metal-organic compounds
1-Methylpiperazine-1,4-diium tetrachloridozincate hemihydrate
aLaboratoire de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia
*Correspondence e-mail: houcine_naili@yahoo.com
The 5H14N2)[ZnCl4]·0.5H2O, is built up from discrete 1-methylpiperazinediium cations with chair conformation, tetrahedral tetrachloridozincate anions and uncoordinated solvent water molecules linked together by three types of intermolecular hydrogen bonds, viz. N—H⋯Cl, N—H⋯O and O—H⋯Cl.
of the title compound, (CRelated literature
For background on organic–inorganic hybrid materials, see: Lacroix et al. (1994); Mitzi (2001); Pecaut et al. (1993). For related structures, see: Deeth et al. (1984); Fowkes & Harrison (2004); Walha et al. (2010, 2011).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811043236/zq2122sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811043236/zq2122Isup2.hkl
ZnCl2 (1 mmol) and methylpiperazine dihydrochloride (1 mmol) were dissolved in water. The solution was mixed with hydrochloric acid (1 mmol) and allowed to stand. Colourless plate-shaped crystals of the title compound were formed by slow evaporation of the solvent and separated from the solution after three days.
H atoms bonded to C and N atoms were positioned geometrically and allowed to ride on their parent atom, with C—H = 0.96 Å, N—H = 0.89 Å and Uiso = 1.2Ueq(C, N).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).(C5H14N2)[ZnCl4]·0.5H2O | Z = 8 |
Mr = 318.36 | F(000) = 1288 |
Monoclinic, C2/c | Dx = 1.720 Mg m−3 |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 14.3210 (5) Å | θ = 3.5–32.0° |
b = 12.7590 (5) Å | µ = 2.83 mm−1 |
c = 13.7970 (3) Å | T = 293 K |
β = 102.821 (3)° | Plate-shaped, colourless |
V = 2458.16 (14) Å3 | 0.47 × 0.11 × 0.03 mm |
Nonius KappaCCD diffractometer | 4237 independent reflections |
Radiation source: fine-focus sealed tube | 2996 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.000 |
Detector resolution: 9 pixels mm-1 | θmax = 32.0°, θmin = 3.5° |
CCD rotation images, thick slices scans | h = −21→20 |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | k = 0→19 |
Tmin = 0.393, Tmax = 0.661 | l = 0→20 |
4237 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0157P)2 + 3.8346P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max < 0.001 |
4237 reflections | Δρmax = 0.49 e Å−3 |
115 parameters | Δρmin = −0.68 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0000 |
(C5H14N2)[ZnCl4]·0.5H2O | V = 2458.16 (14) Å3 |
Mr = 318.36 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 14.3210 (5) Å | µ = 2.83 mm−1 |
b = 12.7590 (5) Å | T = 293 K |
c = 13.7970 (3) Å | 0.47 × 0.11 × 0.03 mm |
β = 102.821 (3)° |
Nonius KappaCCD diffractometer | 4237 independent reflections |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | 2996 reflections with I > 2σ(I) |
Tmin = 0.393, Tmax = 0.661 | Rint = 0.000 |
4237 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.24 | Δρmax = 0.49 e Å−3 |
4237 reflections | Δρmin = −0.68 e Å−3 |
115 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.01435 (2) | 0.25139 (2) | 0.52565 (2) | 0.02734 (8) | |
Cl1 | −0.08951 (5) | 0.20675 (6) | 0.61886 (5) | 0.04259 (18) | |
Cl3 | 0.14474 (5) | 0.34080 (6) | 0.61526 (5) | 0.03835 (16) | |
Cl2 | −0.05717 (5) | 0.35910 (7) | 0.40099 (6) | 0.0468 (2) | |
Cl4 | 0.07327 (5) | 0.11031 (6) | 0.45991 (5) | 0.04292 (19) | |
N2 | 0.14425 (16) | 0.5183 (2) | 0.90999 (19) | 0.0396 (6) | |
H3 | 0.1119 | 0.5425 | 0.9598 | 0.048* | |
H2 | 0.0992 | 0.4842 | 0.8576 | 0.048* | |
N1 | 0.31874 (14) | 0.49919 (18) | 0.83935 (15) | 0.0288 (5) | |
H1 | 0.3598 | 0.5316 | 0.8904 | 0.035* | |
C1 | 0.27548 (19) | 0.4078 (2) | 0.8808 (2) | 0.0326 (6) | |
H1A | 0.3258 | 0.3607 | 0.9112 | 0.039* | |
H1B | 0.2325 | 0.3726 | 0.8274 | 0.039* | |
C2 | 0.2207 (2) | 0.4431 (2) | 0.9561 (2) | 0.0360 (6) | |
H2A | 0.1925 | 0.3832 | 0.9804 | 0.043* | |
H2B | 0.2644 | 0.4764 | 1.0101 | 0.043* | |
C3 | 0.1851 (2) | 0.6107 (2) | 0.8677 (2) | 0.0424 (7) | |
H3B | 0.2258 | 0.6492 | 0.9203 | 0.051* | |
H3A | 0.1339 | 0.6550 | 0.8341 | 0.051* | |
C4 | 0.2429 (2) | 0.5757 (2) | 0.7943 (2) | 0.0344 (6) | |
H4A | 0.2004 | 0.5427 | 0.7391 | 0.041* | |
H4B | 0.2719 | 0.6359 | 0.7714 | 0.041* | |
C5 | 0.3743 (2) | 0.4655 (3) | 0.7650 (2) | 0.0464 (8) | |
H5A | 0.3369 | 0.4268 | 0.7103 | 0.056* | |
H5B | 0.4265 | 0.4215 | 0.7970 | 0.056* | |
H5C | 0.3991 | 0.5263 | 0.7382 | 0.056* | |
O | 0.0000 | 0.4275 (2) | 0.7500 | 0.0420 (7) | |
HW1 | 0.0338 | 0.3954 | 0.7050 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.02624 (14) | 0.02913 (16) | 0.02555 (15) | 0.00289 (13) | 0.00340 (10) | 0.00195 (13) |
Cl1 | 0.0478 (4) | 0.0476 (4) | 0.0363 (4) | −0.0085 (3) | 0.0176 (3) | 0.0033 (3) |
Cl3 | 0.0348 (3) | 0.0437 (4) | 0.0338 (4) | −0.0077 (3) | 0.0017 (3) | −0.0049 (3) |
Cl2 | 0.0306 (3) | 0.0632 (5) | 0.0451 (4) | 0.0098 (3) | 0.0053 (3) | 0.0291 (4) |
Cl4 | 0.0473 (4) | 0.0451 (4) | 0.0321 (4) | 0.0176 (3) | −0.0002 (3) | −0.0089 (3) |
N2 | 0.0286 (12) | 0.0513 (16) | 0.0420 (14) | −0.0053 (11) | 0.0141 (10) | −0.0153 (12) |
N1 | 0.0209 (10) | 0.0452 (14) | 0.0197 (10) | −0.0038 (9) | 0.0030 (8) | 0.0009 (9) |
C1 | 0.0307 (13) | 0.0359 (15) | 0.0315 (14) | 0.0033 (11) | 0.0074 (11) | 0.0070 (11) |
C2 | 0.0350 (14) | 0.0465 (18) | 0.0285 (14) | −0.0083 (13) | 0.0117 (11) | 0.0023 (12) |
C3 | 0.0401 (16) | 0.0379 (17) | 0.0486 (18) | 0.0067 (13) | 0.0088 (13) | −0.0043 (14) |
C4 | 0.0363 (14) | 0.0353 (16) | 0.0305 (14) | 0.0031 (12) | 0.0054 (11) | 0.0054 (12) |
C5 | 0.0294 (14) | 0.081 (2) | 0.0313 (15) | 0.0083 (15) | 0.0129 (12) | 0.0041 (15) |
O | 0.0452 (17) | 0.0406 (17) | 0.0374 (16) | 0.000 | 0.0033 (13) | 0.000 |
Zn—Cl1 | 2.2449 (8) | C1—H1A | 0.9600 |
Zn—Cl2 | 2.2614 (7) | C1—H1B | 0.9599 |
Zn—Cl4 | 2.2615 (8) | C2—H2A | 0.9599 |
Zn—Cl3 | 2.3004 (7) | C2—H2B | 0.9601 |
N2—C2 | 1.488 (4) | C3—C4 | 1.511 (4) |
N2—C3 | 1.490 (4) | C3—H3B | 0.9599 |
N2—H3 | 0.9600 | C3—H3A | 0.9599 |
N2—H2 | 0.9599 | C4—H4A | 0.9601 |
N1—C4 | 1.489 (3) | C4—H4B | 0.9600 |
N1—C1 | 1.492 (3) | C5—H5A | 0.9601 |
N1—C5 | 1.494 (3) | C5—H5B | 0.9599 |
N1—H1 | 0.9100 | C5—H5C | 0.9601 |
C1—C2 | 1.503 (4) | O—HW1 | 0.9600 |
Cl1—Zn—Cl2 | 110.12 (3) | N2—C2—C1 | 110.2 (2) |
Cl1—Zn—Cl4 | 112.42 (3) | N2—C2—H2A | 109.6 |
Cl2—Zn—Cl4 | 108.97 (3) | C1—C2—H2A | 109.2 |
Cl1—Zn—Cl3 | 112.33 (3) | N2—C2—H2B | 109.7 |
Cl2—Zn—Cl3 | 106.50 (3) | C1—C2—H2B | 108.6 |
Cl4—Zn—Cl3 | 106.24 (3) | H2A—C2—H2B | 109.5 |
C2—N2—C3 | 111.2 (2) | N2—C3—C4 | 110.5 (2) |
C2—N2—H3 | 109.1 | N2—C3—H3B | 109.6 |
C3—N2—H3 | 108.6 | C4—C3—H3B | 109.1 |
C2—N2—H2 | 109.7 | N2—C3—H3A | 109.4 |
C3—N2—H2 | 108.7 | C4—C3—H3A | 108.9 |
H3—N2—H2 | 109.5 | H3B—C3—H3A | 109.5 |
C4—N1—C1 | 110.2 (2) | N1—C4—C3 | 111.8 (2) |
C4—N1—C5 | 110.6 (2) | N1—C4—H4A | 108.6 |
C1—N1—C5 | 111.6 (2) | C3—C4—H4A | 108.4 |
C4—N1—H1 | 108.1 | N1—C4—H4B | 109.5 |
C1—N1—H1 | 108.1 | C3—C4—H4B | 109.1 |
C5—N1—H1 | 108.1 | H4A—C4—H4B | 109.5 |
N1—C1—C2 | 110.8 (2) | N1—C5—H5A | 113.4 |
N1—C1—H1A | 108.8 | N1—C5—H5B | 109.4 |
C2—C1—H1A | 110.0 | H5A—C5—H5B | 107.6 |
N1—C1—H1B | 108.7 | N1—C5—H5C | 109.3 |
C2—C1—H1B | 109.0 | H5A—C5—H5C | 107.6 |
H1A—C1—H1B | 109.5 | H5B—C5—H5C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl4i | 0.91 | 2.31 | 3.189 (2) | 164 |
N2—H3···Cl3ii | 0.96 | 2.57 | 3.353 (2) | 139 |
N2—H3···Cl2ii | 0.96 | 2.69 | 3.259 (2) | 119 |
O—HW1···Cl3 | 0.96 | 2.33 | 3.2692 (12) | 167 |
N2—H2···O | 0.96 | 1.95 | 2.908 (3) | 174 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C5H14N2)[ZnCl4]·0.5H2O |
Mr | 318.36 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 14.3210 (5), 12.7590 (5), 13.7970 (3) |
β (°) | 102.821 (3) |
V (Å3) | 2458.16 (14) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.83 |
Crystal size (mm) | 0.47 × 0.11 × 0.03 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Analytical (de Meulenaer & Tompa, 1965) |
Tmin, Tmax | 0.393, 0.661 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4237, 4237, 2996 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.746 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.080, 1.24 |
No. of reflections | 4237 |
No. of parameters | 115 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.68 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).
Zn—Cl1 | 2.2449 (8) | N1—C4 | 1.489 (3) |
Zn—Cl2 | 2.2614 (7) | N1—C1 | 1.492 (3) |
Zn—Cl4 | 2.2615 (8) | N1—C5 | 1.494 (3) |
Zn—Cl3 | 2.3004 (7) | C1—C2 | 1.503 (4) |
N2—C2 | 1.488 (4) | C3—C4 | 1.511 (4) |
N2—C3 | 1.490 (4) | ||
Cl1—Zn—Cl2 | 110.12 (3) | C4—N1—C1 | 110.2 (2) |
Cl1—Zn—Cl4 | 112.42 (3) | C4—N1—C5 | 110.6 (2) |
Cl2—Zn—Cl4 | 108.97 (3) | C1—N1—C5 | 111.6 (2) |
Cl1—Zn—Cl3 | 112.33 (3) | N1—C1—C2 | 110.8 (2) |
Cl2—Zn—Cl3 | 106.50 (3) | N2—C2—C1 | 110.2 (2) |
Cl4—Zn—Cl3 | 106.24 (3) | N2—C3—C4 | 110.5 (2) |
C2—N2—C3 | 111.2 (2) | N1—C4—C3 | 111.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl4i | 0.91 | 2.31 | 3.189 (2) | 163.7 |
N2—H3···Cl3ii | 0.96 | 2.57 | 3.353 (2) | 139.1 |
N2—H3···Cl2ii | 0.96 | 2.69 | 3.259 (2) | 118.6 |
O—HW1···Cl3 | 0.96 | 2.33 | 3.2692 (12) | 166.9 |
N2—H2···O | 0.96 | 1.95 | 2.908 (3) | 174.3 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x, −y+1, z+1/2. |
Acknowledgements
Grateful thanks are expressed to Dr J. Jaud (Service Rayons X, CEMES/CNRS Toulouse) for the X-ray data collection.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310–1320. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fowkes, A. & Harrison, W. T. A. (2004). Acta Cryst. E60, m59–m61. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lacroix, P. G., Clément, R., Nakatani, K., Zyss, J. & Ledoux, I. (1994). Science, 263, 658–660. CrossRef PubMed CAS Web of Science Google Scholar
Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018. CrossRef IUCr Journals Web of Science Google Scholar
Mitzi, D. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1–12. Web of Science CrossRef Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pecaut, J., Levy, J. P. & Masse, R. (1993). J. Mater. Chem. 3, 999–1003. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Walha, S., Naili, H., Yahyaoui, S., Ali, B. F., Turnbull, M. M., Mhiri, T. & Bataille, T. (2011). Solid State Sci. 13, 204-208. Web of Science CSD CrossRef CAS Google Scholar
Walha, S., Yahyaoui, S., Naili, H., Mhiri, T. & Bataille, T. (2010). J. Coord. Chem. pp. 1358–1368. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Preparation of organic-inorganic hybrid materials attracts great attention in chemistry and materials sciences because of their abilities to combine the properties of organic and inorganic compounds within one single molecular scale, such as second-order nonlinear optical (NLO) response, luminescence, magnetism and even multifonctional properties (Mitzi, 2001; Pecaut et al., 1993; Lacroix et al., 1994). In connection with ongoing studies (Walha et al., 2010; Walha et al., 2011), we report here the crystal structure of a new organic-inorganic hybrid with cations and tetrachloridozincate anions.
The asymmetric unit of the title compound (Fig. 1) contains one inorganic ZnCl42- anion, one organic N-methylpiperazinediium cation and one half-molecule of water, which lies on a two-fold rotation axis. The isolated molecules form organic-inorganic layers parallels to the (b,c) plane and alternate along the a axis (Fig. 2). These layers are stabilized and interconnected by three types of hydrogen bonds: N—H···Cl, N—H···O and O—H···Cl. The anion exhibits a tetrahedral geometry with the ZnII ion surrounded by four Cl atoms with a mean Zn—Cl bond length of 2.267 (2) Å and Cl—Zn—Cl bond angles ranging from 106.24 (3) to 112.42 (3)° (Deeth et al., 1984). The ZnCl4 tetrahedra are linked to water molecules into zig-zag chains by O—H···Cl hydrogen bonds along the c axis, as illustrated in Fig. 3. The organic species adopts a typical chair conformation with average C—C and C—N of 1.501 (4) and 1.491 (3) Å, respectively (Fowkes & Harrison, 2004). The water molecules are located above and below the layers and they connect them via hydrogen bonds. Indeed, they participate in two types of hydrogen bonds O—H···Cl and N—H···O as donor or acceptor, respectively (Table 2), playing a subordinative role in the stabilization of the crystal structure.