metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl­piperazine-1,4-diium tetra­chloridozincate hemihydrate

aLaboratoire de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia
*Correspondence e-mail: houcine_naili@yahoo.com

(Received 9 September 2011; accepted 18 October 2011; online 29 October 2011)

The crystal structure of the title compound, (C5H14N2)[ZnCl4]·0.5H2O, is built up from discrete 1-methyl­piperazine­diium cations with chair conformation, tetrahedral tetrachloridozincate anions and uncoordinated solvent water mol­ecules linked together by three types of inter­molecular hydrogen bonds, viz. N—H⋯Cl, N—H⋯O and O—H⋯Cl.

Related literature

For background on organic–inorganic hybrid materials, see: Lacroix et al. (1994[Lacroix, P. G., Clément, R., Nakatani, K., Zyss, J. & Ledoux, I. (1994). Science, 263, 658-660.]); Mitzi (2001[Mitzi, D. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1-12.]); Pecaut et al. (1993[Pecaut, J., Levy, J. P. & Masse, R. (1993). J. Mater. Chem. 3, 999-1003.]). For related structures, see: Deeth et al. (1984[Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310-1320.]); Fowkes & Harrison (2004[Fowkes, A. & Harrison, W. T. A. (2004). Acta Cryst. E60, m59-m61.]); Walha et al. (2010[Walha, S., Yahyaoui, S., Naili, H., Mhiri, T. & Bataille, T. (2010). J. Coord. Chem. pp. 1358-1368.], 2011[Walha, S., Naili, H., Yahyaoui, S., Ali, B. F., Turnbull, M. M., Mhiri, T. & Bataille, T. (2011). Solid State Sci. 13, 204-208.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)[ZnCl4]·0.5H2O

  • Mr = 318.36

  • Monoclinic, C 2/c

  • a = 14.3210 (5) Å

  • b = 12.7590 (5) Å

  • c = 13.7970 (3) Å

  • β = 102.821 (3)°

  • V = 2458.16 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 293 K

  • 0.47 × 0.11 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.393, Tmax = 0.661

  • 27355 measured reflections

  • 4237 independent reflections

  • 2996 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.080

  • S = 1.24

  • 4237 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected bond lengths (Å)

Zn—Cl1 2.2449 (8)
Zn—Cl2 2.2614 (7)
Zn—Cl4 2.2615 (8)
Zn—Cl3 2.3004 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl4i 0.91 2.31 3.189 (2) 164
N2—H3⋯Cl3ii 0.96 2.57 3.353 (2) 139
N2—H3⋯Cl2ii 0.96 2.69 3.259 (2) 119
O—HW1⋯Cl3 0.96 2.33 3.2692 (12) 167
N2—H2⋯O 0.96 1.95 2.908 (3) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Preparation of organic-inorganic hybrid materials attracts great attention in chemistry and materials sciences because of their abilities to combine the properties of organic and inorganic compounds within one single molecular scale, such as second-order nonlinear optical (NLO) response, luminescence, magnetism and even multifonctional properties (Mitzi, 2001; Pecaut et al., 1993; Lacroix et al., 1994). In connection with ongoing studies (Walha et al., 2010; Walha et al., 2011), we report here the crystal structure of a new organic-inorganic hybrid with cations and tetrachloridozincate anions.

The asymmetric unit of the title compound (Fig. 1) contains one inorganic ZnCl42- anion, one organic N-methylpiperazinediium cation and one half-molecule of water, which lies on a two-fold rotation axis. The isolated molecules form organic-inorganic layers parallels to the (b,c) plane and alternate along the a axis (Fig. 2). These layers are stabilized and interconnected by three types of hydrogen bonds: N—H···Cl, N—H···O and O—H···Cl. The anion exhibits a tetrahedral geometry with the ZnII ion surrounded by four Cl atoms with a mean Zn—Cl bond length of 2.267 (2) Å and Cl—Zn—Cl bond angles ranging from 106.24 (3) to 112.42 (3)° (Deeth et al., 1984). The ZnCl4 tetrahedra are linked to water molecules into zig-zag chains by O—H···Cl hydrogen bonds along the c axis, as illustrated in Fig. 3. The organic species adopts a typical chair conformation with average C—C and C—N of 1.501 (4) and 1.491 (3) Å, respectively (Fowkes & Harrison, 2004). The water molecules are located above and below the layers and they connect them via hydrogen bonds. Indeed, they participate in two types of hydrogen bonds O—H···Cl and N—H···O as donor or acceptor, respectively (Table 2), playing a subordinative role in the stabilization of the crystal structure.

Related literature top

For background on organic–inorganic hybrid materials, see: Lacroix et al. (1994); Mitzi (2001); Pecaut et al. (1993). For related structures, see: Deeth et al. (1984); Fowkes & Harrison (2004); Walha et al. (2010, 2011).

Experimental top

ZnCl2 (1 mmol) and methylpiperazine dihydrochloride (1 mmol) were dissolved in water. The solution was mixed with hydrochloric acid (1 mmol) and allowed to stand. Colourless plate-shaped crystals of the title compound were formed by slow evaporation of the solvent and separated from the solution after three days.

Refinement top

H atoms bonded to C and N atoms were positioned geometrically and allowed to ride on their parent atom, with C—H = 0.96 Å, N—H = 0.89 Å and Uiso = 1.2Ueq(C, N).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the non-H atoms represented by 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Projection of the crystal structure of the title compound along the b axis, with hydrogen bonds indicated as dashed lines.
[Figure 3] Fig. 3. Zig-zag chains formed by the interactions of ZnCl4 and H2O molecules with O—H···Cl hydrogen bonds along the c axis.
1-Methylpiperazine-1,4-diium tetrachloridozincate hemihydrate top
Crystal data top
(C5H14N2)[ZnCl4]·0.5H2OZ = 8
Mr = 318.36F(000) = 1288
Monoclinic, C2/cDx = 1.720 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 14.3210 (5) Åθ = 3.5–32.0°
b = 12.7590 (5) ŵ = 2.83 mm1
c = 13.7970 (3) ÅT = 293 K
β = 102.821 (3)°Plate-shaped, colourless
V = 2458.16 (14) Å30.47 × 0.11 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
4237 independent reflections
Radiation source: fine-focus sealed tube2996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 9 pixels mm-1θmax = 32.0°, θmin = 3.5°
CCD rotation images, thick slices scansh = 2120
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 019
Tmin = 0.393, Tmax = 0.661l = 020
4237 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0157P)2 + 3.8346P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
4237 reflectionsΔρmax = 0.49 e Å3
115 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0000
Crystal data top
(C5H14N2)[ZnCl4]·0.5H2OV = 2458.16 (14) Å3
Mr = 318.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.3210 (5) ŵ = 2.83 mm1
b = 12.7590 (5) ÅT = 293 K
c = 13.7970 (3) Å0.47 × 0.11 × 0.03 mm
β = 102.821 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4237 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
2996 reflections with I > 2σ(I)
Tmin = 0.393, Tmax = 0.661Rint = 0.000
4237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.24Δρmax = 0.49 e Å3
4237 reflectionsΔρmin = 0.68 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.01435 (2)0.25139 (2)0.52565 (2)0.02734 (8)
Cl10.08951 (5)0.20675 (6)0.61886 (5)0.04259 (18)
Cl30.14474 (5)0.34080 (6)0.61526 (5)0.03835 (16)
Cl20.05717 (5)0.35910 (7)0.40099 (6)0.0468 (2)
Cl40.07327 (5)0.11031 (6)0.45991 (5)0.04292 (19)
N20.14425 (16)0.5183 (2)0.90999 (19)0.0396 (6)
H30.11190.54250.95980.048*
H20.09920.48420.85760.048*
N10.31874 (14)0.49919 (18)0.83935 (15)0.0288 (5)
H10.35980.53160.89040.035*
C10.27548 (19)0.4078 (2)0.8808 (2)0.0326 (6)
H1A0.32580.36070.91120.039*
H1B0.23250.37260.82740.039*
C20.2207 (2)0.4431 (2)0.9561 (2)0.0360 (6)
H2A0.19250.38320.98040.043*
H2B0.26440.47641.01010.043*
C30.1851 (2)0.6107 (2)0.8677 (2)0.0424 (7)
H3B0.22580.64920.92030.051*
H3A0.13390.65500.83410.051*
C40.2429 (2)0.5757 (2)0.7943 (2)0.0344 (6)
H4A0.20040.54270.73910.041*
H4B0.27190.63590.77140.041*
C50.3743 (2)0.4655 (3)0.7650 (2)0.0464 (8)
H5A0.33690.42680.71030.056*
H5B0.42650.42150.79700.056*
H5C0.39910.52630.73820.056*
O0.00000.4275 (2)0.75000.0420 (7)
HW10.03380.39540.70500.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02624 (14)0.02913 (16)0.02555 (15)0.00289 (13)0.00340 (10)0.00195 (13)
Cl10.0478 (4)0.0476 (4)0.0363 (4)0.0085 (3)0.0176 (3)0.0033 (3)
Cl30.0348 (3)0.0437 (4)0.0338 (4)0.0077 (3)0.0017 (3)0.0049 (3)
Cl20.0306 (3)0.0632 (5)0.0451 (4)0.0098 (3)0.0053 (3)0.0291 (4)
Cl40.0473 (4)0.0451 (4)0.0321 (4)0.0176 (3)0.0002 (3)0.0089 (3)
N20.0286 (12)0.0513 (16)0.0420 (14)0.0053 (11)0.0141 (10)0.0153 (12)
N10.0209 (10)0.0452 (14)0.0197 (10)0.0038 (9)0.0030 (8)0.0009 (9)
C10.0307 (13)0.0359 (15)0.0315 (14)0.0033 (11)0.0074 (11)0.0070 (11)
C20.0350 (14)0.0465 (18)0.0285 (14)0.0083 (13)0.0117 (11)0.0023 (12)
C30.0401 (16)0.0379 (17)0.0486 (18)0.0067 (13)0.0088 (13)0.0043 (14)
C40.0363 (14)0.0353 (16)0.0305 (14)0.0031 (12)0.0054 (11)0.0054 (12)
C50.0294 (14)0.081 (2)0.0313 (15)0.0083 (15)0.0129 (12)0.0041 (15)
O0.0452 (17)0.0406 (17)0.0374 (16)0.0000.0033 (13)0.000
Geometric parameters (Å, º) top
Zn—Cl12.2449 (8)C1—H1A0.9600
Zn—Cl22.2614 (7)C1—H1B0.9599
Zn—Cl42.2615 (8)C2—H2A0.9599
Zn—Cl32.3004 (7)C2—H2B0.9601
N2—C21.488 (4)C3—C41.511 (4)
N2—C31.490 (4)C3—H3B0.9599
N2—H30.9600C3—H3A0.9599
N2—H20.9599C4—H4A0.9601
N1—C41.489 (3)C4—H4B0.9600
N1—C11.492 (3)C5—H5A0.9601
N1—C51.494 (3)C5—H5B0.9599
N1—H10.9100C5—H5C0.9601
C1—C21.503 (4)O—HW10.9600
Cl1—Zn—Cl2110.12 (3)N2—C2—C1110.2 (2)
Cl1—Zn—Cl4112.42 (3)N2—C2—H2A109.6
Cl2—Zn—Cl4108.97 (3)C1—C2—H2A109.2
Cl1—Zn—Cl3112.33 (3)N2—C2—H2B109.7
Cl2—Zn—Cl3106.50 (3)C1—C2—H2B108.6
Cl4—Zn—Cl3106.24 (3)H2A—C2—H2B109.5
C2—N2—C3111.2 (2)N2—C3—C4110.5 (2)
C2—N2—H3109.1N2—C3—H3B109.6
C3—N2—H3108.6C4—C3—H3B109.1
C2—N2—H2109.7N2—C3—H3A109.4
C3—N2—H2108.7C4—C3—H3A108.9
H3—N2—H2109.5H3B—C3—H3A109.5
C4—N1—C1110.2 (2)N1—C4—C3111.8 (2)
C4—N1—C5110.6 (2)N1—C4—H4A108.6
C1—N1—C5111.6 (2)C3—C4—H4A108.4
C4—N1—H1108.1N1—C4—H4B109.5
C1—N1—H1108.1C3—C4—H4B109.1
C5—N1—H1108.1H4A—C4—H4B109.5
N1—C1—C2110.8 (2)N1—C5—H5A113.4
N1—C1—H1A108.8N1—C5—H5B109.4
C2—C1—H1A110.0H5A—C5—H5B107.6
N1—C1—H1B108.7N1—C5—H5C109.3
C2—C1—H1B109.0H5A—C5—H5C107.6
H1A—C1—H1B109.5H5B—C5—H5C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl4i0.912.313.189 (2)164
N2—H3···Cl3ii0.962.573.353 (2)139
N2—H3···Cl2ii0.962.693.259 (2)119
O—HW1···Cl30.962.333.2692 (12)167
N2—H2···O0.961.952.908 (3)174
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula(C5H14N2)[ZnCl4]·0.5H2O
Mr318.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.3210 (5), 12.7590 (5), 13.7970 (3)
β (°) 102.821 (3)
V3)2458.16 (14)
Z8
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.47 × 0.11 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.393, 0.661
No. of measured, independent and
observed [I > 2σ(I)] reflections
4237, 4237, 2996
Rint0.000
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.080, 1.24
No. of reflections4237
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.68

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn—Cl12.2449 (8)N1—C41.489 (3)
Zn—Cl22.2614 (7)N1—C11.492 (3)
Zn—Cl42.2615 (8)N1—C51.494 (3)
Zn—Cl32.3004 (7)C1—C21.503 (4)
N2—C21.488 (4)C3—C41.511 (4)
N2—C31.490 (4)
Cl1—Zn—Cl2110.12 (3)C4—N1—C1110.2 (2)
Cl1—Zn—Cl4112.42 (3)C4—N1—C5110.6 (2)
Cl2—Zn—Cl4108.97 (3)C1—N1—C5111.6 (2)
Cl1—Zn—Cl3112.33 (3)N1—C1—C2110.8 (2)
Cl2—Zn—Cl3106.50 (3)N2—C2—C1110.2 (2)
Cl4—Zn—Cl3106.24 (3)N2—C3—C4110.5 (2)
C2—N2—C3111.2 (2)N1—C4—C3111.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl4i0.912.313.189 (2)163.7
N2—H3···Cl3ii0.962.573.353 (2)139.1
N2—H3···Cl2ii0.962.693.259 (2)118.6
O—HW1···Cl30.962.333.2692 (12)166.9
N2—H2···O0.961.952.908 (3)174.3
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

Grateful thanks are expressed to Dr J. Jaud (Service Rayons X, CEMES/CNRS Toulouse) for the X-ray data collection.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDeeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310–1320.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFowkes, A. & Harrison, W. T. A. (2004). Acta Cryst. E60, m59–m61.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLacroix, P. G., Clément, R., Nakatani, K., Zyss, J. & Ledoux, I. (1994). Science, 263, 658–660.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationMitzi, D. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1–12.  Web of Science CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPecaut, J., Levy, J. P. & Masse, R. (1993). J. Mater. Chem. 3, 999–1003.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalha, S., Naili, H., Yahyaoui, S., Ali, B. F., Turnbull, M. M., Mhiri, T. & Bataille, T. (2011). Solid State Sci. 13, 204-208.  Web of Science CSD CrossRef CAS Google Scholar
First citationWalha, S., Yahyaoui, S., Naili, H., Mhiri, T. & Bataille, T. (2010). J. Coord. Chem. pp. 1358–1368.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds