metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1558-m1559

Di­aqua­bis­­(pyridine-2-carboxyl­ato-κ2N,O)manganese(II) di­methyl­formamide hemisolvate

aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, bO.O. Bohomolets National Medical University, Department of General Chemistry, Shevchenko blvd. 13, 01601 Kiev, Ukraine, and cUniversity of Joensuu, Department of Chemistry, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: igolenya@ua.fm

(Received 11 October 2011; accepted 12 October 2011; online 22 October 2011)

There are two crystallographically independent complex mol­ecules with very similar geometries in the unit cell of the title compound, [Mn(C6H4NO2)2(H2O)2]·0.5C3H7NO. The central ion is situated in a distorted octa­hedral environment of two N- and four O-donor atoms from two pyridine-2-carboxyl­ate ligands and two cis-disposed water mol­ecules. The carboxyl­ate ligands are coordinated in a chelate fashion with the formation of two five-membered rings. In the crystal, the complex mol­ecules are connected by O—H⋯O hydrogen bonds between the coordinated water mol­ecules and the uncoordinated carboxyl­ate O atoms, thus forming hydrogen-bonded walls disposed perpendicularly to the bc plane.

Related literature

For the use of hydroxamate and carboxyl­ate ligands in the synthesis of polynuclear compounds, see: Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]). For hydrolytic destruction of hydroxamate ligands upon complex formation, see: Dobosz et al. (1999[Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743-749.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]). For the synthesis of pyridine-2-hydroxamic acid, see: Hynes (1970[Hynes, J. B. (1970). J. Med. Chem. 13, 1235-1237.]). For related structures, see: Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Fritsky et al. (2001[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221-1231.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]); Wörl et al. (2005a[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27-29.],b[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759-765.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6H4NO2)2(H2O)2]·0.5C3H7NO

  • Mr = 371.73

  • Triclinic, [P \overline 1]

  • a = 8.6860 (17) Å

  • b = 13.532 (3) Å

  • c = 14.871 (3) Å

  • α = 73.18 (3)°

  • β = 73.53 (3)°

  • γ = 72.37 (3)°

  • V = 1557.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 120 K

  • 0.21 × 0.15 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.834, Tmax = 0.932

  • 13428 measured reflections

  • 7243 independent reflections

  • 5370 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.157

  • S = 1.04

  • 7243 reflections

  • 426 parameters

  • H-atom parameters constrained

  • Δρmax = 1.73 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O7i 0.84 1.97 2.729 (3) 150
O1W—H1W2⋯O6ii 0.93 1.76 2.685 (3) 177
O2W—H2W1⋯O5ii 0.84 1.90 2.713 (3) 164
O2W—H2W2⋯O1iii 0.84 1.87 2.700 (3) 168
O3W—H3W1⋯O1iii 0.84 1.92 2.723 (3) 160
O3W—H3W2⋯O4 0.84 1.85 2.688 (3) 175
O4W—H4W1⋯O3 0.85 1.89 2.734 (3) 174
O4W—H4W2⋯O7iv 0.85 1.88 2.704 (3) 162
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+2, -y+1, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polynuclear complexes based on hydroxamic and carboxylate ligands are widely used in coordination chemistry and molecular magnetism (Sliva et al., 1997; Fritsky et al., 1998; Mokhir et al., 2002; Sachse et al., 2008). In the course of synthesis of polynuclear compounds, the hydroxamic functions (especially those neighboring with adjacent alternative donor groups) sometimes undergo hydrolytic destruction (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000). The title compound was obtained as a result of hydrolytic decomposition of pyridine-2-hydroxamic acid by reaction with manganese(III) acetate.

The central ion of the title compound is situated in a distorted octahedral environment of two N and four O donor atoms from two pyridine-2-carboxylates and two cis-disposed water molecules (Fig. 1). The carboxylate ligands are coordinated in a chelate fashion with formation of two five-membered rings.

The C—O bond lengths in the carboxylic moieties differ insignificantly which is normal for monodentately coordinated carboxylates (Wörl et al., 2005a,b). The C—C and C—N bond lengths in the pyridine rings exhibit normal values (Krämer & Fritsky, 2000; Fritsky et al., 2001; Kovbasyuk et al., 2004; Moroz et al., 2010).

In the crystal neighboring complex molecules are connected through H-bonds between the coordinated water molecules and the non-coordinated carboxylic O atoms thus forming H-bonded walls disposed perpendicularly to the yz plane (Fig.2).

Related literature top

For the use of hydroxamate and carboxylate ligands in the synthesis of polynuclear compounds, see: Sliva et al. (1997); Fritsky et al. (1998); Mokhir et al. (2002); Sachse et al. (2008). For hydrolytic destruction of hydroxamate ligands upon complex formation, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For the synthesis of pyridine-2-hydroxamic acid, see: Hynes (1970). For related structures, see: Krämer & Fritsky (2000); Fritsky et al. (2001); Kovbasyuk et al. (2004); Wörl et al. (2005a,b); Moroz et al. (2010).

Experimental top

Manganese(III) acetate dihydrate (0.0268 g, 0.1 mmol) was dissolved in water (3 ml) and mixed with a solution of pyridine-2-hydroxamic acid (0.0414 g, 0.3 mmol) (Hynes, 1970) in methanol (3 ml). The mixture was stirred for 30 min. and filtered. The insoluble residue was dissolved in DMF (3 ml) and set aside for crystallization by slow diffusion of methyl tert-buthyl ether vapours to the formed solution. The light-yellow crystals that formed in 5-7 days were filtered off, washed with methyl tert-buthyl ether and dried. Yield 74%. Elemental analysis calc.(%) for C27H31Mn2N5O13: C 43.62; H 4.20; N 9.42; Mn 14.78; found: C 43.86; H 4.12; N 9.29; Mn 15.01.

Refinement top

Water O—H hydrogen atoms were located from a difference Fourier map. In the final refinement cycles they were constrained to ride on the parent atoms with Uiso = 1.5 Ueq(parent atom). The remaining H atoms were positioned geometrically and were constrained to ride on their parent atoms with C—H = 0.95–0.987 Å, and with Uiso = 1.2–1.5 Ueq(parent atom).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme employed.
[Figure 2] Fig. 2. A packing diagram for the title complex. H–atoms not involved in H–bonds are omitted for clarity.
Diaquabis(pyridine-2-carboxylato-κ2N,O)manganese(II) dimethylformamide hemisolvate top
Crystal data top
[Mn(C6H4NO2)2(H2O)2]·0.5C3H7NOZ = 4
Mr = 371.73F(000) = 764
Triclinic, P1Dx = 1.585 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6860 (17) ÅCell parameters from 4574 reflections
b = 13.532 (3) Åθ = 3.0–27.5°
c = 14.871 (3) ŵ = 0.89 mm1
α = 73.18 (3)°T = 120 K
β = 73.53 (3)°Block, pale yellow
γ = 72.37 (3)°0.21 × 0.15 × 0.06 mm
V = 1557.4 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
7243 independent reflections
Radiation source: fine-focus sealed tube5370 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.029
Detector resolution: 9 pixels mm-1θmax = 28.8°, θmin = 2.9°
ϕ scans and ω scans with κ offseth = 1111
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1718
Tmin = 0.834, Tmax = 0.932l = 1919
13428 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1017P)2]
where P = (Fo2 + 2Fc2)/3
7243 reflections(Δ/σ)max < 0.001
426 parametersΔρmax = 1.73 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Mn(C6H4NO2)2(H2O)2]·0.5C3H7NOγ = 72.37 (3)°
Mr = 371.73V = 1557.4 (7) Å3
Triclinic, P1Z = 4
a = 8.6860 (17) ÅMo Kα radiation
b = 13.532 (3) ŵ = 0.89 mm1
c = 14.871 (3) ÅT = 120 K
α = 73.18 (3)°0.21 × 0.15 × 0.06 mm
β = 73.53 (3)°
Data collection top
Nonius KappaCCD
diffractometer
7243 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
5370 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.932Rint = 0.029
13428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.04Δρmax = 1.73 e Å3
7243 reflectionsΔρmin = 0.87 e Å3
426 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.41145 (6)0.09669 (4)0.28566 (3)0.01596 (13)
O10.4153 (3)0.16990 (17)0.51623 (15)0.0198 (5)
O20.4925 (3)0.03998 (17)0.39416 (15)0.0197 (5)
O30.8614 (3)0.13230 (19)0.08858 (18)0.0284 (5)
O40.6391 (3)0.14520 (17)0.21013 (15)0.0202 (5)
O1W0.2631 (3)0.22912 (17)0.20112 (15)0.0234 (5)
H1W10.29140.25360.14170.035*
H1W20.17360.27530.23120.035*
O2W0.3491 (3)0.19490 (18)0.38793 (16)0.0225 (5)
H2W10.27810.25280.39000.034*
H2W20.41440.18140.42450.034*
N10.1996 (3)0.0162 (2)0.34259 (17)0.0178 (5)
N20.5325 (3)0.0018 (2)0.16917 (18)0.0182 (5)
C10.2246 (4)0.0686 (2)0.4167 (2)0.0168 (6)
C20.1082 (4)0.1278 (3)0.4631 (2)0.0230 (7)
H20.12920.18720.51470.028*
C30.0404 (4)0.0984 (3)0.4327 (2)0.0258 (7)
H30.12250.13760.46360.031*
C40.0671 (4)0.0119 (3)0.3574 (2)0.0238 (7)
H40.16750.00940.33560.029*
C50.0555 (4)0.0434 (3)0.3142 (2)0.0217 (7)
H50.03700.10300.26230.026*
C60.3907 (4)0.0943 (2)0.4446 (2)0.0180 (6)
C70.6736 (4)0.0260 (2)0.1121 (2)0.0181 (6)
C80.7645 (4)0.0236 (3)0.0377 (2)0.0221 (7)
H80.86220.00390.00210.027*
C90.7103 (4)0.1031 (3)0.0222 (2)0.0231 (7)
H90.77020.13830.02860.028*
C100.5679 (4)0.1299 (3)0.0819 (2)0.0245 (7)
H100.52940.18470.07360.029*
C110.4819 (4)0.0751 (2)0.1546 (2)0.0211 (6)
H110.38360.09310.19530.025*
C120.7307 (4)0.1088 (2)0.1381 (2)0.0183 (6)
Mn20.79814 (5)0.40535 (4)0.21576 (3)0.01583 (13)
O51.0811 (3)0.35722 (19)0.42074 (17)0.0279 (5)
O60.9995 (3)0.35619 (17)0.29141 (15)0.0196 (5)
O70.7687 (3)0.66837 (17)0.01771 (15)0.0196 (5)
O80.8505 (3)0.54221 (17)0.10592 (15)0.0188 (4)
O3W0.6997 (3)0.27064 (17)0.30053 (15)0.0234 (5)
H3W10.67250.25040.36060.035*
H3W20.68630.22970.27180.035*
O4W0.9233 (3)0.30931 (18)0.11082 (16)0.0226 (5)
H4W10.91110.25180.10540.034*
H4W21.01010.32630.07270.034*
N30.7155 (3)0.4956 (2)0.33415 (18)0.0174 (5)
N40.5622 (3)0.4837 (2)0.16008 (17)0.0177 (5)
C130.5772 (4)0.5718 (2)0.3498 (2)0.0208 (6)
H130.50330.59170.30770.025*
C140.5367 (4)0.6234 (3)0.4250 (2)0.0225 (7)
H140.43830.67810.43320.027*
C150.6425 (4)0.5936 (3)0.4874 (2)0.0236 (7)
H150.61680.62640.54010.028*
C160.7875 (4)0.5145 (3)0.4719 (2)0.0216 (6)
H160.86220.49210.51380.026*
C170.8198 (4)0.4693 (2)0.3938 (2)0.0181 (6)
C180.9806 (4)0.3871 (2)0.3680 (2)0.0197 (6)
C190.5778 (4)0.5680 (2)0.0848 (2)0.0165 (6)
C200.4495 (4)0.6252 (2)0.0383 (2)0.0204 (6)
H200.46400.68360.01460.024*
C210.2996 (4)0.5961 (3)0.0700 (2)0.0238 (7)
H210.21000.63410.03920.029*
C220.2830 (4)0.5102 (3)0.1475 (2)0.0236 (7)
H220.18150.48890.17090.028*
C230.4172 (4)0.4558 (3)0.1901 (2)0.0213 (6)
H230.40580.39660.24250.026*
C240.7461 (4)0.5947 (2)0.0553 (2)0.0175 (6)
O90.2692 (4)0.7270 (3)0.2913 (3)0.0718 (12)
N50.0270 (4)0.7605 (3)0.2458 (2)0.0367 (8)
C250.1253 (6)0.7140 (4)0.3062 (4)0.0586 (14)
H250.08630.66810.36440.070*
C260.0813 (5)0.8336 (4)0.1558 (3)0.0434 (10)
H26A0.02430.90700.16070.065*
H26B0.05500.81780.10240.065*
H26C0.20100.82490.14420.065*
C270.1407 (6)0.7521 (5)0.2627 (4)0.078 (2)
H27A0.17110.70890.32740.117*
H27B0.14990.71840.21500.117*
H27C0.21520.82330.25740.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0194 (2)0.0161 (2)0.0105 (2)0.00402 (18)0.00322 (17)0.00040 (17)
O10.0257 (11)0.0179 (11)0.0129 (10)0.0041 (9)0.0060 (9)0.0016 (8)
O20.0207 (11)0.0202 (11)0.0167 (11)0.0061 (9)0.0060 (9)0.0013 (9)
O30.0245 (12)0.0319 (13)0.0314 (13)0.0125 (10)0.0067 (10)0.0172 (11)
O40.0245 (11)0.0213 (11)0.0153 (11)0.0066 (9)0.0014 (9)0.0066 (9)
O1W0.0281 (12)0.0219 (12)0.0109 (10)0.0021 (9)0.0033 (9)0.0008 (8)
O2W0.0215 (11)0.0256 (12)0.0211 (12)0.0012 (9)0.0077 (9)0.0103 (9)
N10.0212 (13)0.0184 (13)0.0119 (12)0.0023 (10)0.0043 (10)0.0022 (10)
N20.0191 (13)0.0192 (13)0.0156 (13)0.0035 (10)0.0044 (10)0.0036 (10)
C10.0202 (14)0.0184 (15)0.0112 (14)0.0042 (12)0.0015 (11)0.0046 (11)
C20.0285 (17)0.0224 (16)0.0152 (15)0.0073 (13)0.0027 (13)0.0002 (12)
C30.0254 (17)0.0305 (19)0.0225 (17)0.0121 (14)0.0017 (13)0.0051 (14)
C40.0230 (16)0.0295 (18)0.0189 (16)0.0066 (14)0.0048 (13)0.0051 (13)
C50.0255 (16)0.0253 (17)0.0121 (14)0.0066 (13)0.0046 (12)0.0000 (12)
C60.0258 (16)0.0178 (15)0.0101 (14)0.0030 (12)0.0037 (12)0.0050 (11)
C70.0213 (15)0.0174 (15)0.0158 (15)0.0034 (12)0.0053 (12)0.0040 (11)
C80.0216 (15)0.0250 (17)0.0182 (16)0.0008 (13)0.0041 (12)0.0079 (13)
C90.0249 (16)0.0215 (16)0.0240 (17)0.0004 (13)0.0065 (13)0.0108 (13)
C100.0295 (17)0.0219 (17)0.0262 (18)0.0063 (13)0.0094 (14)0.0083 (13)
C110.0220 (15)0.0194 (15)0.0222 (16)0.0060 (12)0.0047 (12)0.0039 (12)
C120.0204 (15)0.0164 (15)0.0174 (15)0.0031 (12)0.0034 (12)0.0048 (12)
Mn20.0197 (2)0.0157 (2)0.0107 (2)0.00441 (18)0.00352 (17)0.00042 (17)
O50.0278 (12)0.0315 (13)0.0285 (13)0.0045 (10)0.0161 (10)0.0150 (11)
O60.0217 (11)0.0216 (11)0.0150 (11)0.0018 (9)0.0039 (8)0.0071 (9)
O70.0253 (11)0.0184 (11)0.0127 (10)0.0069 (9)0.0027 (8)0.0004 (8)
O80.0203 (11)0.0195 (11)0.0144 (11)0.0071 (9)0.0041 (8)0.0024 (8)
O3W0.0395 (13)0.0236 (12)0.0099 (10)0.0171 (10)0.0037 (9)0.0005 (8)
O4W0.0243 (12)0.0240 (12)0.0209 (12)0.0108 (9)0.0016 (9)0.0080 (9)
N30.0197 (12)0.0154 (12)0.0166 (13)0.0046 (10)0.0045 (10)0.0019 (10)
N40.0228 (13)0.0174 (13)0.0122 (12)0.0050 (10)0.0047 (10)0.0012 (10)
C130.0219 (15)0.0202 (16)0.0201 (16)0.0037 (12)0.0069 (12)0.0033 (12)
C140.0218 (16)0.0173 (15)0.0261 (17)0.0018 (12)0.0030 (13)0.0066 (13)
C150.0261 (16)0.0248 (17)0.0208 (16)0.0088 (13)0.0009 (13)0.0093 (13)
C160.0231 (16)0.0234 (16)0.0204 (16)0.0052 (13)0.0057 (13)0.0073 (13)
C170.0203 (15)0.0190 (15)0.0144 (14)0.0051 (12)0.0041 (12)0.0022 (12)
C180.0218 (15)0.0161 (15)0.0215 (16)0.0051 (12)0.0044 (12)0.0044 (12)
C190.0249 (15)0.0152 (14)0.0076 (13)0.0036 (12)0.0034 (11)0.0012 (11)
C200.0276 (16)0.0183 (15)0.0151 (15)0.0049 (13)0.0066 (12)0.0021 (12)
C210.0219 (16)0.0253 (17)0.0252 (17)0.0011 (13)0.0096 (13)0.0074 (13)
C220.0200 (15)0.0295 (18)0.0225 (17)0.0088 (13)0.0014 (13)0.0079 (14)
C230.0242 (16)0.0212 (16)0.0176 (15)0.0053 (13)0.0043 (12)0.0031 (12)
C240.0237 (15)0.0167 (15)0.0110 (14)0.0041 (12)0.0019 (11)0.0039 (11)
O90.048 (2)0.081 (3)0.097 (3)0.0190 (18)0.046 (2)0.042 (2)
N50.0288 (16)0.046 (2)0.0344 (18)0.0097 (14)0.0108 (14)0.0021 (15)
C250.050 (3)0.063 (3)0.056 (3)0.018 (2)0.027 (2)0.021 (3)
C260.036 (2)0.048 (3)0.043 (2)0.0126 (19)0.0038 (18)0.006 (2)
C270.046 (3)0.075 (4)0.098 (5)0.037 (3)0.027 (3)0.041 (3)
Geometric parameters (Å, º) top
Mn1—O2W2.154 (2)O5—C181.237 (4)
Mn1—O22.156 (2)O6—C181.276 (4)
Mn1—O1W2.161 (2)O7—C241.257 (4)
Mn1—O42.168 (2)O8—C241.257 (4)
Mn1—N12.256 (3)O3W—H3W10.8410
Mn1—N22.279 (3)O3W—H3W20.8406
O1—C61.262 (4)O4W—H4W10.8452
O2—C61.259 (4)O4W—H4W20.8548
O3—C121.241 (4)N3—C131.338 (4)
O4—C121.268 (4)N3—C171.346 (4)
O1W—H1W10.8405N4—C231.341 (4)
O1W—H1W20.9305N4—C191.357 (4)
O2W—H2W10.8402C13—C141.394 (4)
O2W—H2W20.8402C13—H130.9500
N1—C51.346 (4)C14—C151.382 (5)
N1—C11.353 (4)C14—H140.9500
N2—C111.335 (4)C15—C161.395 (4)
N2—C71.350 (4)C15—H150.9500
C1—C21.384 (4)C16—C171.388 (4)
C1—C61.525 (4)C16—H160.9500
C2—C31.395 (5)C17—C181.529 (4)
C2—H20.9500C19—C201.387 (4)
C3—C41.380 (5)C19—C241.525 (4)
C3—H30.9500C20—C211.389 (5)
C4—C51.387 (5)C20—H200.9500
C4—H40.9500C21—C221.390 (5)
C5—H50.9500C21—H210.9500
C7—C81.382 (4)C22—C231.390 (4)
C7—C121.532 (4)C22—H220.9500
C8—C91.395 (4)C23—H230.9500
C8—H80.9500O9—C251.263 (6)
C9—C101.383 (5)N5—C251.309 (5)
C9—H90.9500N5—C271.440 (5)
C10—C111.396 (4)N5—C261.466 (5)
C10—H100.9500C25—H250.9500
C11—H110.9500C26—H26A0.9800
Mn2—O82.155 (2)C26—H26B0.9800
Mn2—O3W2.156 (2)C26—H26C0.9800
Mn2—O4W2.159 (2)C27—H27A0.9800
Mn2—O62.179 (2)C27—H27B0.9800
Mn2—N32.259 (3)C27—H27C0.9800
Mn2—N42.269 (3)
O2W—Mn1—O289.21 (9)O6—Mn2—N373.39 (9)
O2W—Mn1—O1W86.34 (9)O8—Mn2—N474.84 (9)
O2—Mn1—O1W163.98 (9)O3W—Mn2—N490.88 (9)
O2W—Mn1—O494.13 (9)O4W—Mn2—N497.90 (9)
O2—Mn1—O4102.52 (9)O6—Mn2—N4166.54 (9)
O1W—Mn1—O493.15 (9)N3—Mn2—N493.21 (9)
O2W—Mn1—N199.52 (9)C18—O6—Mn2120.26 (19)
O2—Mn1—N175.12 (9)C24—O8—Mn2118.9 (2)
O1W—Mn1—N190.44 (9)Mn2—O3W—H3W1129.6
O4—Mn1—N1166.09 (9)Mn2—O3W—H3W2118.4
O2W—Mn1—N2167.35 (9)H3W1—O3W—H3W2112.0
O2—Mn1—N290.93 (9)Mn2—O4W—H4W1131.6
O1W—Mn1—N296.76 (9)Mn2—O4W—H4W2115.2
O4—Mn1—N273.50 (9)H4W1—O4W—H4W2112.5
N1—Mn1—N292.74 (9)C13—N3—C17117.8 (3)
C6—O2—Mn1118.29 (19)C13—N3—Mn2127.1 (2)
C12—O4—Mn1121.08 (19)C17—N3—Mn2115.1 (2)
Mn1—O1W—H1W1125.2C23—N4—C19118.4 (3)
Mn1—O1W—H1W2120.2C23—N4—Mn2128.8 (2)
H1W1—O1W—H1W2112.7C19—N4—Mn2112.9 (2)
Mn1—O2W—H2W1128.7N3—C13—C14123.0 (3)
Mn1—O2W—H2W2117.1N3—C13—H13118.5
H2W1—O2W—H2W2113.0C14—C13—H13118.5
C5—N1—C1118.2 (3)C15—C14—C13118.7 (3)
C5—N1—Mn1128.6 (2)C15—C14—H14120.6
C1—N1—Mn1113.12 (19)C13—C14—H14120.6
C11—N2—C7118.5 (3)C14—C15—C16119.0 (3)
C11—N2—Mn1127.2 (2)C14—C15—H15120.5
C7—N2—Mn1114.2 (2)C16—C15—H15120.5
N1—C1—C2122.3 (3)C17—C16—C15118.4 (3)
N1—C1—C6115.1 (3)C17—C16—H16120.8
C2—C1—C6122.6 (3)C15—C16—H16120.8
C1—C2—C3118.7 (3)N3—C17—C16123.1 (3)
C1—C2—H2120.6N3—C17—C18115.2 (3)
C3—C2—H2120.6C16—C17—C18121.7 (3)
C4—C3—C2119.3 (3)O5—C18—O6125.6 (3)
C4—C3—H3120.3O5—C18—C17118.8 (3)
C2—C3—H3120.3O6—C18—C17115.6 (3)
C3—C4—C5118.7 (3)N4—C19—C20122.1 (3)
C3—C4—H4120.7N4—C19—C24115.1 (3)
C5—C4—H4120.7C20—C19—C24122.7 (3)
N1—C5—C4122.7 (3)C19—C20—C21119.2 (3)
N1—C5—H5118.6C19—C20—H20120.4
C4—C5—H5118.6C21—C20—H20120.4
O2—C6—O1125.3 (3)C20—C21—C22118.8 (3)
O2—C6—C1117.9 (3)C20—C21—H21120.6
O1—C6—C1116.8 (3)C22—C21—H21120.6
N2—C7—C8122.5 (3)C21—C22—C23118.9 (3)
N2—C7—C12115.5 (3)C21—C22—H22120.5
C8—C7—C12122.0 (3)C23—C22—H22120.5
C7—C8—C9118.8 (3)N4—C23—C22122.6 (3)
C7—C8—H8120.6N4—C23—H23118.7
C9—C8—H8120.6C22—C23—H23118.7
C10—C9—C8118.9 (3)O7—C24—O8125.3 (3)
C10—C9—H9120.6O7—C24—C19117.0 (3)
C8—C9—H9120.6O8—C24—C19117.7 (3)
C9—C10—C11118.8 (3)C25—N5—C27125.1 (4)
C9—C10—H10120.6C25—N5—C26119.9 (4)
C11—C10—H10120.6C27—N5—C26114.8 (3)
N2—C11—C10122.5 (3)O9—C25—N5123.6 (5)
N2—C11—H11118.8O9—C25—H25118.2
C10—C11—H11118.8N5—C25—H25118.2
O3—C12—O4126.6 (3)N5—C26—H26A109.5
O3—C12—C7117.8 (3)N5—C26—H26B109.5
O4—C12—C7115.6 (3)H26A—C26—H26B109.5
O8—Mn2—O3W163.73 (8)N5—C26—H26C109.5
O8—Mn2—O4W88.27 (9)H26A—C26—H26C109.5
O3W—Mn2—O4W86.00 (9)H26B—C26—H26C109.5
O8—Mn2—O6103.96 (9)N5—C27—H27A109.5
O3W—Mn2—O691.74 (9)N5—C27—H27B109.5
O4W—Mn2—O695.46 (9)H27A—C27—H27B109.5
O8—Mn2—N392.93 (9)N5—C27—H27C109.5
O3W—Mn2—N395.66 (9)H27A—C27—H27C109.5
O4W—Mn2—N3168.75 (9)H27B—C27—H27C109.5
O2W—Mn1—O2—C693.4 (2)O3W—Mn2—O6—C1888.6 (2)
O1W—Mn1—O2—C619.6 (4)O4W—Mn2—O6—C18174.8 (2)
O4—Mn1—O2—C6172.5 (2)N3—Mn2—O6—C186.7 (2)
N1—Mn1—O2—C66.7 (2)N4—Mn2—O6—C1812.5 (5)
N2—Mn1—O2—C699.2 (2)O3W—Mn2—O8—C2421.9 (4)
O2W—Mn1—O4—C12179.7 (2)O4W—Mn2—O8—C2491.2 (2)
O2—Mn1—O4—C1290.2 (2)O6—Mn2—O8—C24173.6 (2)
O1W—Mn1—O4—C1293.1 (2)N3—Mn2—O8—C24100.0 (2)
N1—Mn1—O4—C1211.6 (5)N4—Mn2—O8—C247.4 (2)
N2—Mn1—O4—C123.0 (2)O8—Mn2—N3—C1370.6 (3)
O2W—Mn1—N1—C595.5 (3)O3W—Mn2—N3—C1395.6 (3)
O2—Mn1—N1—C5177.9 (3)O4W—Mn2—N3—C13166.4 (4)
O1W—Mn1—N1—C59.2 (3)O6—Mn2—N3—C13174.3 (3)
O4—Mn1—N1—C595.9 (4)N4—Mn2—N3—C134.4 (3)
N2—Mn1—N1—C587.6 (3)O8—Mn2—N3—C17108.6 (2)
O2W—Mn1—N1—C182.5 (2)O3W—Mn2—N3—C1785.2 (2)
O2—Mn1—N1—C14.08 (19)O4W—Mn2—N3—C1712.8 (6)
O1W—Mn1—N1—C1168.9 (2)O6—Mn2—N3—C174.9 (2)
O4—Mn1—N1—C186.1 (4)N4—Mn2—N3—C17176.4 (2)
N2—Mn1—N1—C194.3 (2)O8—Mn2—N4—C23177.4 (3)
O2W—Mn1—N2—C11162.7 (4)O3W—Mn2—N4—C2310.5 (3)
O2—Mn1—N2—C1172.1 (3)O4W—Mn2—N4—C2396.6 (3)
O1W—Mn1—N2—C1193.8 (3)O6—Mn2—N4—C2390.7 (5)
O4—Mn1—N2—C11174.9 (3)N3—Mn2—N4—C2385.2 (3)
N1—Mn1—N2—C113.0 (3)O8—Mn2—N4—C194.44 (19)
O2W—Mn1—N2—C715.0 (5)O3W—Mn2—N4—C19167.7 (2)
O2—Mn1—N2—C7105.6 (2)O4W—Mn2—N4—C1981.6 (2)
O1W—Mn1—N2—C788.5 (2)O6—Mn2—N4—C1991.1 (4)
O4—Mn1—N2—C72.8 (2)N3—Mn2—N4—C1996.6 (2)
N1—Mn1—N2—C7179.3 (2)C17—N3—C13—C140.7 (5)
C5—N1—C1—C20.5 (4)Mn2—N3—C13—C14179.9 (2)
Mn1—N1—C1—C2178.7 (2)N3—C13—C14—C151.1 (5)
C5—N1—C1—C6180.0 (3)C13—C14—C15—C161.3 (5)
Mn1—N1—C1—C61.7 (3)C14—C15—C16—C170.3 (5)
N1—C1—C2—C30.5 (5)C13—N3—C17—C162.4 (5)
C6—C1—C2—C3180.0 (3)Mn2—N3—C17—C16178.3 (2)
C1—C2—C3—C40.2 (5)C13—N3—C17—C18176.1 (3)
C2—C3—C4—C50.0 (5)Mn2—N3—C17—C183.1 (3)
C1—N1—C5—C40.2 (5)C15—C16—C17—N32.2 (5)
Mn1—N1—C5—C4178.2 (2)C15—C16—C17—C18176.2 (3)
C3—C4—C5—N10.0 (5)Mn2—O6—C18—O5173.7 (3)
Mn1—O2—C6—O1173.0 (2)Mn2—O6—C18—C177.3 (3)
Mn1—O2—C6—C18.0 (3)N3—C17—C18—O5178.5 (3)
N1—C1—C6—O24.0 (4)C16—C17—C18—O53.0 (5)
C2—C1—C6—O2175.5 (3)N3—C17—C18—O62.4 (4)
N1—C1—C6—O1176.9 (2)C16—C17—C18—O6176.1 (3)
C2—C1—C6—O13.5 (4)C23—N4—C19—C200.3 (4)
C11—N2—C7—C81.9 (4)Mn2—N4—C19—C20178.1 (2)
Mn1—N2—C7—C8179.8 (2)C23—N4—C19—C24179.9 (2)
C11—N2—C7—C12175.4 (3)Mn2—N4—C19—C241.8 (3)
Mn1—N2—C7—C122.4 (3)N4—C19—C20—C210.5 (4)
N2—C7—C8—C91.3 (5)C24—C19—C20—C21179.7 (3)
C12—C7—C8—C9175.9 (3)C19—C20—C21—C220.0 (5)
C7—C8—C9—C100.3 (5)C20—C21—C22—C230.5 (5)
C8—C9—C10—C111.1 (5)C19—N4—C23—C220.3 (4)
C7—N2—C11—C101.0 (5)Mn2—N4—C23—C22178.4 (2)
Mn1—N2—C11—C10178.6 (2)C21—C22—C23—N40.7 (5)
C9—C10—C11—N20.5 (5)Mn2—O8—C24—O7171.5 (2)
Mn1—O4—C12—O3178.6 (3)Mn2—O8—C24—C199.0 (3)
Mn1—O4—C12—C72.7 (3)N4—C19—C24—O7175.9 (3)
N2—C7—C12—O3178.8 (3)C20—C19—C24—O73.9 (4)
C8—C7—C12—O31.5 (4)N4—C19—C24—O84.5 (4)
N2—C7—C12—O40.0 (4)C20—C19—C24—O8175.6 (3)
C8—C7—C12—O4177.4 (3)C27—N5—C25—O9176.4 (5)
O8—Mn2—O6—C1895.6 (2)C26—N5—C25—O91.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O7i0.841.972.729 (3)150
O1W—H1W2···O6ii0.931.762.685 (3)177
O2W—H2W1···O5ii0.841.902.713 (3)164
O2W—H2W2···O1iii0.841.872.700 (3)168
O3W—H3W1···O1iii0.841.922.723 (3)160
O3W—H3W2···O40.841.852.688 (3)175
O4W—H4W1···O30.851.892.734 (3)174
O4W—H4W2···O7iv0.851.882.704 (3)162
C13—H13···O90.952.313.031 (5)133
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C6H4NO2)2(H2O)2]·0.5C3H7NO
Mr371.73
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.6860 (17), 13.532 (3), 14.871 (3)
α, β, γ (°)73.18 (3), 73.53 (3), 72.37 (3)
V3)1557.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.21 × 0.15 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.834, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
13428, 7243, 5370
Rint0.029
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.157, 1.04
No. of reflections7243
No. of parameters426
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.73, 0.87

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O7i0.841.972.729 (3)150.0
O1W—H1W2···O6ii0.931.762.685 (3)176.7
O2W—H2W1···O5ii0.841.902.713 (3)163.5
O2W—H2W2···O1iii0.841.872.700 (3)167.6
O3W—H3W1···O1iii0.841.922.723 (3)159.7
O3W—H3W2···O40.841.852.688 (3)175.4
O4W—H4W1···O30.851.892.734 (3)173.5
O4W—H4W2···O7iv0.851.882.704 (3)162.4
C13—H13···O90.952.313.031 (5)132.6
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z.
 

Acknowledgements

Financial support from the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHynes, J. B. (1970). J. Med. Chem. 13, 1235–1237.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1558-m1559
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds