organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-phenyl-5,6-di­hydro­benzo[h]quinoline-3-carbo­nitrile–3-amino-1-phenyl-9,10-di­hydro­phenanthrene-2,4-dicarbo­nitrile (5/3)

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 September 2011; accepted 3 October 2011; online 8 October 2011)

The asymmetric unit of the 5:3 title co-crystal of 2-amino-4-phenyl-5,6-dihydro­benzo[h]quinoline-3-carbonitrile and 3-amino-1-phenyl-9,10-dihydro­phenanthrene-2,4-dicarbonitrile, 0.625C20H15N3.0.375C22H15N3, has the atoms of the fused-ring system and those of the amino, cyano and phenyl substitutents overlapped. The fused-ring system is buckled owing to the ethyl­ene linkage in the central ring, the two flanking aromatic rings being twisted by 20.1 (1)°. This ethyl­ene portion is disordered over two positions in a 1:1 ratio. The phenyl ring is twisted by 69.5 (1)° relative to the amino- and cyano-bearing aromatic ring. In the crystal, two mol­ecules are linked by an N—H⋯N hydrogen bond, generating a a helical chain along [010].

Related literature

For the synthesis, see: Aly et al. (1991[Aly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827-834.]); Paul et al. (1998[Paul, S., Gupta, R. & Loupy, A. (1998). J. Chem. Res. (S), pp. 330-331.]). For related structures, see: Asiri et al. (2011a[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2438.],b[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449.]).

[Scheme 1]

Experimental

Crystal data
  • 0.625C20H15N3·0.375C22H15N3

  • Mr = 306.36

  • Orthorhombic, P 21 21 21

  • a = 6.9611 (2) Å

  • b = 12.6093 (2) Å

  • c = 17.4933 (3) Å

  • V = 1535.47 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.835, Tmax = 0.988

  • 6293 measured reflections

  • 1794 independent reflections

  • 1707 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.05

  • 1794 reflections

  • 240 parameters

  • 24 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N3i 0.88 (1) 2.37 (2) 3.175 (2) 152 (3)
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Amino-4-phenyl-5,6-dihydrobenzoquinoline-3-carbonitrile is synthesized from the reaction of the α-substituted cinnamonitrile, C6H5CHC(CN)2, with α-tetralone in a reaction that is catalyzed by ammonium acetate (Aly et al., 1991). The synthesis when conducted under microwave irradiation leads to an improved yield (Paul et al., 1998). In previous studies, we obtained instead di-carbonitrile substituted dihydrophenanthrenes (3-amino-1-(4-methoxyphenyl)-9,10- dihydrophenanthrene-2,4-dicarbonitrile and 3-amino-1-(2H-1,3-benzodioxol-5-yl)- 9,10-dihydrophenanthrene-2,4-dicarbonitrile) with 4-methoxybenzaldehyde and piperonaldehyde in syntheses that differed slightly from the reported ones as we used substituted benzaldehydes, α-tetralone and ethyl cyanoacetate along with a molar excess of ammonium acetate (Asiri et al., 2011a; 2011b).

In this study, the reaction of benzaldehyde, α-tetralone and ethyl cyanoacetate yielded the co-crystal of 2-amino-4-phenyl-5,6-dihydrobenzoquinoline-3-carbonitrile (C20H15N3) and 3-amino-1-phenyl-9,10-dihydrophenanthrene-2,4-dicarbonitrile (C22H15N3), with the two components present in a 5: 3 molar ratio (Scheme I). The fused-ring system is buckled owing to the ethylene linkage in the central ring with the two flanking aromatic rings twisted by 20.1 (1)°. Relative to the amino- and cyano-bearing aromatic ring, the phenyl ring is twisted by 69.5 (1) ° (Fig. 1 and Fig. 2). Two molecules are linked by an N—H···N hydrogen bond to generate a helical chain (Table 1 and Fig. 3). The ethylene portion is disordered over two positions in a 1:1 ratio.

Related literature top

For the synthesis, see: Aly et al. (1991); Paul et al. (1998). For related structures, see: Asiri et al. (2011a,b).

Experimental top

A mixture of benzaldehyde (1.06 g,10 mmol), α-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.13 g, 10 mmol) and ammonium acetate (6.16 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The mixture was allowed to cool and the precipitate that formed was filtered, washed with water, dried and recrystallized from DMF.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H = 0.95–0.99 Å; Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map and were refined with a distance restraint of N—H = 0.88±0.01 Å and with their isotropic displacement parameters refined.

The crystal is a co-crystal of 2-amino-4-phenyl-5,6-dihydrobenzoquinoline-3-carbonitrile (C20H15N3) and 3-amino-1-phenyl-9,10-dihydrophenanthrene-2,4-dicarbonitrile (C22H15N3). The first component is a dihydrobenzoquinoline and has only one cyano substituent. The second component is a dihydrophenanthrene with two cyano substituents. The two-coordinate N atom of the first molecule occupies the same site as the three-coordinate C atom of the second molecule. As the occupancy refined to an almost 5:3 ratio, the occupancy was then fixed as this ratio. The ethylene –CH2CH2– portion (whose atoms lie on general positions) is disordered over two sites. The occupancy could not be refined, and was fixed as 1:1. The 1,2-connected carbon-carbon distances were restrained to 1.54±0.01 Å and the 1,3-related ones to 2.51±0.01 Å. The displacement parameters of the primed atoms were set to those of the unprimed ones, and the were restrained to be nearly isotropic. Despite the use of low temperature, copper radiation, long exposure times and a large number of redundant reflections, the Flack parameter could not be refined. 1252 Friedel pairs were merged.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H15N3 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Thermal ellipsoid plot (Barbour, 2001) of C22H15N3 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 3] Fig. 3. Thermal ellipsoid plot (Barbour, 2001) of C20H15N3 (62.5% component) and C22H15N3 (37.5% component) related by twofold screw axial symmetry. For symmetry code (i), see Table 1.
2-Amino-4-phenyl-5,6-dihydrobenzo[h]quinoline-3-carbonitrile– 3-amino-1-phenyl-9,10-dihydrophenanthrene-2,4-dicarbonitrile (5/3) top
Crystal data top
0.625C20H15N3·0.375C22H15N3F(000) = 642
Mr = 306.36Dx = 1.325 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 3717 reflections
a = 6.9611 (2) Åθ = 3.5–74.3°
b = 12.6093 (2) ŵ = 0.62 mm1
c = 17.4933 (3) ÅT = 100 K
V = 1535.47 (6) Å3Plate, brown-orange
Z = 40.30 × 0.20 × 0.02 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1794 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1707 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.4041 pixels mm-1θmax = 74.5°, θmin = 4.3°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1315
Tmin = 0.835, Tmax = 0.988l = 2120
6293 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.2871P]
where P = (Fo2 + 2Fc2)/3
1794 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.19 e Å3
24 restraintsΔρmin = 0.23 e Å3
Crystal data top
0.625C20H15N3·0.375C22H15N3V = 1535.47 (6) Å3
Mr = 306.36Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.9611 (2) ŵ = 0.62 mm1
b = 12.6093 (2) ÅT = 100 K
c = 17.4933 (3) Å0.30 × 0.20 × 0.02 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1794 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1707 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.988Rint = 0.018
6293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04024 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
1794 reflectionsΔρmin = 0.23 e Å3
240 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.9898 (3)0.26050 (14)1.05516 (10)0.0294 (4)0.625
C1'0.9898 (3)0.26050 (14)1.05516 (10)0.0294 (4)0.375
N21.0082 (3)0.28041 (13)1.18789 (10)0.0339 (4)
H11.035 (5)0.3483 (10)1.1827 (17)0.052 (8)*
H21.031 (4)0.254 (2)1.2335 (9)0.045 (8)*
N30.9475 (4)0.02407 (14)1.26992 (10)0.0396 (5)
C10.9186 (4)0.07603 (16)1.08021 (11)0.0369 (5)
C21.0684 (4)0.13801 (17)1.10772 (12)0.0414 (6)
H2A1.18830.10631.12000.050*
C31.0422 (5)0.24706 (17)1.11721 (12)0.0463 (7)
H31.14500.28961.13550.056*
C40.8687 (5)0.29307 (17)1.10017 (12)0.0500 (8)
H40.85130.36711.10750.060*
C50.7187 (5)0.23191 (18)1.07229 (14)0.0521 (7)
H50.59900.26411.06030.063*
C60.7439 (5)0.12301 (18)1.06183 (13)0.0478 (6)
H60.64180.08111.04220.057*
C70.9453 (4)0.04111 (15)1.06991 (11)0.0336 (5)
C80.9536 (4)0.08663 (16)0.99730 (11)0.0391 (6)
C90.9790 (10)0.0170 (5)0.9251 (4)0.0390 (15)0.50
H9A1.03430.05250.93960.047*0.50
H9B0.85240.00430.90100.047*0.50
C101.1119 (9)0.0727 (5)0.8684 (3)0.0440 (15)0.50
H10A1.12160.03100.82060.053*0.50
H10B1.24220.08010.89050.053*0.50
C9'0.9024 (9)0.0270 (5)0.9245 (4)0.0390 (15)0.50
H9'C0.92200.05000.93220.047*0.50
H9'D0.76560.03900.91170.047*0.50
C10'1.0290 (10)0.0659 (5)0.8592 (3)0.0440 (15)0.50
H10C1.16280.04260.86830.053*0.50
H10D0.98470.03350.81080.053*0.50
C111.0247 (5)0.18419 (19)0.85163 (13)0.0485 (7)
C121.0305 (5)0.2290 (2)0.77912 (15)0.0561 (7)
H121.06080.18590.73620.067*
C130.9929 (5)0.3351 (3)0.76887 (17)0.0606 (8)
H130.99630.36510.71910.073*
C140.9497 (5)0.3981 (3)0.8318 (2)0.0699 (10)
H140.92460.47160.82500.084*
C150.9431 (5)0.3542 (2)0.90409 (18)0.0593 (9)
H150.91340.39760.94690.071*
C160.9798 (4)0.24669 (16)0.91469 (12)0.0355 (5)
C170.9738 (3)0.19760 (15)0.99194 (12)0.0331 (5)
C180.9871 (3)0.21628 (14)1.12653 (11)0.0281 (4)
C190.9622 (3)0.10550 (15)1.13457 (11)0.0291 (4)
C200.9531 (4)0.05995 (15)1.20987 (11)0.0308 (5)
N41.0072 (11)0.4629 (4)1.0526 (3)0.0471 (15)0.375
C210.9965 (10)0.3721 (4)1.0492 (3)0.0337 (12)0.375
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0427 (10)0.0207 (8)0.0249 (8)0.0010 (8)0.0045 (8)0.0015 (7)
C1'0.0427 (10)0.0207 (8)0.0249 (8)0.0010 (8)0.0045 (8)0.0015 (7)
N20.0607 (12)0.0210 (7)0.0200 (7)0.0002 (9)0.0011 (8)0.0010 (6)
N30.0672 (14)0.0253 (8)0.0263 (8)0.0000 (9)0.0015 (9)0.0044 (7)
C10.0703 (16)0.0214 (9)0.0189 (8)0.0041 (10)0.0016 (10)0.0008 (7)
C20.0705 (16)0.0260 (10)0.0277 (9)0.0011 (11)0.0012 (11)0.0002 (8)
C30.087 (2)0.0257 (10)0.0259 (10)0.0058 (12)0.0027 (12)0.0009 (8)
C40.106 (2)0.0201 (9)0.0239 (10)0.0060 (13)0.0035 (12)0.0016 (8)
C50.089 (2)0.0300 (10)0.0370 (12)0.0174 (13)0.0096 (13)0.0029 (10)
C60.0785 (18)0.0283 (10)0.0365 (11)0.0092 (12)0.0159 (13)0.0053 (9)
C70.0539 (13)0.0211 (9)0.0258 (9)0.0025 (9)0.0007 (10)0.0002 (8)
C80.0704 (16)0.0228 (9)0.0241 (9)0.0043 (11)0.0002 (11)0.0017 (8)
C90.069 (4)0.0245 (14)0.0237 (10)0.001 (3)0.002 (3)0.0004 (10)
C100.082 (5)0.0283 (13)0.0211 (15)0.013 (3)0.001 (2)0.0071 (11)
C9'0.069 (4)0.0245 (14)0.0237 (10)0.001 (3)0.002 (3)0.0004 (10)
C10'0.082 (5)0.0283 (13)0.0211 (15)0.013 (3)0.001 (2)0.0071 (11)
C110.0804 (19)0.0357 (11)0.0293 (11)0.0080 (14)0.0008 (12)0.0083 (9)
C120.080 (2)0.0562 (15)0.0321 (12)0.0134 (16)0.0003 (13)0.0126 (11)
C130.0538 (14)0.0720 (19)0.0559 (16)0.0019 (16)0.0020 (14)0.0404 (15)
C140.0675 (19)0.0549 (16)0.087 (2)0.0299 (16)0.0384 (18)0.0452 (16)
C150.0674 (18)0.0408 (13)0.0698 (18)0.0201 (14)0.0372 (16)0.0274 (13)
C160.0429 (11)0.0291 (10)0.0347 (11)0.0004 (10)0.0053 (9)0.0096 (9)
C170.0456 (11)0.0240 (9)0.0297 (10)0.0003 (10)0.0041 (10)0.0026 (8)
C180.0405 (11)0.0215 (8)0.0224 (9)0.0005 (9)0.0001 (8)0.0002 (7)
C190.0432 (11)0.0224 (9)0.0218 (9)0.0005 (9)0.0001 (9)0.0028 (7)
C200.0480 (12)0.0195 (8)0.0249 (9)0.0013 (9)0.0017 (9)0.0011 (7)
N40.094 (5)0.021 (2)0.026 (2)0.002 (3)0.001 (3)0.0014 (18)
C210.055 (3)0.027 (3)0.018 (2)0.003 (3)0.005 (2)0.0001 (19)
Geometric parameters (Å, º) top
N1—C171.366 (3)C9—H9B0.9900
N1—C181.367 (2)C10—C111.560 (7)
N2—C181.352 (2)C10—H10A0.9900
N2—H10.88 (1)C10—H10B0.9900
N2—H20.88 (1)C9'—C10'1.523 (7)
N3—C201.144 (3)C9'—H9'C0.9900
C1—C61.391 (4)C9'—H9'D0.9900
C1—C21.389 (4)C10'—C111.498 (7)
C1—C71.499 (3)C10'—H10C0.9900
C2—C31.397 (3)C10'—H10D0.9900
C2—H2A0.9500C11—C121.389 (3)
C3—C41.373 (4)C11—C161.391 (3)
C3—H30.9500C12—C131.375 (4)
C4—C51.387 (4)C12—H120.9500
C4—H40.9500C13—C141.390 (5)
C5—C61.396 (3)C13—H130.9500
C5—H50.9500C14—C151.382 (4)
C6—H60.9500C14—H140.9500
C7—C191.397 (3)C15—C161.392 (3)
C7—C81.395 (3)C15—H150.9500
C8—C171.410 (3)C16—C171.487 (3)
C8—C9'1.521 (7)C18—C191.415 (2)
C8—C91.548 (7)C19—C201.438 (3)
C9—C101.527 (7)N4—C211.149 (7)
C9—H9A0.9900
C17—N1—C18120.11 (16)C10'—C9'—C8109.5 (4)
C18—N2—H1122 (2)C10'—C9'—H9'C109.8
C18—N2—H2120.8 (19)C8—C9'—H9'C109.8
H1—N2—H2115 (3)C10'—C9'—H9'D109.8
C6—C1—C2119.8 (2)C8—C9'—H9'D109.8
C6—C1—C7120.0 (2)H9'C—C9'—H9'D108.2
C2—C1—C7120.2 (2)C11—C10'—C9'112.1 (5)
C1—C2—C3119.8 (3)C11—C10'—H10C109.2
C1—C2—H2A120.1C9'—C10'—H10C109.2
C3—C2—H2A120.1C11—C10'—H10D109.2
C4—C3—C2120.3 (3)C9'—C10'—H10D109.2
C4—C3—H3119.8H10C—C10'—H10D107.9
C2—C3—H3119.8C12—C11—C16120.0 (2)
C3—C4—C5120.2 (2)C12—C11—C10'119.0 (3)
C3—C4—H4119.9C16—C11—C10'119.9 (3)
C5—C4—H4119.9C12—C11—C10121.8 (3)
C4—C5—C6119.9 (3)C16—C11—C10116.7 (3)
C4—C5—H5120.0C13—C12—C11120.6 (3)
C6—C5—H5120.0C13—C12—H12119.7
C1—C6—C5119.9 (3)C11—C12—H12119.7
C1—C6—H6120.1C12—C13—C14119.6 (2)
C5—C6—H6120.1C12—C13—H13120.2
C19—C7—C8119.64 (17)C14—C13—H13120.2
C19—C7—C1119.05 (17)C15—C14—C13120.1 (3)
C8—C7—C1121.31 (17)C15—C14—H14119.9
C7—C8—C17118.24 (18)C13—C14—H14119.9
C7—C8—C9'123.3 (3)C14—C15—C16120.4 (3)
C17—C8—C9'117.3 (3)C14—C15—H15119.8
C7—C8—C9120.9 (3)C16—C15—H15119.8
C17—C8—C9119.8 (3)C15—C16—C11119.2 (2)
C10—C9—C8109.7 (5)C15—C16—C17121.4 (2)
C10—C9—H9A109.7C11—C16—C17119.40 (18)
C8—C9—H9A109.7N1—C17—C8122.06 (18)
C10—C9—H9B109.7N1—C17—C16119.48 (18)
C8—C9—H9B109.7C8—C17—C16118.46 (18)
H9A—C9—H9B108.2N2—C18—N1118.65 (16)
C9—C10—C11107.5 (5)N2—C18—C19121.67 (16)
C9—C10—H10A110.2N1—C18—C19119.68 (17)
C11—C10—H10A110.2C7—C19—C18120.24 (17)
C9—C10—H10B110.2C7—C19—C20120.37 (17)
C11—C10—H10B110.2C18—C19—C20119.39 (17)
H10A—C10—H10B108.5N3—C20—C19179.3 (3)
C6—C1—C2—C30.4 (3)C10—C11—C12—C13165.4 (4)
C7—C1—C2—C3179.9 (2)C11—C12—C13—C140.4 (5)
C1—C2—C3—C40.6 (3)C12—C13—C14—C150.5 (5)
C2—C3—C4—C51.0 (4)C13—C14—C15—C160.1 (5)
C3—C4—C5—C60.3 (4)C14—C15—C16—C110.5 (5)
C2—C1—C6—C51.1 (4)C14—C15—C16—C17179.9 (3)
C7—C1—C6—C5179.3 (2)C12—C11—C16—C150.7 (5)
C4—C5—C6—C10.7 (4)C10'—C11—C16—C15168.7 (4)
C6—C1—C7—C19110.6 (3)C10—C11—C16—C15165.6 (3)
C2—C1—C7—C1969.8 (3)C12—C11—C16—C17179.9 (3)
C6—C1—C7—C869.5 (3)C10'—C11—C16—C1711.8 (5)
C2—C1—C7—C8110.1 (3)C10—C11—C16—C1713.8 (4)
C19—C7—C8—C171.7 (4)C18—N1—C17—C80.2 (4)
C1—C7—C8—C17178.4 (2)C18—N1—C17—C16179.2 (2)
C19—C7—C8—C9'169.0 (4)C7—C8—C17—N11.5 (4)
C1—C7—C8—C9'11.0 (5)C9'—C8—C17—N1169.6 (3)
C19—C7—C8—C9166.8 (4)C9—C8—C17—N1167.1 (4)
C1—C7—C8—C913.1 (5)C7—C8—C17—C16179.1 (2)
C7—C8—C9—C10141.5 (4)C9'—C8—C17—C1611.0 (4)
C17—C8—C9—C1026.9 (6)C9—C8—C17—C1612.3 (5)
C9'—C8—C9—C10115.4 (13)C15—C16—C17—N119.7 (4)
C8—C9—C10—C1155.9 (6)C11—C16—C17—N1159.7 (2)
C7—C8—C9'—C10'146.4 (4)C15—C16—C17—C8160.9 (3)
C17—C8—C9'—C10'46.2 (6)C11—C16—C17—C819.7 (4)
C9—C8—C9'—C10'56.5 (11)C17—N1—C18—N2178.3 (2)
C8—C9'—C10'—C1152.0 (6)C17—N1—C18—C191.8 (3)
C9'—C10'—C11—C12143.3 (4)C8—C7—C19—C180.2 (4)
C9'—C10'—C11—C1624.9 (6)C1—C7—C19—C18179.9 (2)
C9'—C10'—C11—C10113.0 (11)C8—C7—C19—C20179.7 (2)
C9—C10—C11—C12142.0 (4)C1—C7—C19—C200.4 (3)
C9—C10—C11—C1651.9 (5)N2—C18—C19—C7178.5 (2)
C9—C10—C11—C10'52.2 (9)N1—C18—C19—C71.6 (3)
C16—C11—C12—C130.2 (5)N2—C18—C19—C202.0 (4)
C10'—C11—C12—C13168.4 (4)N1—C18—C19—C20177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N3i0.88 (1)2.37 (2)3.175 (2)152 (3)
Symmetry code: (i) x+2, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formula0.625C20H15N3·0.375C22H15N3
Mr306.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.9611 (2), 12.6093 (2), 17.4933 (3)
V3)1535.47 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.30 × 0.20 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.835, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6293, 1794, 1707
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.05
No. of reflections1794
No. of parameters240
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N3i0.88 (1)2.37 (2)3.175 (2)152 (3)
Symmetry code: (i) x+2, y+1/2, z+5/2.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827–834.  CAS Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationPaul, S., Gupta, R. & Loupy, A. (1998). J. Chem. Res. (S), pp. 330–331.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds