organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2948-o2949

Thailandepsin A

aDepartment of Biological Sciences, Department of Chemistry and Biochemistry, Univeristy of Wisconsin–Milwaukee, PO Box 413, Milwaukee, WI 53201, USA
*Correspondence e-mail: wang35@uwm.edu, ycheng@uwm.edu

(Received 2 October 2011; accepted 7 October 2011; online 12 October 2011)

Thailandepsin A [systematic name: (E)-(1S,5S,6R,9S,20R)-6-[(2S)-butan-2-yl]-5-hy­droxy-20-[2-(meth­yl­sulfan­yl)eth­yl]-2-oxa-11,12-dithia-7,19,22-triaza­bicyclo­[7.7.6]docosa-15-ene-3,8,18,21-tetra­one], C23H37N3O6S3, is a newly reported [Wang et al. (2011). J. Nat. Prod. doi:10.1021/np200324x] bicyclic depsipeptide that has potent histone deacetyl­ase inhibitory activity and broad-spectrum anti­proliferative activity. The absolute configuration of thailandepsin A has been determined from the anomalous dispersion and the stereochemistry of all chiral C atoms. Intra­molecular N—H⋯O and N—H⋯S hydrogen bonds occur. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For general background to histone deacetyl­ase (HDAC) inhibitors as a new class of anti­cancer agents, see: FDA (2010[FDA (2010). J. Natl Cancer Inst. 102, 219. ]); Furumai et al. (2002[Furumai, R., Matsuyama, A., Kobashi, N., Lee, K. H., Nishiyama, M., Nakajima, H., Tanaka, A., Komatsu, Y., Nishino, N., Yoshida, M. & Horinouchi, S. (2002). Cancer Res. 62, 4916-4921.]); Grant et al. (2010[Grant, C., Rahman, F., Piekarz, R., Peer, C., Frye, R., Robey, R. W., Gardner, E. R., Figg, W. D. & Bates, S. E. (2010). Expert Rev. Anticancer Ther. 10, 997-1008.]); Khan & La Thangue (2008[Khan, O. & La Thangue, N. B. (2008). Nat. Clin. Pract. Oncol. 5, 714-726.]); Mann et al. (2007[Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R. & Pazdur, R. (2007). The Oncologist, 12, 1247-1252.]); Ueda et al. (1994[Ueda, H., Nakajima, H., Hori, Y., Fujita, T., Nishimura, M., Goto, T. & Okuhara, M. (1994). J. Antibiot. (Tokyo), 47, 301-310.]). For related structures, see: Shigematsu et al. (1994[Shigematsu, N., Ueda, H., Takase, S., Tanaka, H., Yamamoto, K. & Tada, T. (1994). J. Antibiot. (Tokyo), 47, 311-314.]). For geometric data, see: Chou & Blinn (1997[Chou, K. C. & Blinn, J. R. (1997). J. Protein Chem. 16, 575-595.]). For the biological activity of the title compound, see: Wang et al. (2011[Wang, C., Henkes, L. M., Doughty, L. B., He, M., Wang, D., Meyer-Almes, F. J. & Cheng, Y. Q. (2011). J. Nat. Prod. doi:10.1021/np200324x.]).

[Scheme 1]

Experimental

Crystal data
  • C23H37N3O6S3

  • Mr = 547.74

  • Orthorhombic, P 21 21 21

  • a = 12.7747 (3) Å

  • b = 13.2926 (3) Å

  • c = 15.4218 (4) Å

  • V = 2618.76 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.96 mm−1

  • T = 100 K

  • 0.45 × 0.42 × 0.38 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.352, Tmax = 0.403

  • 34598 measured reflections

  • 4990 independent reflections

  • 4981 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.05

  • 4990 reflections

  • 326 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2102 Friedel pairs

  • Flack parameter: 0.000 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.84 (1) 1.90 (1) 2.7394 (15) 176 (2)
N1—H1⋯O6 0.88 (1) 2.06 (1) 2.9203 (17) 166 (2)
N2—H2⋯S2 0.88 (1) 2.83 (2) 3.2491 (13) 111 (2)
N3—H3⋯O4ii 0.88 (1) 2.33 (1) 3.1534 (16) 155 (2)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

With the FDA approval of both SAHA (Vorinostat) and FK228 (Romidepsin) for the treatment of cutaneous T-cell lymphoma (FDA, 2010; Mann et al., 2007), histone deacetylase (HDAC) inhibitors have been in the spotlight in recent years as a new class of anticancer agents (Grant et al., 2010; Khan & La Thangue, 2008). FK228, a natural product produced by Chromobacterium violaceum No. 968 (Ueda et al., 1994), represents a family of natural products that contain a signature disulfide bond that is known or presumed to mediate a novel mode of anticancer action in which a reduced thiol group "warhead" chelates a Zn2+ in the catalytic center of Class I and Class II HDACs thereby inhibiting the enzyme activities (Furumai et al., 2002; Wang et al., 2011). The crystal structure of FK228 was reported in 1994 (Shigematsu et al., 1994).

Thailandepsin A is a natural analogue of FK228 newly discovered from Burkholderia thailandensis E264 by a genomics-guided approach; it has potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities (Wang et al., 2011). The chemical structure of thailandepsin A was established by a combination of spectroscopic analyses, chemical derivatization and degradation. Here we report the crystal structure of thailandepsin A.

Thailandepsin A is a bicyclic depsipeptide and consists of four building blocks, D-cysteine (D-Cys), D-methionine (D-Met), 4-amino-3-hydroxy-5-methylheptanoic acid (Ahhp, derived from an isoleucine and an acetate unit) and 3-hydroxy-7-mercapto-4-heptenoic acid (Acyl, derived from a cysteine and two acetate units). The primary structure of thailandepsin A is D-Met-D-Cys-Ahhp-Acyl. X-ray crystallographic analysis indicates that the skeleton of thailandepsin A consists of a [7,7,6] 22-membered ring adopting an uncommon cage-shape that includes a 15-membered macrocyclic lactone and a 15-membered ring and a signature disulfide bond. The bridge ring is almost perpendicular to the main ring and the dihedral angle of these two least-squares planes is 77.7 (1)°. The side chains of methionine and isoleucine have less strain and can freely rotate on the single bonds. In order to obtain minimum energy positions, the alkyl groups arrange so on the molecular skeleton that they point away from each other.

The absolute configurations at C2, C8, C11 and C13 are S and the absolute configurations at C12 and 18 are R as established based on the results of anomalous dispersion. The geometric isomerism of the double bond in the Acyl component is determined as E. The backbone moiety from the carboxyl group of Acyl through methionine and cysteine to the amine group of Ahhp, (Acyl)-CO1—Met2—Cys3—NH4-(Ahhp), forms a peculiar secondary structure, a type I' β-turn, and the value of Ψ and Φ are 57.26 (17)°, 29.76 (18)°, 95.49 (16)° and -18.11 (19)° (Chou & Blinn, 1997). There are two intramolecular and two intermolecular hydrogen bonds present (Table 1, Fig. 1 and 2).

Related literature top

For general background to histone deacetylase (HDAC) inhibitors as a new class of anticancer agents, see: FDA (2010); Furumai et al. (2002); Grant et al. (2010); Khan & La Thangue (2008); Mann et al. (2007); Ueda et al. (1994). For related structures, see: Shigematsu et al. (1994). For geometric data, see: Chou & Blinn (1997). For the biological activity of the title compound, see: Wang et al. (2011).

Experimental top

Thailandepsin A was purified from the fermentation broth of B. thailandensis E264 as described earlier (Wang et al., 2011). Pure thailandepsin A was dissolved in methanol and block-like crystals were obtained after evaporation of the solvent at room temperature.

Refinement top

All hydrogen atoms attached to the carbon atoms were placed in geometrically idealized positions (C—H = 0.98, 0.99 and 1.00 Å on the primary, secondary and tertiary aliphatic C atoms respectively, 0.95 Å on aromatic C). The H atoms were refined as riding, with isotropic displacement coefficients of Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. The hydrogen atoms attached to N and O were located in difference maps and refined independently with restraints and constraints. The H atoms on N atoms were restrained to have N—H distances of 0.880 (1) Å and their Uiso values were constrained as equal to 1.2 times the Ueq of their carrier atoms. The H atom on O was restrained to have an O—H distance of 0.840 (1) Å and the Uiso value was assigned as equal to 1.5 times the Ueq of the oxygen atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of thailandepsin A with displacement ellipsoids shown at the 50% probability level. For clarity, all H atoms attached to carbon atoms are omitted. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of thailandepsin A, viewed along the c axis. For clarity, all H atoms attached to carbon atoms are omitted. The dashed lines represent hydrogen bonds.
(E)-(1S,5S,6R,9S,20R)-6-[(2S)- butan-2-yl]-5-hydroxy-20-[2-(methylsulfanyl)ethyl]-2-oxa-11,12-dithia- 7,19,22-triazabicyclo[7.7.6]docosa-15-ene-3,8,18,21-tetraone top
Crystal data top
C23H37N3O6S3F(000) = 1168
Mr = 547.74Dx = 1.389 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 9793 reflections
a = 12.7747 (3) Åθ = 3.5–71.2°
b = 13.2926 (3) ŵ = 2.96 mm1
c = 15.4218 (4) ÅT = 100 K
V = 2618.76 (11) Å3Block, colourless
Z = 40.45 × 0.42 × 0.38 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4990 independent reflections
Radiation source: fine-focus sealed tube4981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
0.50° ω and 0.5 ° ϕ scansθmax = 71.7°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1514
Tmin = 0.352, Tmax = 0.403k = 1516
34598 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.051P)2 + 0.7593P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4990 reflectionsΔρmax = 0.35 e Å3
326 parametersΔρmin = 0.36 e Å3
4 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (9)
Crystal data top
C23H37N3O6S3V = 2618.76 (11) Å3
Mr = 547.74Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 12.7747 (3) ŵ = 2.96 mm1
b = 13.2926 (3) ÅT = 100 K
c = 15.4218 (4) Å0.45 × 0.42 × 0.38 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4981 reflections with I > 2σ(I)
Tmin = 0.352, Tmax = 0.403Rint = 0.025
34598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Δρmax = 0.35 e Å3
S = 1.05Δρmin = 0.36 e Å3
4990 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
326 parametersAbsolute structure parameter: 0.000 (9)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.10290 (3)0.14637 (3)0.38774 (2)0.02184 (10)
S20.97356 (3)0.08216 (3)0.33328 (2)0.01709 (9)
S30.91337 (3)0.40012 (3)0.40152 (3)0.02362 (10)
O11.08885 (10)0.18335 (9)0.67591 (8)0.0223 (3)
O20.77376 (8)0.09984 (8)0.61157 (7)0.0141 (2)
O30.69383 (9)0.08629 (9)0.74184 (7)0.0190 (2)
O40.85790 (9)0.16775 (8)0.88174 (7)0.0140 (2)
H40.8699 (17)0.2254 (7)0.9016 (13)0.021*
O51.11125 (9)0.14154 (8)0.55597 (7)0.0179 (2)
O60.86120 (9)0.12479 (8)0.64747 (7)0.0158 (2)
N10.99720 (10)0.04020 (10)0.70173 (8)0.0128 (3)
H10.9652 (14)0.0126 (9)0.6798 (12)0.015*
N21.00458 (10)0.00984 (9)0.52676 (8)0.0121 (2)
H20.9444 (8)0.0082 (14)0.5038 (12)0.014*
N30.83857 (10)0.13784 (10)0.50282 (8)0.0138 (3)
H30.7955 (12)0.1335 (15)0.4584 (8)0.017*
C11.05386 (12)0.10227 (12)0.65205 (10)0.0143 (3)
C21.07489 (12)0.06840 (11)0.55727 (9)0.0131 (3)
H2A1.14820.04230.55370.016*
C31.06714 (13)0.16258 (12)0.50086 (10)0.0174 (3)
H3A0.99430.18770.50340.021*
H3B1.11280.21510.52620.021*
C40.88346 (14)0.18723 (13)0.31638 (11)0.0202 (3)
H4A0.88500.20820.25480.024*
H4B0.90520.24530.35240.024*
C50.77251 (12)0.15466 (13)0.34132 (11)0.0190 (3)
H5A0.75420.09270.30910.023*
H5B0.72250.20790.32400.023*
C60.76184 (12)0.13526 (13)0.43705 (10)0.0173 (3)
H60.79800.17930.47520.021*
C70.70632 (12)0.06202 (12)0.47258 (10)0.0162 (3)
H70.67200.01700.43410.019*
C80.69224 (12)0.04303 (12)0.56827 (10)0.0154 (3)
H80.62270.07040.58650.018*
C90.76158 (12)0.12126 (11)0.69723 (10)0.0136 (3)
C100.84280 (12)0.19799 (11)0.72498 (10)0.0138 (3)
H10A0.88770.21330.67430.017*
H10B0.80590.26080.74090.017*
C110.91409 (12)0.16801 (11)0.80094 (9)0.0127 (3)
H110.97240.21800.80510.015*
C120.96190 (12)0.06200 (11)0.79096 (9)0.0125 (3)
H120.90290.01430.80190.015*
C131.04416 (12)0.03790 (11)0.86101 (10)0.0146 (3)
H131.01240.05590.91820.017*
C141.06664 (13)0.07539 (12)0.86315 (10)0.0184 (3)
H14A1.11380.09270.81440.022*
H14B1.00020.11250.85480.022*
C151.11702 (14)0.10927 (13)0.94810 (11)0.0222 (3)
H15A1.06770.09880.99600.033*
H15B1.13500.18080.94430.033*
H15C1.18070.07000.95850.033*
C161.14602 (12)0.09806 (13)0.85283 (10)0.0184 (3)
H16A1.18480.07520.80170.028*
H16B1.12960.16970.84670.028*
H16C1.18880.08780.90480.028*
C171.02739 (12)0.10824 (11)0.52881 (9)0.0134 (3)
C180.94399 (12)0.17890 (11)0.49209 (10)0.0138 (3)
H180.94800.24420.52410.017*
C190.80478 (12)0.11430 (11)0.58346 (10)0.0141 (3)
C200.69604 (12)0.06994 (12)0.59060 (10)0.0160 (3)
H20A0.64860.10680.55100.019*
H20B0.67010.07970.65050.019*
C210.96752 (13)0.19916 (11)0.39575 (10)0.0158 (3)
H21A1.04090.22240.39040.019*
H21B0.96130.13510.36340.019*
C220.89580 (13)0.27705 (12)0.35353 (10)0.0168 (3)
H22A0.82200.25580.36050.020*
H22B0.91120.28070.29070.020*
C230.82077 (15)0.46899 (14)0.33643 (12)0.0250 (4)
H23A0.81900.53930.35540.037*
H23B0.75100.43920.34310.037*
H23C0.84190.46590.27540.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01829 (19)0.0340 (2)0.01321 (18)0.00771 (17)0.00022 (14)0.00696 (15)
S20.01714 (18)0.02111 (19)0.01302 (16)0.00009 (15)0.00063 (14)0.00078 (14)
S30.0279 (2)0.0207 (2)0.0222 (2)0.00109 (16)0.00648 (16)0.00032 (16)
O10.0286 (6)0.0210 (6)0.0172 (6)0.0118 (5)0.0048 (5)0.0045 (5)
O20.0140 (5)0.0171 (5)0.0112 (5)0.0017 (4)0.0001 (4)0.0034 (4)
O30.0199 (5)0.0216 (6)0.0156 (5)0.0040 (5)0.0037 (4)0.0017 (5)
O40.0190 (5)0.0131 (5)0.0098 (5)0.0019 (4)0.0019 (4)0.0018 (4)
O50.0167 (5)0.0166 (5)0.0205 (5)0.0020 (4)0.0032 (5)0.0018 (5)
O60.0197 (5)0.0159 (5)0.0119 (5)0.0022 (4)0.0004 (4)0.0001 (4)
N10.0161 (6)0.0129 (6)0.0093 (6)0.0026 (5)0.0002 (5)0.0029 (5)
N20.0122 (6)0.0137 (6)0.0103 (6)0.0004 (5)0.0003 (4)0.0003 (5)
N30.0139 (6)0.0155 (6)0.0121 (6)0.0005 (5)0.0008 (5)0.0010 (5)
C10.0145 (7)0.0156 (7)0.0129 (7)0.0005 (6)0.0002 (5)0.0013 (6)
C20.0146 (7)0.0142 (7)0.0104 (6)0.0017 (6)0.0001 (5)0.0004 (6)
C30.0227 (7)0.0153 (7)0.0142 (7)0.0037 (6)0.0015 (6)0.0014 (6)
C40.0243 (8)0.0191 (7)0.0170 (8)0.0014 (7)0.0020 (7)0.0043 (6)
C50.0184 (8)0.0213 (8)0.0172 (8)0.0030 (6)0.0031 (6)0.0015 (6)
C60.0167 (7)0.0196 (7)0.0156 (7)0.0045 (6)0.0035 (6)0.0037 (6)
C70.0150 (7)0.0194 (7)0.0143 (7)0.0019 (6)0.0042 (6)0.0040 (6)
C80.0126 (7)0.0182 (7)0.0154 (7)0.0001 (6)0.0011 (6)0.0038 (6)
C90.0165 (7)0.0135 (7)0.0107 (6)0.0032 (6)0.0007 (6)0.0002 (5)
C100.0183 (7)0.0118 (7)0.0111 (7)0.0006 (6)0.0002 (6)0.0001 (5)
C110.0157 (7)0.0136 (7)0.0087 (6)0.0015 (6)0.0001 (6)0.0010 (5)
C120.0152 (7)0.0133 (6)0.0089 (6)0.0014 (6)0.0010 (6)0.0009 (5)
C130.0176 (7)0.0156 (7)0.0106 (7)0.0009 (6)0.0008 (6)0.0000 (5)
C140.0249 (8)0.0155 (7)0.0148 (7)0.0014 (6)0.0034 (6)0.0017 (6)
C150.0287 (9)0.0189 (8)0.0190 (8)0.0025 (7)0.0021 (7)0.0013 (6)
C160.0161 (7)0.0208 (8)0.0182 (8)0.0011 (6)0.0020 (6)0.0011 (6)
C170.0164 (7)0.0158 (7)0.0079 (6)0.0003 (6)0.0022 (6)0.0004 (5)
C180.0153 (7)0.0133 (7)0.0127 (7)0.0014 (6)0.0000 (6)0.0000 (6)
C190.0160 (7)0.0119 (7)0.0144 (7)0.0037 (6)0.0017 (6)0.0005 (6)
C200.0154 (7)0.0184 (7)0.0142 (7)0.0036 (6)0.0020 (6)0.0026 (6)
C210.0192 (7)0.0154 (7)0.0128 (7)0.0013 (6)0.0012 (6)0.0013 (6)
C220.0210 (8)0.0171 (7)0.0122 (7)0.0029 (6)0.0026 (6)0.0015 (5)
C230.0259 (8)0.0281 (9)0.0209 (8)0.0081 (7)0.0006 (7)0.0028 (7)
Geometric parameters (Å, º) top
S1—C31.8162 (17)C8—C201.541 (2)
S1—S22.0406 (6)C8—H81.0000
S2—C41.8285 (17)C9—C101.517 (2)
S3—C231.8014 (18)C10—C111.536 (2)
S3—C221.8095 (16)C10—H10A0.9900
O1—C11.223 (2)C10—H10B0.9900
O2—C91.3602 (18)C11—C121.543 (2)
O2—C81.4494 (18)C11—H111.0000
O3—C91.199 (2)C12—C131.541 (2)
O4—C111.4380 (17)C12—H121.0000
O4—H40.8399 (10)C13—C161.533 (2)
O5—C171.233 (2)C13—C141.533 (2)
O6—C191.230 (2)C13—H131.0000
N1—C11.338 (2)C14—C151.528 (2)
N1—C121.4769 (18)C14—H14A0.9900
N1—H10.8797 (10)C14—H14B0.9900
N2—C171.340 (2)C15—H15A0.9800
N2—C21.4524 (19)C15—H15B0.9800
N2—H20.8798 (10)C15—H15C0.9800
N3—C191.353 (2)C16—H16A0.9800
N3—C181.4624 (18)C16—H16B0.9800
N3—H30.8799 (10)C16—H16C0.9800
C1—C21.553 (2)C17—C181.529 (2)
C2—C31.528 (2)C18—C211.540 (2)
C2—H2A1.0000C18—H181.0000
C3—H3A0.9900C19—C201.513 (2)
C3—H3B0.9900C20—H20A0.9900
C4—C51.531 (2)C20—H20B0.9900
C4—H4A0.9900C21—C221.528 (2)
C4—H4B0.9900C21—H21A0.9900
C5—C61.505 (2)C21—H21B0.9900
C5—H5A0.9900C22—H22A0.9900
C5—H5B0.9900C22—H22B0.9900
C6—C71.323 (2)C23—H23A0.9800
C6—H60.9500C23—H23B0.9800
C7—C81.508 (2)C23—H23C0.9800
C7—H70.9500
C3—S1—S2103.96 (6)C12—C11—H11108.5
C4—S2—S1104.41 (6)N1—C12—C13113.84 (12)
C23—S3—C2298.63 (8)N1—C12—C11113.14 (12)
C9—O2—C8118.31 (12)C13—C12—C11112.95 (12)
C11—O4—H4102.9 (15)N1—C12—H12105.3
C1—N1—C12125.27 (13)C13—C12—H12105.3
C1—N1—H1121.5 (13)C11—C12—H12105.3
C12—N1—H1111.9 (13)C16—C13—C14110.81 (13)
C17—N2—C2123.82 (13)C16—C13—C12114.39 (13)
C17—N2—H2117.7 (13)C14—C13—C12110.31 (12)
C2—N2—H2118.4 (13)C16—C13—H13107.0
C19—N3—C18118.95 (13)C14—C13—H13107.0
C19—N3—H3120.1 (13)C12—C13—H13107.0
C18—N3—H3120.8 (13)C15—C14—C13112.76 (13)
O1—C1—N1124.65 (14)C15—C14—H14A109.0
O1—C1—C2118.38 (14)C13—C14—H14A109.0
N1—C1—C2116.97 (13)C15—C14—H14B109.0
N2—C2—C3111.24 (12)C13—C14—H14B109.0
N2—C2—C1113.92 (12)H14A—C14—H14B107.8
C3—C2—C1106.69 (12)C14—C15—H15A109.5
N2—C2—H2A108.3C14—C15—H15B109.5
C3—C2—H2A108.3H15A—C15—H15B109.5
C1—C2—H2A108.3C14—C15—H15C109.5
C2—C3—S1115.69 (11)H15A—C15—H15C109.5
C2—C3—H3A108.4H15B—C15—H15C109.5
S1—C3—H3A108.4C13—C16—H16A109.5
C2—C3—H3B108.4C13—C16—H16B109.5
S1—C3—H3B108.4H16A—C16—H16B109.5
H3A—C3—H3B107.4C13—C16—H16C109.5
C5—C4—S2109.33 (11)H16A—C16—H16C109.5
C5—C4—H4A109.8H16B—C16—H16C109.5
S2—C4—H4A109.8O5—C17—N2123.19 (14)
C5—C4—H4B109.8O5—C17—C18120.72 (13)
S2—C4—H4B109.8N2—C17—C18116.05 (13)
H4A—C4—H4B108.3N3—C18—C17111.75 (12)
C6—C5—C4112.26 (13)N3—C18—C21110.75 (12)
C6—C5—H5A109.2C17—C18—C21109.20 (12)
C4—C5—H5A109.2N3—C18—H18108.4
C6—C5—H5B109.2C17—C18—H18108.4
C4—C5—H5B109.2C21—C18—H18108.4
H5A—C5—H5B107.9O6—C19—N3121.62 (14)
C7—C6—C5125.51 (15)O6—C19—C20121.58 (14)
C7—C6—H6117.2N3—C19—C20116.73 (14)
C5—C6—H6117.2C19—C20—C8113.10 (13)
C6—C7—C8126.32 (14)C19—C20—H20A109.0
C6—C7—H7116.8C8—C20—H20A109.0
C8—C7—H7116.8C19—C20—H20B109.0
O2—C8—C7106.14 (12)C8—C20—H20B109.0
O2—C8—C20112.45 (12)H20A—C20—H20B107.8
C7—C8—C20112.21 (13)C22—C21—C18114.37 (13)
O2—C8—H8108.6C22—C21—H21A108.7
C7—C8—H8108.6C18—C21—H21A108.7
C20—C8—H8108.6C22—C21—H21B108.7
O3—C9—O2123.95 (14)C18—C21—H21B108.7
O3—C9—C10126.34 (14)H21A—C21—H21B107.6
O2—C9—C10109.66 (12)C21—C22—S3111.34 (11)
C9—C10—C11116.50 (12)C21—C22—H22A109.4
C9—C10—H10A108.2S3—C22—H22A109.4
C11—C10—H10A108.2C21—C22—H22B109.4
C9—C10—H10B108.2S3—C22—H22B109.4
C11—C10—H10B108.2H22A—C22—H22B108.0
H10A—C10—H10B107.3S3—C23—H23A109.5
O4—C11—C10111.44 (12)S3—C23—H23B109.5
O4—C11—C12106.37 (11)H23A—C23—H23B109.5
C10—C11—C12113.29 (12)S3—C23—H23C109.5
O4—C11—H11108.5H23A—C23—H23C109.5
C10—C11—H11108.5H23B—C23—H23C109.5
C3—S1—S2—C479.45 (8)O4—C11—C12—N1164.12 (12)
C12—N1—C1—O14.2 (2)C10—C11—C12—N141.37 (17)
C12—N1—C1—C2175.04 (13)O4—C11—C12—C1364.71 (15)
C17—N2—C2—C3143.88 (14)C10—C11—C12—C13172.53 (12)
C17—N2—C2—C195.49 (16)N1—C12—C13—C1661.27 (17)
O1—C1—C2—N2161.20 (14)C11—C12—C13—C1669.54 (16)
N1—C1—C2—N218.11 (19)N1—C12—C13—C1464.44 (16)
O1—C1—C2—C338.06 (19)C11—C12—C13—C14164.75 (12)
N1—C1—C2—C3141.25 (14)C16—C13—C14—C1571.70 (17)
N2—C2—C3—S161.75 (15)C12—C13—C14—C15160.60 (13)
C1—C2—C3—S1173.45 (10)C2—N2—C17—O50.9 (2)
S2—S1—C3—C279.42 (12)C2—N2—C17—C18178.86 (12)
S1—S2—C4—C5138.27 (10)C19—N3—C18—C1757.26 (17)
S2—C4—C5—C667.15 (16)C19—N3—C18—C21179.24 (13)
C4—C5—C6—C7141.33 (16)O5—C17—C18—N3152.25 (13)
C5—C6—C7—C8178.20 (15)N2—C17—C18—N329.76 (18)
C9—O2—C8—C7160.50 (12)O5—C17—C18—C2184.87 (16)
C9—O2—C8—C2076.45 (16)N2—C17—C18—C2193.11 (15)
C6—C7—C8—O216.4 (2)C18—N3—C19—O61.4 (2)
C6—C7—C8—C20139.65 (16)C18—N3—C19—C20178.68 (12)
C8—O2—C9—O39.1 (2)O6—C19—C20—C897.53 (17)
C8—O2—C9—C10168.50 (12)N3—C19—C20—C879.73 (16)
O3—C9—C10—C1158.7 (2)O2—C8—C20—C1947.62 (17)
O2—C9—C10—C11123.75 (13)C7—C8—C20—C1971.95 (17)
C9—C10—C11—O471.69 (16)N3—C18—C21—C2262.21 (16)
C9—C10—C11—C1248.21 (17)C17—C18—C21—C22174.33 (13)
C1—N1—C12—C1384.41 (18)C18—C21—C22—S364.71 (15)
C1—N1—C12—C1146.31 (19)C23—S3—C22—C21179.27 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.84 (1)1.90 (1)2.7394 (15)176 (2)
N1—H1···O60.88 (1)2.06 (1)2.9203 (17)166 (2)
N2—H2···S20.88 (1)2.83 (2)3.2491 (13)111 (2)
N3—H3···O4ii0.88 (1)2.33 (1)3.1534 (16)155 (2)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC23H37N3O6S3
Mr547.74
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)12.7747 (3), 13.2926 (3), 15.4218 (4)
V3)2618.76 (11)
Z4
Radiation typeCu Kα
µ (mm1)2.96
Crystal size (mm)0.45 × 0.42 × 0.38
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.352, 0.403
No. of measured, independent and
observed [I > 2σ(I)] reflections
34598, 4990, 4981
Rint0.025
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.05
No. of reflections4990
No. of parameters326
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.36
Absolute structureFlack (1983), ???? Friedel pairs
Absolute structure parameter0.000 (9)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.8399 (10)1.901 (2)2.7394 (15)176 (2)
N1—H1···O60.8797 (10)2.059 (5)2.9203 (17)166.1 (18)
N2—H2···S20.8798 (10)2.833 (19)3.2491 (13)110.7 (15)
N3—H3···O4ii0.8799 (10)2.334 (9)3.1534 (16)155.0 (18)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+3/2, y, z1/2.
 

Acknowledgements

Support for this work was obtained from a Research Growth Initiative Award from the University of Wisconsin–Milwaukee and NIH/NCI grant R01 CA 152212 (both to Y-QC). The authors thank Lara C. Spencer and Ilia A. Guzei (University of Wisconsin-Madison Department of Chemistry Crystallography Facility) for collecting the crystallographic data.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChou, K. C. & Blinn, J. R. (1997). J. Protein Chem. 16, 575–595.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFDA (2010). J. Natl Cancer Inst. 102, 219.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFurumai, R., Matsuyama, A., Kobashi, N., Lee, K. H., Nishiyama, M., Nakajima, H., Tanaka, A., Komatsu, Y., Nishino, N., Yoshida, M. & Horinouchi, S. (2002). Cancer Res. 62, 4916–4921.  Web of Science PubMed CAS Google Scholar
First citationGrant, C., Rahman, F., Piekarz, R., Peer, C., Frye, R., Robey, R. W., Gardner, E. R., Figg, W. D. & Bates, S. E. (2010). Expert Rev. Anticancer Ther. 10, 997–1008.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhan, O. & La Thangue, N. B. (2008). Nat. Clin. Pract. Oncol. 5, 714–726.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMann, B. S., Johnson, J. R., Cohen, M. H., Justice, R. & Pazdur, R. (2007). The Oncologist, 12, 1247–1252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShigematsu, N., Ueda, H., Takase, S., Tanaka, H., Yamamoto, K. & Tada, T. (1994). J. Antibiot. (Tokyo), 47, 311–314.  CrossRef CAS PubMed Google Scholar
First citationUeda, H., Nakajima, H., Hori, Y., Fujita, T., Nishimura, M., Goto, T. & Okuhara, M. (1994). J. Antibiot. (Tokyo), 47, 301–310.  CrossRef CAS PubMed Google Scholar
First citationWang, C., Henkes, L. M., Doughty, L. B., He, M., Wang, D., Meyer-Almes, F. J. & Cheng, Y. Q. (2011). J. Nat. Prod. doi:10.1021/np200324x.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2948-o2949
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds