organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(3,4-dimeth­­oxy­phen­yl)-5,6-di­hydro­benzo[h]quinoline-3-carbo­nitrile–3-amino-1-(3,4-dimeth­­oxy­phen­yl)-9,10-di­hydro­phenanthrene-2,4-dicarbo­nitrile (1/19)

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 September 2011; accepted 3 October 2011; online 8 October 2011)

The asymmetric unit of the 1:19 title co-crystal of 2-amino-4-(3,4-dimeth­oxy­phen­yl)-5,6-dihydro­benzo[h]quinoline-3-carbo­nitrile and 3-amino-1-(3,4-dimeth­oxy­phen­yl)-9,10-dihydro­phenanthrene-2,4-dicarbonitrile, 0.05C22H19N3O2·0.95C24H19N3O2, has the atoms of the fused-ring system and those of the amino, cyano and dimeth­oxy­phenyl substitutents overlapped. The fused-ring system is buckled owing to the ethyl­ene linkage in the central ring with the two flanking aromatic rings being twisted by 31.9 (1)°. The ring of the dimeth­oxy­phenyl substituent is twisted by 72.4 (1)° relative to the amino- and cyano-bearing aromatic ring. In the crystal, mol­ecules are linked by duplex amine N—H⋯O(meth­oxy) hydrogen bonds in a cyclic association [graph-set R22(7)], generating a helical chain structure extending along [201].

Related literature

For a similar co-crystal, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011). Acta Cryst. E67, o2872.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • 0.05C22H19N3O2·0.95C24H19N3O2

  • Mr = 380.22

  • Monoclinic, P 21 /c

  • a = 8.9347 (3) Å

  • b = 14.4915 (5) Å

  • c = 14.7818 (6) Å

  • β = 103.446 (4)°

  • V = 1861.45 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.974, Tmax = 0.983

  • 9240 measured reflections

  • 4160 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.124

  • S = 1.04

  • 4160 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1i 0.95 (2) 2.24 (2) 2.927 (2) 129 (2)
N3—H2⋯O2i 0.92 (2) 2.25 (2) 2.987 (2) 136 (2)
Symmetry code: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Amino-5,6-dihydro-4-phenyl-benzoquinoline-3-carbonitrile is synthesized from the reaction of the α-substituted cinnamonitrile, C6H5CHC(CN)2, with α-tetralone in a reaction that is catalyzed by ammonium acetate. The synthesis when conducted under microwave irradiation leads to an improved yield. In previous studies, we obtained instead di-carbonitrile substituted dihydrophenanthrenes (3-amino-1-(4-methoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile and 3-amino-1-(2H-1,3-benzodioxol-5-yl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile) with 4-methoxybenzaldehyde and piperonaldehyde in syntheses that differed slightly from the reported ones as we used substituted benzaldehydes, α-tetralone and ethyl cyanoacetate along with a molar excess of ammonium acetate.

In this study, the reaction of 3,4-dimethoxybenzaldehyde, α-tetralone and ethyl cyanoacetate yielded the co-crystal of 2-amino-4-(3,4-dimethoxyphenyl)-5,6-dihydrobenzoquinoline-3-carbonitrile (C22H19N3O2) and 3-amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (C24H19N3O2) with the components present in a 1: 19 molar ratio (Scheme I). The fused-ring system is buckled owing to the ethylene linkage in the central ring with the two flanking aromatic rings twisted by 31.9 (1) °. Relative to the amino- and cyano-bearing aromatic ring, the benzene ring is twisted by 72.4 (1) ° (Figs. 1 and 2). Molecules are linked by duplex amine N–H···O (methoxy) hydrogen bonds (Table 1) in a cyclic association [graph set R22(7) (Etter et al., 1990)], generating a helical chain structure extending along [2 0 1].

Related literature top

For a similar co-crystal, see: Asiri et al. (2011). For graph-set analysis, see: Etter et al. (1990).

Experimental top

A mixture of 3,4-dimethoxybenzaldehyde (1.66 g,10 mmol), α-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.13 g, 10 mmol) and ammonium acetate (6.16 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The mixture was allowed to cool and the precipitate that formed was filtered, washed with water, dried and recrystallized from DMF.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H = 0.95–0.99 Å; Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map and were refined without restraint, including their temperature isotropic displacement parameters. The compound is a co-crystal of 2-amino-4-(3,4-dimethoxy)-5,6-dihydrobenzoquinoline-3-carbonitrile (C22H19N3O2) and 3-amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (C24H19N3O2). The first component is a dihydrobenzoquinoline and has only one cyano substituent. The second component is a dihydrophenanthrene with two cyano substituents. The two-coordinate N atom of the first molecule occupies the same site as the three-coordinate C atom of the second molecule. As the occupancy refined to an almost 1:19 ratio, the occupancy was then fixed as this ratio.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C22H19N3O2 (molecule 1) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Thermal ellipsoid plot (Barbour, 2001) of C24H19N3O2 (molecule 2) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
2-Amino-4-(3,4-dimethoxyphenyl)-5,6-dihydrobenzo[h]quinoline-3- carbonitrile–3-amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4- dicarbonitrile (1/19) top
Crystal data top
0.05C22H19N3O2·0.95C24H19N3O2F(000) = 797.6
Mr = 380.22Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3220 reflections
a = 8.9347 (3) Åθ = 2.3–29.2°
b = 14.4915 (5) ŵ = 0.09 mm1
c = 14.7818 (6) ÅT = 100 K
β = 103.446 (4)°Block, orange
V = 1861.45 (12) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4160 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3146 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 118
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1817
Tmin = 0.974, Tmax = 0.983l = 1917
9240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.6446P]
where P = (Fo2 + 2Fc2)/3
4160 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
0.05C22H19N3O2·0.95C24H19N3O2V = 1861.45 (12) Å3
Mr = 380.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9347 (3) ŵ = 0.09 mm1
b = 14.4915 (5) ÅT = 100 K
c = 14.7818 (6) Å0.30 × 0.25 × 0.20 mm
β = 103.446 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4160 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3146 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.031
9240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
4160 reflectionsΔρmin = 0.24 e Å3
270 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.30588 (13)0.63995 (9)0.10804 (8)0.0271 (3)
O20.07648 (12)0.69798 (8)0.17421 (8)0.0220 (3)
N10.94620 (18)0.95400 (11)0.33260 (11)0.0197 (3)0.05
C1'0.94620 (18)0.95400 (11)0.33260 (11)0.0197 (3)0.95
N21.21403 (18)1.02734 (11)0.39566 (11)0.0279 (4)0.95
N31.00292 (18)0.87635 (11)0.48043 (11)0.0271 (4)
H11.104 (3)0.9012 (16)0.4948 (16)0.053 (7)*
H20.973 (2)0.8423 (15)0.5258 (15)0.035 (6)*
N40.68515 (17)0.74165 (11)0.49326 (11)0.0294 (4)
C10.84721 (19)0.97189 (11)0.24628 (11)0.0209 (4)
C20.8945 (2)1.02681 (12)0.17292 (12)0.0253 (4)
C31.0457 (2)1.02878 (13)0.16227 (13)0.0315 (4)
H31.12320.99470.20380.038*
C41.0837 (3)1.07998 (14)0.09164 (14)0.0374 (5)
H41.18671.08080.08470.045*
C50.9711 (3)1.12980 (14)0.03145 (14)0.0425 (5)
H50.99761.16600.01610.051*
C60.8200 (3)1.12739 (13)0.03999 (13)0.0382 (5)
H60.74351.16180.00190.046*
C70.7794 (2)1.07502 (12)0.10951 (12)0.0295 (4)
C80.6159 (2)1.06430 (13)0.11720 (13)0.0326 (4)
H8A0.54491.08390.05850.039*
H8B0.59701.10350.16820.039*
C90.5876 (2)0.96303 (13)0.13680 (12)0.0292 (4)
H9A0.48010.95470.14240.035*
H9B0.60360.92420.08480.035*
C100.69749 (19)0.93394 (12)0.22619 (12)0.0231 (4)
C110.65552 (18)0.87253 (11)0.28827 (11)0.0213 (4)
C120.75689 (18)0.85343 (11)0.37374 (11)0.0193 (3)
C130.90408 (18)0.89474 (11)0.39830 (11)0.0196 (3)
C141.0941 (2)0.99715 (12)0.36327 (12)0.0225 (4)0.95
C150.71436 (18)0.79079 (12)0.43878 (12)0.0224 (4)
C160.50312 (18)0.82492 (12)0.26343 (11)0.0215 (4)
C170.47860 (19)0.75520 (12)0.19617 (12)0.0224 (4)
H170.55990.73750.16830.027*
C180.33741 (18)0.71173 (11)0.16982 (11)0.0203 (4)
C190.21512 (18)0.74044 (11)0.20790 (11)0.0193 (3)
C200.2414 (2)0.80721 (12)0.27631 (12)0.0249 (4)
H200.16050.82510.30440.030*
C210.3855 (2)0.84870 (13)0.30454 (12)0.0262 (4)
H210.40260.89370.35260.031*
C220.4368 (2)0.59651 (14)0.08517 (15)0.0368 (5)
H22A0.40200.54620.04090.055*
H22B0.50430.57160.14180.055*
H22C0.49340.64200.05710.055*
C230.05031 (19)0.73108 (12)0.20937 (13)0.0260 (4)
H23A0.14300.69570.18140.039*
H23B0.06780.79650.19370.039*
H23C0.02680.72360.27710.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (6)0.0316 (7)0.0312 (7)0.0003 (5)0.0050 (5)0.0126 (6)
O20.0152 (6)0.0253 (6)0.0258 (6)0.0021 (5)0.0051 (5)0.0061 (5)
N10.0175 (8)0.0197 (8)0.0218 (8)0.0008 (7)0.0042 (7)0.0027 (7)
C1'0.0175 (8)0.0197 (8)0.0218 (8)0.0008 (7)0.0042 (7)0.0027 (7)
N20.0214 (8)0.0270 (8)0.0354 (9)0.0022 (7)0.0065 (7)0.0011 (7)
N30.0209 (8)0.0325 (9)0.0240 (8)0.0045 (7)0.0028 (6)0.0063 (7)
N40.0257 (8)0.0309 (8)0.0315 (8)0.0031 (7)0.0065 (7)0.0030 (7)
C10.0233 (8)0.0196 (8)0.0192 (8)0.0004 (7)0.0036 (7)0.0026 (7)
C20.0347 (10)0.0209 (8)0.0199 (8)0.0056 (8)0.0056 (8)0.0035 (7)
C30.0391 (11)0.0267 (10)0.0308 (10)0.0063 (8)0.0126 (9)0.0034 (8)
C40.0523 (13)0.0317 (10)0.0342 (11)0.0115 (10)0.0219 (10)0.0042 (9)
C50.0717 (16)0.0323 (11)0.0272 (10)0.0162 (11)0.0190 (11)0.0001 (9)
C60.0593 (14)0.0284 (10)0.0228 (9)0.0058 (10)0.0013 (9)0.0015 (8)
C70.0434 (11)0.0237 (9)0.0191 (9)0.0057 (8)0.0026 (8)0.0020 (7)
C80.0400 (11)0.0293 (10)0.0217 (9)0.0011 (9)0.0065 (8)0.0023 (8)
C90.0298 (10)0.0303 (10)0.0225 (9)0.0031 (8)0.0041 (8)0.0001 (8)
C100.0217 (8)0.0244 (9)0.0205 (8)0.0004 (7)0.0006 (7)0.0016 (7)
C110.0175 (8)0.0229 (8)0.0231 (8)0.0010 (7)0.0037 (7)0.0042 (7)
C120.0174 (8)0.0204 (8)0.0205 (8)0.0001 (7)0.0051 (7)0.0015 (7)
C130.0180 (8)0.0185 (8)0.0216 (8)0.0019 (7)0.0031 (7)0.0025 (7)
C140.0246 (9)0.0218 (9)0.0218 (9)0.0016 (8)0.0068 (8)0.0016 (7)
C150.0161 (8)0.0247 (9)0.0243 (9)0.0003 (7)0.0007 (7)0.0036 (7)
C160.0159 (8)0.0251 (8)0.0210 (8)0.0015 (7)0.0006 (7)0.0023 (7)
C170.0164 (8)0.0281 (9)0.0225 (8)0.0019 (7)0.0041 (7)0.0008 (7)
C180.0198 (8)0.0219 (8)0.0184 (8)0.0010 (7)0.0026 (7)0.0027 (7)
C190.0151 (8)0.0210 (8)0.0203 (8)0.0001 (6)0.0013 (7)0.0029 (7)
C200.0195 (8)0.0294 (9)0.0266 (9)0.0019 (7)0.0072 (7)0.0068 (7)
C210.0230 (9)0.0300 (10)0.0247 (9)0.0023 (8)0.0035 (7)0.0072 (8)
C220.0242 (10)0.0402 (12)0.0475 (12)0.0015 (9)0.0115 (9)0.0201 (10)
C230.0168 (8)0.0287 (9)0.0334 (10)0.0011 (7)0.0079 (7)0.0061 (8)
Geometric parameters (Å, º) top
O1—C181.370 (2)C8—H8A0.9900
O1—C221.436 (2)C8—H8B0.9900
O2—C191.3690 (19)C9—C101.512 (2)
O2—C231.434 (2)C9—H9A0.9900
N1—C11.397 (2)C9—H9B0.9900
N1—C131.411 (2)C10—C111.391 (2)
N2—C141.153 (2)C11—C121.400 (2)
N3—C131.351 (2)C11—C161.494 (2)
N3—H10.95 (2)C12—C131.413 (2)
N3—H20.92 (2)C12—C151.436 (2)
N4—C151.150 (2)C16—C211.374 (2)
C1—C101.413 (2)C16—C171.399 (2)
C1—C21.484 (2)C17—C181.383 (2)
C2—C31.396 (3)C17—H170.9500
C2—C71.405 (3)C18—C191.403 (2)
C3—C41.386 (3)C19—C201.380 (2)
C3—H30.9500C20—C211.394 (2)
C4—C51.381 (3)C20—H200.9500
C4—H40.9500C21—H210.9500
C5—C61.386 (3)C22—H22A0.9800
C5—H50.9500C22—H22B0.9800
C6—C71.392 (3)C22—H22C0.9800
C6—H60.9500C23—H23A0.9800
C7—C81.499 (3)C23—H23B0.9800
C8—C91.528 (3)C23—H23C0.9800
C18—O1—C22115.94 (13)C1—C10—C9117.78 (15)
C19—O2—C23116.23 (13)C10—C11—C12120.31 (15)
C1—N1—C13121.85 (15)C10—C11—C16120.23 (15)
C13—N3—H1121.0 (15)C12—C11—C16119.45 (15)
C13—N3—H2121.2 (13)C11—C12—C13121.05 (15)
H1—N3—H2117.7 (19)C11—C12—C15120.84 (14)
N1—C1—C10119.15 (15)C13—C12—C15118.10 (14)
N1—C1—C2122.66 (15)N3—C13—N1121.00 (15)
C10—C1—C2118.16 (15)N3—C13—C12121.45 (16)
C3—C2—C7119.44 (17)N1—C13—C12117.52 (14)
C3—C2—C1122.73 (17)N4—C15—C12177.44 (18)
C7—C2—C1117.76 (16)C21—C16—C17119.08 (15)
C4—C3—C2120.60 (19)C21—C16—C11121.48 (15)
C4—C3—H3119.7C17—C16—C11119.44 (15)
C2—C3—H3119.7C18—C17—C16120.75 (15)
C5—C4—C3119.7 (2)C18—C17—H17119.6
C5—C4—H4120.1C16—C17—H17119.6
C3—C4—H4120.1O1—C18—C17124.52 (15)
C4—C5—C6120.47 (19)O1—C18—C19115.72 (14)
C4—C5—H5119.8C17—C18—C19119.76 (15)
C6—C5—H5119.8O2—C19—C20124.56 (15)
C5—C6—C7120.5 (2)O2—C19—C18116.35 (14)
C5—C6—H6119.7C20—C19—C18119.08 (15)
C7—C6—H6119.7C19—C20—C21120.66 (16)
C6—C7—C2119.19 (19)C19—C20—H20119.7
C6—C7—C8122.56 (18)C21—C20—H20119.7
C2—C7—C8118.19 (16)C16—C21—C20120.48 (16)
C7—C8—C9108.73 (16)C16—C21—H21119.8
C7—C8—H8A109.9C20—C21—H21119.8
C9—C8—H8A109.9O1—C22—H22A109.5
C7—C8—H8B109.9O1—C22—H22B109.5
C9—C8—H8B109.9H22A—C22—H22B109.5
H8A—C8—H8B108.3O1—C22—H22C109.5
C10—C9—C8109.33 (14)H22A—C22—H22C109.5
C10—C9—H9A109.8H22B—C22—H22C109.5
C8—C9—H9A109.8O2—C23—H23A109.5
C10—C9—H9B109.8O2—C23—H23B109.5
C8—C9—H9B109.8H23A—C23—H23B109.5
H9A—C9—H9B108.3O2—C23—H23C109.5
C11—C10—C1119.86 (15)H23A—C23—H23C109.5
C11—C10—C9122.36 (15)H23B—C23—H23C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.95 (2)2.24 (2)2.927 (2)129 (2)
N3—H2···O2i0.92 (2)2.25 (2)2.987 (2)136 (2)
Symmetry code: (i) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula0.05C22H19N3O2·0.95C24H19N3O2
Mr380.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9347 (3), 14.4915 (5), 14.7818 (6)
β (°) 103.446 (4)
V3)1861.45 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
9240, 4160, 3146
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.04
No. of reflections4160
No. of parameters270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.95 (2)2.24 (2)2.927 (2)129 (2)
N3—H2···O2i0.92 (2)2.25 (2)2.987 (2)136 (2)
Symmetry code: (i) x+1, y+3/2, z+1/2.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011). Acta Cryst. E67, o2872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds