metal-organic compounds
Dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-κN2)ethanamine-κN]zinc(II)
aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu
The amine title complex, [ZnCl2(C7H13N3)], resulted from imine hydrolysis in a Schiff base compound. The Zn metal atom has a distorted tetrahedral geometry with the most significant deviation identified in the magnitude of the N—Zn—N angle. This deviation stems from the participation of the Zn and N atoms in a six-membered metallocyclic ring. The latter is in an approximate screw-boat conformation. Two strong N—H⋯Cl hydrogen bonds link the molecules into ribbons propagating along the b-axis direction. The ribbons contain two second-order hydrogen-bonded motifs: a chain and a ring. The chain described by the graph set notation C22(6) is formed by one hydrogen bond going in the forward direction (donor to acceptor) and the other in the backward direction (acceptor to donor). In the ring motif R22(8), both hydrogen bonds propagate in the forward direction.
Related literature
For imine hydrolysis in Schiff base compounds, see: Guzei et al. (2010); Czaun et al. (2010); Bu et al. (1997); Koner & Ray (2008); Sinha et al. (2003). For graph-set analysis, see: Bernstein et al. (1995). Related structures were found from the Cambridge Structural Database (Allen, 2002). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002). For ring analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL, FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
Supporting information
10.1107/S1600536811044217/zq2129sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811044217/zq2129Isup2.hkl
A CH2Cl2 solution (10 ml) of 2-{[2-(3,5-dimethylpyrazol-1-yl)ethylimino]}-4,6-ditertbutylphenol (0.90 g, 2.7 mmol) was added to a CH2Cl2 suspension (20 ml) of ZnCl2 (0.35 g, 2.6 mmol) and stirred at room temperature for 18 h after which a colorless solution was formed. The solution was concentrated in vacuo to about 10 ml and hexane added (5 ml) and kept at -4°C to produce crystals of the title compound. Yield: 0.33 g (49%). Anal. Calcd for C7H13Cl2N3Zn: C, 32.15; H, 5.01; N, 10.71. Found: C, 32.24; H, 4.89; N, 10.61%.
All H-atoms attached to carbon atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.5 times Ueq(bearing atom) for H atoms attached to nitrogen atoms and Uiso(H) = 1.2 times Ueq(bearing atom) for all other H atoms. Default effective X—H distances for T = -173.0° C C(sp 3)–2H=0.99, C(sp 3)–3H=0.98, C(sp 2)–H=0.95, N-2H=0.92 Å.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008), FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. |
[ZnCl2(C7H13N3)] | F(000) = 560 |
Mr = 275.47 | Dx = 1.608 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2yn | Cell parameters from 9893 reflections |
a = 9.060 (3) Å | θ = 4.9–69.5° |
b = 8.894 (2) Å | µ = 7.00 mm−1 |
c = 14.260 (4) Å | T = 100 K |
β = 97.95 (3)° | Block, colourless |
V = 1138.1 (6) Å3 | 0.48 × 0.28 × 0.21 mm |
Z = 4 |
Bruker SMART APEXII area-detector diffractometer | 2123 independent reflections |
Radiation source: fine-focus sealed tube | 2053 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
0.50° ω and 0.5 ° ϕ scans | θmax = 70.0°, θmin = 5.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→10 |
Tmin = 0.134, Tmax = 0.321 | k = −10→10 |
16711 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.030P)2 + 0.6489P] where P = (Fo2 + 2Fc2)/3 |
2123 reflections | (Δ/σ)max = 0.001 |
120 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
[ZnCl2(C7H13N3)] | V = 1138.1 (6) Å3 |
Mr = 275.47 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 9.060 (3) Å | µ = 7.00 mm−1 |
b = 8.894 (2) Å | T = 100 K |
c = 14.260 (4) Å | 0.48 × 0.28 × 0.21 mm |
β = 97.95 (3)° |
Bruker SMART APEXII area-detector diffractometer | 2123 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2053 reflections with I > 2σ(I) |
Tmin = 0.134, Tmax = 0.321 | Rint = 0.019 |
16711 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.31 e Å−3 |
2123 reflections | Δρmin = −0.19 e Å−3 |
120 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.57494 (2) | 0.15806 (2) | 0.280022 (13) | 0.01647 (8) | |
Cl1 | 0.48746 (4) | −0.06529 (4) | 0.22820 (3) | 0.02530 (10) | |
Cl2 | 0.53128 (4) | 0.33130 (4) | 0.16443 (3) | 0.02379 (10) | |
N1 | 0.50886 (14) | 0.22053 (14) | 0.40401 (8) | 0.0181 (3) | |
N2 | 0.60299 (14) | 0.29662 (15) | 0.47094 (9) | 0.0190 (3) | |
N3 | 0.79922 (14) | 0.16142 (14) | 0.32554 (9) | 0.0197 (3) | |
H3A | 0.8369 | 0.0670 | 0.3173 | 0.030* | |
H3B | 0.8433 | 0.2264 | 0.2876 | 0.030* | |
C1 | 0.25483 (18) | 0.1137 (2) | 0.38927 (12) | 0.0251 (3) | |
H1A | 0.2064 | 0.1791 | 0.3389 | 0.030* | |
H1C | 0.1835 | 0.0876 | 0.4324 | 0.030* | |
H1B | 0.2894 | 0.0217 | 0.3613 | 0.030* | |
C2 | 0.38499 (17) | 0.19396 (18) | 0.44299 (11) | 0.0198 (3) | |
C3 | 0.40007 (18) | 0.25371 (18) | 0.53388 (11) | 0.0226 (3) | |
H3 | 0.3282 | 0.2508 | 0.5765 | 0.027* | |
C4 | 0.54005 (18) | 0.31816 (18) | 0.55017 (11) | 0.0213 (3) | |
C5 | 0.61843 (19) | 0.3966 (2) | 0.63528 (11) | 0.0263 (3) | |
H5B | 0.5498 | 0.4094 | 0.6821 | 0.032* | |
H5A | 0.6527 | 0.4953 | 0.6168 | 0.032* | |
H5C | 0.7042 | 0.3364 | 0.6628 | 0.032* | |
C6 | 0.75227 (18) | 0.33978 (18) | 0.45274 (12) | 0.0229 (3) | |
H6B | 0.8057 | 0.3882 | 0.5101 | 0.027* | |
H6A | 0.7433 | 0.4145 | 0.4008 | 0.027* | |
C7 | 0.84300 (17) | 0.2068 (2) | 0.42600 (11) | 0.0233 (3) | |
H7B | 0.9501 | 0.2336 | 0.4360 | 0.028* | |
H7A | 0.8286 | 0.1207 | 0.4678 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01851 (12) | 0.01557 (12) | 0.01536 (12) | 0.00055 (7) | 0.00246 (8) | −0.00065 (7) |
Cl1 | 0.02428 (19) | 0.01691 (18) | 0.0344 (2) | −0.00008 (14) | 0.00302 (15) | −0.00614 (15) |
Cl2 | 0.0279 (2) | 0.02177 (19) | 0.02037 (19) | −0.00225 (14) | −0.00132 (15) | 0.00530 (13) |
N1 | 0.0190 (6) | 0.0199 (7) | 0.0151 (6) | −0.0028 (5) | 0.0018 (5) | −0.0018 (5) |
N2 | 0.0185 (6) | 0.0220 (6) | 0.0164 (6) | −0.0032 (5) | 0.0024 (5) | −0.0029 (5) |
N3 | 0.0200 (6) | 0.0183 (7) | 0.0213 (7) | 0.0008 (5) | 0.0043 (5) | 0.0008 (5) |
C1 | 0.0209 (8) | 0.0301 (9) | 0.0247 (8) | −0.0056 (7) | 0.0044 (6) | −0.0018 (7) |
C2 | 0.0202 (7) | 0.0201 (7) | 0.0190 (7) | 0.0001 (6) | 0.0030 (6) | 0.0031 (6) |
C3 | 0.0240 (8) | 0.0268 (8) | 0.0181 (7) | −0.0012 (6) | 0.0066 (6) | 0.0011 (6) |
C4 | 0.0247 (8) | 0.0220 (7) | 0.0173 (7) | 0.0012 (6) | 0.0036 (6) | 0.0004 (6) |
C5 | 0.0296 (8) | 0.0311 (9) | 0.0182 (7) | −0.0024 (7) | 0.0036 (6) | −0.0043 (7) |
C6 | 0.0198 (8) | 0.0282 (9) | 0.0211 (8) | −0.0062 (6) | 0.0041 (6) | −0.0037 (6) |
C7 | 0.0186 (7) | 0.0313 (9) | 0.0197 (7) | 0.0020 (6) | 0.0011 (6) | 0.0022 (7) |
Zn1—N1 | 2.0214 (13) | C1—H1B | 0.9800 |
Zn1—N3 | 2.0461 (14) | C2—C3 | 1.390 (2) |
Zn1—Cl1 | 2.2266 (6) | C3—C4 | 1.382 (2) |
Zn1—Cl2 | 2.2512 (6) | C3—H3 | 0.9500 |
N1—C2 | 1.340 (2) | C4—C5 | 1.492 (2) |
N1—N2 | 1.3679 (18) | C5—H5B | 0.9800 |
N2—C4 | 1.348 (2) | C5—H5A | 0.9800 |
N2—C6 | 1.463 (2) | C5—H5C | 0.9800 |
N3—C7 | 1.489 (2) | C6—C7 | 1.519 (2) |
N3—H3A | 0.9200 | C6—H6B | 0.9900 |
N3—H3B | 0.9200 | C6—H6A | 0.9900 |
C1—C2 | 1.496 (2) | C7—H7B | 0.9900 |
C1—H1A | 0.9800 | C7—H7A | 0.9900 |
C1—H1C | 0.9800 | ||
N1—Zn1—N3 | 96.88 (6) | C3—C2—C1 | 128.97 (14) |
N1—Zn1—Cl1 | 113.62 (4) | C4—C3—C2 | 106.55 (14) |
N3—Zn1—Cl1 | 114.24 (4) | C4—C3—H3 | 126.7 |
N1—Zn1—Cl2 | 114.15 (4) | C2—C3—H3 | 126.7 |
N3—Zn1—Cl2 | 106.77 (4) | N2—C4—C3 | 106.56 (14) |
Cl1—Zn1—Cl2 | 110.44 (3) | N2—C4—C5 | 122.65 (14) |
C2—N1—N2 | 105.95 (12) | C3—C4—C5 | 130.79 (15) |
C2—N1—Zn1 | 132.88 (11) | C4—C5—H5B | 109.5 |
N2—N1—Zn1 | 120.99 (10) | C4—C5—H5A | 109.5 |
C4—N2—N1 | 111.10 (13) | H5B—C5—H5A | 109.5 |
C4—N2—C6 | 128.32 (13) | C4—C5—H5C | 109.5 |
N1—N2—C6 | 120.56 (12) | H5B—C5—H5C | 109.5 |
C7—N3—Zn1 | 115.47 (10) | H5A—C5—H5C | 109.5 |
C7—N3—H3A | 108.4 | N2—C6—C7 | 112.70 (13) |
Zn1—N3—H3A | 108.4 | N2—C6—H6B | 109.1 |
C7—N3—H3B | 108.4 | C7—C6—H6B | 109.1 |
Zn1—N3—H3B | 108.4 | N2—C6—H6A | 109.1 |
H3A—N3—H3B | 107.5 | C7—C6—H6A | 109.1 |
C2—C1—H1A | 109.5 | H6B—C6—H6A | 107.8 |
C2—C1—H1C | 109.5 | N3—C7—C6 | 111.80 (13) |
H1A—C1—H1C | 109.5 | N3—C7—H7B | 109.3 |
C2—C1—H1B | 109.5 | C6—C7—H7B | 109.3 |
H1A—C1—H1B | 109.5 | N3—C7—H7A | 109.3 |
H1C—C1—H1B | 109.5 | C6—C7—H7A | 109.3 |
N1—C2—C3 | 109.84 (14) | H7B—C7—H7A | 107.9 |
N1—C2—C1 | 121.18 (14) | ||
N3—Zn1—N1—C2 | −151.81 (14) | N2—N1—C2—C1 | 179.17 (14) |
Cl1—Zn1—N1—C2 | −31.54 (15) | Zn1—N1—C2—C1 | −5.9 (2) |
Cl2—Zn1—N1—C2 | 96.31 (14) | N1—C2—C3—C4 | −0.41 (18) |
N3—Zn1—N1—N2 | 22.52 (12) | C1—C2—C3—C4 | −179.06 (16) |
Cl1—Zn1—N1—N2 | 142.79 (10) | N1—N2—C4—C3 | −0.02 (18) |
Cl2—Zn1—N1—N2 | −89.35 (11) | C6—N2—C4—C3 | −178.15 (15) |
C2—N1—N2—C4 | −0.23 (17) | N1—N2—C4—C5 | 179.25 (14) |
Zn1—N1—N2—C4 | −175.91 (10) | C6—N2—C4—C5 | 1.1 (3) |
C2—N1—N2—C6 | 178.07 (13) | C2—C3—C4—N2 | 0.25 (18) |
Zn1—N1—N2—C6 | 2.38 (18) | C2—C3—C4—C5 | −178.94 (17) |
N1—Zn1—N3—C7 | −0.89 (11) | C4—N2—C6—C7 | 122.45 (17) |
Cl1—Zn1—N3—C7 | −120.69 (10) | N1—N2—C6—C7 | −55.52 (19) |
Cl2—Zn1—N3—C7 | 116.93 (10) | Zn1—N3—C7—C6 | −42.60 (16) |
N2—N1—C2—C3 | 0.39 (17) | N2—C6—C7—N3 | 78.30 (17) |
Zn1—N1—C2—C3 | 175.34 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Cl2i | 0.92 | 2.41 | 3.3073 (15) | 165 |
N3—H3B···Cl1ii | 0.92 | 2.43 | 3.2620 (15) | 150 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [ZnCl2(C7H13N3)] |
Mr | 275.47 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.060 (3), 8.894 (2), 14.260 (4) |
β (°) | 97.95 (3) |
V (Å3) | 1138.1 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 7.00 |
Crystal size (mm) | 0.48 × 0.28 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.134, 0.321 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16711, 2123, 2053 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.051, 1.03 |
No. of reflections | 2123 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.19 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
Zn1—N1 | 2.0214 (13) | Zn1—Cl1 | 2.2266 (6) |
Zn1—N3 | 2.0461 (14) | Zn1—Cl2 | 2.2512 (6) |
N1—Zn1—N3 | 96.88 (6) | N1—Zn1—Cl2 | 114.15 (4) |
N1—Zn1—Cl1 | 113.62 (4) | N3—Zn1—Cl2 | 106.77 (4) |
N3—Zn1—Cl1 | 114.24 (4) | Cl1—Zn1—Cl2 | 110.44 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Cl2i | 0.92 | 2.41 | 3.3073 (15) | 165.4 |
N3—H3B···Cl1ii | 0.92 | 2.43 | 3.2620 (15) | 149.6 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
Financial support for this work from the University of Johannesburg is gratefully acknowledged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2, SADABS and SAINT-Plus. Bruker-AXS Inc., Madison, WI, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bu, X. R., Jackson, C. R., Van Derveer, D., You, X. Z., Meng, Q. J. & Wang, R. X. (1997). Polyhedron, 16, 2991–3001. CSD CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358–1367. CrossRef CAS Web of Science Google Scholar
Czaun, M., Nelana, S. M., Guzei, I. A., Hasselgren, C., Håkensson, M., Jagner, S., Lisensky, G., Darkwa, J. & Nordlander, E. (2010). Inorg. Chim. Acta, 363, 3102–3112. Web of Science CSD CrossRef CAS Google Scholar
Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA. Google Scholar
Guzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010). Acta Cryst. C66, m89–m96. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Koner, R. R. & Ray, M. (2008). Inorg. Chem. 47, 9122–9124. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sinha, M., Ray, M., Bhattacharya, R., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imine hydrolysis in Schiff base compounds is quite common. It is usually driven by traces of water and the presence of acidic metal ions, especially in the case of the first row transition metal chlorides such as CoII (Guzei et al., 2010), NiII (Czaun et al., 2010) and CuII (Bu et al., 1997; Czaun et al., 2010; Koner & Ray, 2008; Sinha et al., 2003). In a recent attempt to prepare a ZnII complex from the reaction of 2-{[2-(3,5-dimethylpyrazol-1-yl)ethylimino]}-4,6-ditertbutylphenol with zinc(II) chloride, we isolated the title compound (I), a hydrolysis product of the imine to an amine.
The coordination environment of the central metal Zn1 is distorted tetrahedral with angles ranging from 96.88 (6)° to 114.24 (4)°. The dihedral angle between the planes defined by atoms Zn1, N1, N3 and Zn1, Cl1, Cl2 spans 86.77 (4)°. The most significant deviations from the ideal tetrahedral geometry is observed in the N1—Zn1—N3 angle of 96.88 (6)°. This significant deviation is due to its inclusion in a six-membered metallocyclic ring. This ring, Zn1—N1—N2—C6—C7—N3, approaches a screw-boat conformation 5S4 with the puckering coordinates θ = 74.44 (12)° and ϕ = 203.47 (13)° (Cremer & Pople, 1975). Data mining of the Cambridge Structural Database (August 2011 update; Allen, 2002) revealed 55 complexes in which a zinc atom is bonded to two chlorine atoms, one nitrogen atom of a pyrazole, and one other nitrogen atom. The complexes may contain metallocyclic rings with five, six, seven, eight, ten, thirteen, or sixteen atoms as well as no metallocyclic ring. The degree of deviation of the N—Zn—N bond angle from the ideal tetrahedral value depends greatly on the number of atoms in the metallocyclic ring. For the 22 complexes in which no ring is formed, the N—Zn—N angle averages of 111 (8)°. The eight complexes with five-membered metallocyclic rings have an average N—Zn—N angle of 79.3 (7)°. For the 18 complexes with six-membered metallocyclic rings the N—Zn—N angle averages 94 (3)°, which compares well to that of compound (I). The N—Zn—N angles in the seven complexes that have greater than six-membered metallocyclic rings average 107 (3)°. All other geometrical parameters of (I) are typical as confirmed by a Mogul structural check (Bruno et al., 2002).
Two strong intermolecular hydrogen bonding interactions N3—H3b···Cl1 [-x + 3/2, y + 1/2, -z + 1/2] (a) and N3—H3a···Cl2 [-x + 3/2, y - 1/2, -z + 1/2] (b) link molecules of (I) in chains parallel to the b axis. The chains form an motif (the arrows above the bond designators show the direction of the bond; the forward arrow corresponds to the donor-to-acceptor direction whereas the backward arrow to the acceptor-to-donor direction) described by the second order graph set notation C22(6) (Bernstein et al. 1995). The hydrogen bonds also form an ring motif described by the second order graph set notation R22(8) with both bonds in the forward direction.