
H9B—C9—H9E141.1C32—C37—H37120.8
H9C—C9—H9E56.3
C2B—C1—C2—O186 (16)C6—C7—C8—C9179.06 (14)
N2—C1—C2—O182.2 (2)C10—C7—C8—C91.5 (2)
N1—C1—C2—O193.42 (18)C1—N2—C8—C70.7 (2)
C2B—C1—C2—C330 (16)C1—N2—C8—C9178.41 (13)
N2—C1—C2—C3161.95 (19)C8—C7—C10—C1195.84 (17)
N1—C1—C2—C322.4 (3)C6—C7—C10—C1183.63 (15)
N2—C1—C2B—O1B22 (3)C21—N3—C11—C10164.00 (13)
N1—C1—C2B—O1B163.6 (13)C25—N3—C11—C1074.24 (15)
C2—C1—C2B—O1B9 (14)C7—C10—C11—N375.21 (16)
N2—C1—C2B—C3158.1 (15)C11—N3—C21—C22177.66 (13)
N1—C1—C2B—C327 (3)C25—N3—C21—C2260.00 (17)
C2—C1—C2B—C3146 (18)N3—C21—C22—C2358.12 (17)
C2B—C1—N1—C6171.9 (15)C21—C22—C23—C31179.23 (12)
N2—C1—N1—C62.7 (2)C21—C22—C23—C2454.09 (17)
C2—C1—N1—C6172.62 (19)C31—C23—C24—C25179.45 (12)
C2B—C1—N1—C59.0 (15)C22—C23—C24—C2554.90 (17)
N2—C1—N1—C5176.46 (13)C11—N3—C25—C24177.07 (12)
C2—C1—N1—C58.2 (2)C21—N3—C25—C2460.21 (17)
C2B—C1—N2—C8171.1 (16)C23—C24—C25—N359.11 (17)
N1—C1—N2—C83.1 (2)O3—N4—C31—C320.47 (16)
C2—C1—N2—C8172.37 (19)O3—N4—C31—C23179.79 (12)
C33—O3—N4—C310.26 (15)C24—C23—C31—N47.0 (2)
O1—C2—C3—C466.51 (17)C22—C23—C31—N4115.40 (16)
C1—C2—C3—C450.0 (3)C24—C23—C31—C32172.73 (14)
O1—C2—C3—C2B106 (7)C22—C23—C31—C3264.91 (19)
C1—C2—C3—C2B11 (6)N4—C31—C32—C330.51 (16)
C1—C2B—C3—C453 (3)C23—C31—C32—C33179.79 (14)
O1B—C2B—C3—C4167.3 (14)N4—C31—C32—C37176.94 (18)
C1—C2B—C3—C2165 (9)C23—C31—C32—C372.8 (3)
O1B—C2B—C3—C225 (5)N4—O3—C33—C320.07 (15)
C2—C3—C4—C564.6 (2)N4—O3—C33—C34178.55 (13)
C2B—C3—C4—C557.3 (11)C37—C32—C33—O3177.66 (13)
C1—N1—C5—C421.57 (18)C31—C32—C33—O30.33 (16)
C6—N1—C5—C4159.23 (12)C37—C32—C33—C340.8 (2)
C3—C4—C5—N148.73 (16)C31—C32—C33—C34178.83 (13)
C1—N1—C6—O2179.85 (12)O3—C33—C34—C35177.88 (14)
C5—N1—C6—O20.92 (18)C32—C33—C34—C350.4 (2)
C1—N1—C6—C70.04 (17)C33—C34—C35—F1179.75 (14)
C5—N1—C6—C7179.26 (11)C33—C34—C35—C360.3 (2)
O2—C6—C7—C8178.03 (13)F1—C35—C36—C37179.98 (16)
N1—C6—C7—C82.17 (18)C34—C35—C36—C370.5 (3)
O2—C6—C7—C102.5 (2)C35—C36—C37—C320.1 (3)
N1—C6—C7—C10177.33 (11)C33—C32—C37—C360.6 (2)
C6—C7—C8—N21.9 (2)C31—C32—C37—C36177.72 (17)
C10—C7—C8—N2177.58 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.862.6945 (16)174
O1B—H1B···O2i0.842.393.153 (8)152
C4—H4A···N4ii0.992.553.4830 (19)157
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H27FN4O3
Mr426.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)6.8537 (1), 21.5613 (5), 15.3472 (3)
β (°) 113.857 (1)
V3)2074.15 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.52 × 0.37 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.944, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19267, 5138, 4130
Rint0.015
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.07
No. of reflections5138
No. of parameters291
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.862.6945 (16)173.7
O1B—H1B···O2i0.842.393.153 (8)151.7
C4—H4A···N4ii0.992.553.4830 (19)156.5
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1/2, z1/2.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities. HSY thanks Jubilant Life Sciences Ltd, Noida, for the gift sample of the title compound.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLeon, J. de, Wynn, G. & Sandson, N. B. (2010). Psychosomatics, 51, 80–88.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1698–1700.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRavikumar, K., Sridhar, B., Manjunatha, S. G. & Thomas, S. (2005). Acta Cryst. E61, o2515–o2517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpina, E. & Crupi, R. (2011). J. Cent. Nerv. Syst. Dis. 3, 27–41.  CrossRef CAS PubMed Google Scholar
First citationSun, Y. & Zhang, H.-H. (2009). Acta Cryst. E65, o1647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, D.-H. & Pan, Y.-J. (2006). Acta Cryst. E62, o768–o770.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2945-o2946
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds