organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-chloro­phen­yl)-5,6-di­hydro­benzo[h]quinoline-3-carbo­nitrile–3-amino-1-(4-chloro­phen­yl)-9,10-di­hydro­phenanthrene-2,4-dicarbo­nitrile (1/4)

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 September 2011; accepted 3 October 2011; online 8 October 2011)

The asymmetric unit of the 1:4 title co-crystal of 2-amino-4-(4-chloro­phen­yl)-5,6-dihydro­benzo[h]quinoline-3-carbonitrile and 3-amino-1-(4-chloro­phen­yl)-9,10-dihydro­phenanthrene-2,4-dicarbonitrile, 0.2C20H14ClN3·0.8C22H14ClN3, has the atoms of the fused-ring system and those of the amino, cyano and chloro­phenyl substitutents overlapped. The fused-ring system is buckled owing to the ethyl­ene linkage in the central ring. There are two independent overlapped mol­ecules in the asymmetric unit. In one independent mol­ecule, the two flanking aromatic rings are twisted by 24.4 (1)° and the ring of the chloro­phenyl substituent is twisted by 87.3 (1)° relative to the amino- and cyano-bearing aromatic ring. In the second mol­ecule, the respective dihedral angles are 26.1 (1) and 57.8 (1)°. The two independent mol­ecules are linked by N—H⋯N hydrogen bonds into dimers.

Related literature

For similar co-crystals, see: Asiri et al. (2011a[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011a). Acta Cryst. E67, o2872.],b[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011b). Acta Cryst. E67, o2873.]).

[Scheme 1]

Experimental

Crystal data
  • 0.2C20H14ClN3·0.8C22H14ClN3

  • Mr = 351.01

  • Monoclinic, P 21 /c

  • a = 19.2576 (7) Å

  • b = 9.5103 (2) Å

  • c = 20.2266 (7) Å

  • β = 114.018 (4)°

  • V = 3383.7 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.06 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.577, Tmax = 0.821

  • 12442 measured reflections

  • 6686 independent reflections

  • 6272 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.130

  • S = 1.05

  • 6686 reflections

  • 471 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯N4 0.88 2.14 2.931 (3) 149
N5—H52⋯N3 0.88 2.33 3.136 (3) 152

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Amino-5,6-dihydro-4-phenyl-benzoquinoline-3-carbonitrile is synthesized from the reaction of the α-substituted cinnamonitrile, C6H5CHC(CN)2, with α-tetralone in a reaction that is catalyzed by ammonium acetate. The synthesis when conducted under microwave irradiation leads to an improved yield. In previous studies, we obtained instead di-carbonitrile substituted dihydrophenanthrenes (3-amino-1-(4-methoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile and 3-amino-1-(2H-1,3-benzodioxol-5-yl)- 9,10-dihydrophenanthrene-2,4-dicarbonitrile) with 4-methoxybenzaldehyde and piperonaldehyde in syntheses that differed slightly from the reported ones as we used substituted benzaldehydes, α-tetralone and ethyl cyanoacetate along with a molar excess of ammonium acetate.

In this study, the reaction of 4-chlorobenzaldehyde, α-tetralone and ethyl cyanoacetate yielded the co-crystal of the title compound 2-amino-4-(4-chlorophenyl)-5,6-dihydrobenzoquinoline-3-carbonitrile (C20H14N3Cl) and 3-amino-1-(4-chlorophenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (C22H14N3Cl) with the components present in a 1: 4 molar ratio (Scheme I). The fused-ring system is buckled owing to the ethylene linkage in the central ring, the two flanking aromatic rings being twisted by 24.4 (1)°. Relative to the amino- and cyano-bearing aromatic ring, the benzene ring is twisted by 87.3 (1)° in one independent overlapped molecule. For the second molecule, the respective dihedral angles are 26.1 (1) ° and 57.8 (1) ° (Fig. 1 and Fig. 2). Two molecules are linked by an N—H···N hydrogen bonds (Table 1) to generate dimers.

Related literature top

For similar co-crystals, see: Asiri et al. (2011a,b).

Experimental top

A mixture of 4-chlorobenzaldehyde (1.41 g,10 mmol), α-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.13 g, 10 mmol) and ammonium acetate (6.16 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The mixture was allowed to cool and the precipitate that formed was filtered, washed with water, dried and recrystallized from DMF.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99, N—H = 0.88 Å; Uiso(H) 1.2Ueq(C,N)] and were included in the refinement in the riding model approximation. The compound is a co-crystal of 2-amino-4-(4-chlorophenyl)-5,6-dihydrobenzoquinoline-3-carbonitrile (C20H14N3Cl) and 3-amino-1-(4-chlorophenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (C22H14N3Cl). The first component is a dihydrobenzoquinoline and has only one amino substituent. The second component is a dihydrophenanthrene with two amino substituents. The two-coordinate N atom of one component molecule occupies the same site as the three-coordinate C atom of the second overlapped molecule. The asymmetric unit consists of two independent overlapped molecules. For one, the occupancy refined to nearly 0.33 and for the other, to nearly 0.07. The occupancies were then fixed at these ratios.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H14N3Cl at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Thermal ellipsoid plot (Barbour, 2001) of C22H14N3Cl at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
2-Amino-4-(4-chlorophenyl)-5,6-dihydrobenzo[h]quinoline-3-carbonitrile– 3-amino-1-(4-chlorophenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (1/4) top
Crystal data top
0.2C20H14ClN3·0.8C22H14ClN3F(000) = 1452.8
Mr = 351.01Dx = 1.378 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 9520 reflections
a = 19.2576 (7) Åθ = 2.5–74.4°
b = 9.5103 (2) ŵ = 2.06 mm1
c = 20.2266 (7) ÅT = 100 K
β = 114.018 (4)°Prism, brown-orange
V = 3383.7 (2) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6686 independent reflections
Radiation source: SuperNova (Cu) X-ray Source6272 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4041 pixels mm-1θmax = 74.6°, θmin = 2.5°
ω scansh = 2319
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.577, Tmax = 0.821l = 2225
12442 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0541P)2 + 4.4722P]
where P = (Fo2 + 2Fc2)/3
6686 reflections(Δ/σ)max = 0.001
471 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
0.2C20H14ClN3·0.8C22H14ClN3V = 3383.7 (2) Å3
Mr = 351.01Z = 8
Monoclinic, P21/cCu Kα radiation
a = 19.2576 (7) ŵ = 2.06 mm1
b = 9.5103 (2) ÅT = 100 K
c = 20.2266 (7) Å0.30 × 0.20 × 0.10 mm
β = 114.018 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6686 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
6272 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 0.821Rint = 0.032
12442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
6686 reflectionsΔρmin = 0.65 e Å3
471 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.47649 (4)0.54771 (7)0.91711 (3)0.03619 (16)
Cl21.19971 (3)0.62336 (6)0.76577 (3)0.02717 (14)
N20.41277 (11)0.3060 (2)0.46275 (10)0.0303 (5)
H220.39450.27610.41770.036*
H210.45900.34100.48270.036*
N30.53363 (11)0.4429 (2)0.63456 (11)0.0309 (5)
N50.70451 (10)0.4628 (2)0.65759 (10)0.0242 (4)
H520.65640.43760.63900.029*
H510.72320.51070.69830.029*
N60.87451 (11)0.5819 (2)0.77852 (10)0.0249 (4)
C10.34901 (12)0.3426 (2)0.61038 (11)0.0185 (4)
C20.39635 (11)0.3465 (2)0.57321 (11)0.0188 (4)
C30.36991 (12)0.2981 (2)0.50123 (11)0.0213 (4)
C50.25137 (11)0.2336 (2)0.50655 (11)0.0173 (4)
C60.17630 (11)0.1630 (2)0.47299 (11)0.0175 (4)
C70.15869 (12)0.0681 (2)0.41558 (11)0.0219 (4)
H70.19600.04580.39770.026*
C80.08727 (13)0.0061 (2)0.38444 (11)0.0231 (4)
H80.07550.05650.34480.028*
C90.03309 (12)0.0358 (2)0.41145 (11)0.0215 (4)
H90.01600.00570.39000.026*
C100.05081 (12)0.1262 (2)0.46977 (11)0.0200 (4)
H100.01390.14470.48870.024*
C110.12166 (12)0.1903 (2)0.50104 (11)0.0185 (4)
C120.14005 (12)0.2922 (2)0.56290 (12)0.0229 (4)
H12A0.10670.27330.58840.027*
H12B0.13020.38940.54380.027*
C130.22293 (12)0.2787 (2)0.61594 (11)0.0225 (4)
H13A0.23550.35440.65260.027*
H13B0.23070.18730.64140.027*
C140.27531 (12)0.2883 (2)0.57713 (11)0.0192 (4)
C150.38013 (12)0.3938 (2)0.68678 (11)0.0199 (4)
C160.36942 (14)0.5320 (3)0.70204 (12)0.0281 (5)
H160.34170.59430.66360.034*
C170.39890 (14)0.5809 (3)0.77331 (13)0.0290 (5)
H170.39110.67540.78390.035*
C180.43959 (13)0.4887 (3)0.82785 (11)0.0247 (5)
C190.45232 (13)0.3507 (3)0.81436 (12)0.0260 (5)
H190.48100.28940.85290.031*
C200.42214 (13)0.3036 (2)0.74306 (12)0.0236 (4)
H200.43030.20910.73270.028*
C220.47249 (12)0.4012 (2)0.60785 (11)0.0229 (4)
C230.87585 (11)0.4285 (2)0.61845 (11)0.0175 (4)
C240.82793 (12)0.4631 (2)0.65336 (11)0.0183 (4)
C250.75014 (12)0.4275 (2)0.62329 (11)0.0190 (4)
C270.77056 (12)0.3061 (2)0.52568 (11)0.0184 (4)
C280.74168 (11)0.2139 (2)0.46097 (11)0.0185 (4)
C290.68059 (13)0.1213 (2)0.44618 (12)0.0233 (4)
H290.65850.11120.48020.028*
C300.65195 (13)0.0441 (2)0.38272 (13)0.0264 (5)
H300.60970.01660.37290.032*
C310.68490 (14)0.0557 (3)0.33362 (13)0.0276 (5)
H310.66380.00620.28900.033*
C320.74870 (13)0.1394 (2)0.34957 (12)0.0244 (5)
H320.77270.14310.31680.029*
C330.77796 (12)0.2181 (2)0.41305 (11)0.0197 (4)
C340.84650 (12)0.3108 (2)0.43101 (11)0.0217 (4)
H34A0.82980.40750.41370.026*
H34B0.87760.27550.40580.026*
C350.89469 (12)0.3136 (2)0.51267 (11)0.0202 (4)
H35A0.91830.22030.52860.024*
H35B0.93600.38360.52360.024*
C360.84698 (12)0.3508 (2)0.55402 (11)0.0178 (4)
C370.95655 (11)0.4762 (2)0.65269 (10)0.0171 (4)
C381.01649 (12)0.3796 (2)0.67461 (11)0.0190 (4)
H381.00580.28220.66580.023*
C391.09139 (12)0.4242 (2)0.70914 (11)0.0194 (4)
H391.13190.35820.72430.023*
C401.10595 (12)0.5666 (2)0.72103 (11)0.0197 (4)
C411.04796 (12)0.6654 (2)0.69953 (11)0.0206 (4)
H411.05920.76270.70780.025*
C420.97326 (12)0.6197 (2)0.66573 (11)0.0201 (4)
H420.93300.68630.65130.024*
C440.85661 (11)0.5307 (2)0.72266 (11)0.0196 (4)
N10.26563 (17)0.2046 (3)0.32991 (15)0.0287 (6)0.67
N40.57603 (11)0.3302 (2)0.49932 (11)0.0265 (4)0.93
C40.29686 (11)0.2425 (2)0.46910 (10)0.0181 (4)0.67
C210.2743 (2)0.2161 (4)0.3913 (2)0.0298 (8)0.67
C260.72231 (11)0.3513 (2)0.55831 (11)0.0186 (4)0.93
C430.64133 (13)0.3348 (2)0.52387 (12)0.0205 (5)0.93
N4'0.29686 (11)0.2425 (2)0.46910 (10)0.0181 (4)0.33
N26'0.72231 (11)0.3513 (2)0.55831 (11)0.0186 (4)0.07
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0500 (4)0.0405 (3)0.0163 (3)0.0087 (3)0.0117 (2)0.0076 (2)
Cl20.0201 (2)0.0315 (3)0.0268 (3)0.0075 (2)0.0064 (2)0.0028 (2)
N20.0256 (10)0.0490 (13)0.0178 (9)0.0029 (9)0.0103 (8)0.0021 (9)
N30.0229 (10)0.0450 (13)0.0250 (10)0.0089 (9)0.0099 (8)0.0051 (9)
N50.0183 (9)0.0361 (11)0.0202 (9)0.0021 (8)0.0097 (7)0.0072 (8)
N60.0239 (9)0.0276 (10)0.0226 (10)0.0002 (8)0.0088 (8)0.0034 (8)
C10.0183 (10)0.0193 (10)0.0160 (9)0.0014 (8)0.0050 (8)0.0006 (8)
C20.0164 (9)0.0202 (10)0.0170 (10)0.0019 (8)0.0038 (8)0.0013 (8)
C30.0209 (10)0.0239 (11)0.0172 (10)0.0028 (8)0.0058 (8)0.0002 (8)
C50.0179 (9)0.0168 (10)0.0169 (9)0.0022 (7)0.0068 (8)0.0019 (7)
C60.0176 (9)0.0185 (10)0.0156 (9)0.0004 (8)0.0059 (8)0.0029 (8)
C70.0244 (10)0.0267 (11)0.0158 (9)0.0011 (9)0.0093 (8)0.0003 (8)
C80.0278 (11)0.0230 (11)0.0162 (10)0.0042 (9)0.0067 (8)0.0023 (8)
C90.0213 (10)0.0220 (10)0.0184 (10)0.0041 (8)0.0051 (8)0.0019 (8)
C100.0189 (10)0.0220 (10)0.0202 (10)0.0015 (8)0.0090 (8)0.0023 (8)
C110.0195 (10)0.0182 (10)0.0181 (10)0.0000 (8)0.0077 (8)0.0001 (8)
C120.0191 (10)0.0258 (11)0.0254 (11)0.0016 (8)0.0107 (9)0.0085 (9)
C130.0219 (10)0.0282 (11)0.0189 (10)0.0028 (9)0.0098 (8)0.0043 (8)
C140.0189 (10)0.0219 (10)0.0169 (9)0.0005 (8)0.0073 (8)0.0013 (8)
C150.0165 (9)0.0267 (11)0.0164 (9)0.0033 (8)0.0067 (8)0.0026 (8)
C160.0311 (12)0.0282 (12)0.0201 (11)0.0059 (9)0.0054 (9)0.0002 (9)
C170.0344 (12)0.0249 (12)0.0253 (11)0.0020 (10)0.0097 (10)0.0068 (9)
C180.0272 (11)0.0333 (12)0.0145 (10)0.0063 (9)0.0094 (8)0.0056 (9)
C190.0300 (12)0.0289 (12)0.0174 (10)0.0014 (9)0.0080 (9)0.0028 (9)
C200.0264 (11)0.0236 (11)0.0201 (10)0.0005 (9)0.0089 (9)0.0009 (8)
C220.0223 (11)0.0287 (11)0.0190 (10)0.0021 (9)0.0096 (9)0.0024 (8)
C230.0178 (10)0.0164 (10)0.0174 (9)0.0020 (7)0.0063 (8)0.0031 (8)
C240.0193 (10)0.0193 (10)0.0156 (9)0.0009 (8)0.0065 (8)0.0008 (8)
C250.0190 (10)0.0210 (10)0.0178 (9)0.0027 (8)0.0083 (8)0.0028 (8)
C270.0205 (10)0.0174 (10)0.0176 (9)0.0017 (8)0.0079 (8)0.0039 (8)
C280.0181 (9)0.0181 (10)0.0179 (9)0.0024 (8)0.0058 (8)0.0034 (8)
C290.0233 (10)0.0235 (11)0.0237 (11)0.0017 (8)0.0100 (9)0.0009 (9)
C300.0261 (11)0.0223 (11)0.0285 (11)0.0052 (9)0.0087 (9)0.0027 (9)
C310.0334 (12)0.0235 (11)0.0230 (11)0.0029 (9)0.0086 (9)0.0050 (9)
C320.0306 (11)0.0226 (11)0.0218 (10)0.0021 (9)0.0125 (9)0.0024 (8)
C330.0223 (10)0.0164 (10)0.0198 (10)0.0007 (8)0.0081 (8)0.0025 (8)
C340.0256 (11)0.0225 (11)0.0193 (10)0.0043 (8)0.0114 (9)0.0002 (8)
C350.0205 (10)0.0222 (10)0.0199 (10)0.0001 (8)0.0103 (8)0.0009 (8)
C360.0188 (10)0.0184 (10)0.0168 (9)0.0016 (8)0.0080 (8)0.0028 (8)
C370.0178 (10)0.0203 (10)0.0140 (9)0.0010 (8)0.0074 (8)0.0002 (7)
C380.0210 (10)0.0186 (10)0.0187 (10)0.0004 (8)0.0093 (8)0.0006 (8)
C390.0176 (9)0.0241 (11)0.0175 (9)0.0023 (8)0.0082 (8)0.0007 (8)
C400.0174 (9)0.0268 (11)0.0151 (9)0.0059 (8)0.0066 (8)0.0011 (8)
C410.0249 (10)0.0187 (10)0.0185 (10)0.0035 (8)0.0092 (8)0.0016 (8)
C420.0222 (10)0.0204 (10)0.0186 (10)0.0017 (8)0.0092 (8)0.0031 (8)
C440.0163 (9)0.0205 (10)0.0220 (10)0.0015 (8)0.0077 (8)0.0013 (8)
N10.0317 (15)0.0271 (15)0.0198 (14)0.0052 (12)0.0027 (12)0.0082 (11)
N40.0202 (10)0.0335 (12)0.0266 (10)0.0015 (8)0.0102 (8)0.0057 (9)
C40.0170 (9)0.0197 (9)0.0160 (9)0.0020 (7)0.0052 (7)0.0002 (7)
C210.0244 (17)0.0307 (19)0.034 (2)0.0111 (14)0.0118 (15)0.0104 (15)
C260.0175 (9)0.0204 (10)0.0183 (9)0.0001 (8)0.0076 (8)0.0008 (8)
C430.0246 (12)0.0213 (11)0.0175 (10)0.0004 (9)0.0105 (9)0.0031 (8)
N4'0.0170 (9)0.0197 (9)0.0160 (9)0.0020 (7)0.0052 (7)0.0002 (7)
N26'0.0175 (9)0.0204 (10)0.0183 (9)0.0001 (8)0.0076 (8)0.0008 (8)
Geometric parameters (Å, º) top
Cl1—C181.742 (2)C19—C201.392 (3)
Cl2—C401.744 (2)C19—H190.9500
N2—C31.348 (3)C20—H200.9500
N2—H220.8800C23—C361.401 (3)
N2—H210.8800C23—C241.410 (3)
N3—C221.148 (3)C23—C371.491 (3)
N5—C251.364 (3)C24—C251.410 (3)
N5—H520.8800C24—C441.433 (3)
N5—H510.8800C25—C261.403 (3)
N6—C441.147 (3)C27—C261.408 (3)
C1—C141.399 (3)C27—C361.410 (3)
C1—C21.399 (3)C27—C281.483 (3)
C1—C151.493 (3)C28—C291.402 (3)
C2—C31.410 (3)C28—C331.407 (3)
C2—C221.441 (3)C29—C301.383 (3)
C3—C41.392 (3)C29—H290.9500
C5—C41.374 (3)C30—C311.383 (3)
C5—C141.409 (3)C30—H300.9500
C5—C61.484 (3)C31—C321.388 (3)
C6—C71.399 (3)C31—H310.9500
C6—C111.408 (3)C32—C331.392 (3)
C7—C81.390 (3)C32—H320.9500
C7—H70.9500C33—C341.504 (3)
C8—C91.390 (3)C34—C351.530 (3)
C8—H80.9500C34—H34A0.9900
C9—C101.385 (3)C34—H34B0.9900
C9—H90.9500C35—C361.515 (3)
C10—C111.390 (3)C35—H35A0.9900
C10—H100.9500C35—H35B0.9900
C11—C121.506 (3)C37—C381.399 (3)
C12—C131.524 (3)C37—C421.402 (3)
C12—H12A0.9900C38—C391.389 (3)
C12—H12B0.9900C38—H380.9500
C13—C141.512 (3)C39—C401.384 (3)
C13—H13A0.9900C39—H390.9500
C13—H13B0.9900C40—C411.387 (3)
C15—C161.385 (3)C41—C421.388 (3)
C15—C201.392 (3)C41—H410.9500
C16—C171.396 (3)C42—H420.9500
C16—H160.9500N1—C211.188 (5)
C17—C181.377 (3)N4—C431.150 (3)
C17—H170.9500C4—C211.474 (4)
C18—C191.383 (3)C26—C431.434 (3)
C3—N2—H22120.0C36—C23—C37122.42 (18)
C3—N2—H21120.0C24—C23—C37117.86 (18)
H22—N2—H21120.0C23—C24—C25121.68 (19)
C25—N5—H52120.0C23—C24—C44121.61 (19)
C25—N5—H51120.0C25—C24—C44116.65 (18)
H52—N5—H51120.0N5—C25—C26121.59 (19)
C14—C1—C2120.48 (19)N5—C25—C24120.86 (19)
C14—C1—C15121.29 (18)C26—C25—C24117.52 (18)
C2—C1—C15118.21 (18)C26—C27—C36119.75 (19)
C1—C2—C3120.40 (19)C26—C27—C28120.81 (19)
C1—C2—C22120.36 (19)C36—C27—C28119.44 (18)
C3—C2—C22119.24 (19)C29—C28—C33118.7 (2)
N2—C3—C4119.46 (19)C29—C28—C27122.74 (19)
N2—C3—C2122.0 (2)C33—C28—C27118.57 (19)
C4—C3—C2118.55 (19)C30—C29—C28121.0 (2)
C4—C5—C14121.11 (19)C30—C29—H29119.5
C4—C5—C6119.78 (18)C28—C29—H29119.5
C14—C5—C6119.11 (18)C31—C30—C29119.9 (2)
C7—C6—C11119.01 (19)C31—C30—H30120.1
C7—C6—C5122.22 (19)C29—C30—H30120.1
C11—C6—C5118.75 (18)C30—C31—C32120.0 (2)
C8—C7—C6120.7 (2)C30—C31—H31120.0
C8—C7—H7119.6C32—C31—H31120.0
C6—C7—H7119.6C31—C32—C33120.7 (2)
C7—C8—C9119.9 (2)C31—C32—H32119.6
C7—C8—H8120.0C33—C32—H32119.6
C9—C8—H8120.0C32—C33—C28119.5 (2)
C10—C9—C8119.8 (2)C32—C33—C34121.61 (19)
C10—C9—H9120.1C28—C33—C34118.90 (19)
C8—C9—H9120.1C33—C34—C35110.99 (17)
C9—C10—C11121.05 (19)C33—C34—H34A109.4
C9—C10—H10119.5C35—C34—H34A109.4
C11—C10—H10119.5C33—C34—H34B109.4
C10—C11—C6119.47 (19)C35—C34—H34B109.4
C10—C11—C12121.04 (18)H34A—C34—H34B108.0
C6—C11—C12119.46 (18)C36—C35—C34111.25 (17)
C11—C12—C13110.83 (18)C36—C35—H35A109.4
C11—C12—H12A109.5C34—C35—H35A109.4
C13—C12—H12A109.5C36—C35—H35B109.4
C11—C12—H12B109.5C34—C35—H35B109.4
C13—C12—H12B109.5H35A—C35—H35B108.0
H12A—C12—H12B108.1C23—C36—C27119.37 (18)
C14—C13—C12111.00 (17)C23—C36—C35122.44 (18)
C14—C13—H13A109.4C27—C36—C35118.19 (18)
C12—C13—H13A109.4C38—C37—C42118.88 (19)
C14—C13—H13B109.4C38—C37—C23121.14 (19)
C12—C13—H13B109.4C42—C37—C23119.94 (19)
H13A—C13—H13B108.0C39—C38—C37120.9 (2)
C1—C14—C5118.23 (18)C39—C38—H38119.6
C1—C14—C13122.24 (18)C37—C38—H38119.6
C5—C14—C13119.42 (18)C40—C39—C38118.8 (2)
C16—C15—C20119.5 (2)C40—C39—H39120.6
C16—C15—C1120.5 (2)C38—C39—H39120.6
C20—C15—C1120.0 (2)C39—C40—C41121.9 (2)
C15—C16—C17120.7 (2)C39—C40—Cl2119.12 (17)
C15—C16—H16119.6C41—C40—Cl2119.01 (17)
C17—C16—H16119.6C40—C41—C42118.9 (2)
C18—C17—C16118.4 (2)C40—C41—H41120.5
C18—C17—H17120.8C42—C41—H41120.5
C16—C17—H17120.8C41—C42—C37120.7 (2)
C17—C18—C19122.3 (2)C41—C42—H42119.7
C17—C18—Cl1118.97 (19)C37—C42—H42119.7
C19—C18—Cl1118.69 (18)N6—C44—C24174.8 (2)
C18—C19—C20118.5 (2)C5—C4—C3121.06 (18)
C18—C19—H19120.7C5—C4—C21127.0 (2)
C20—C19—H19120.7C3—C4—C21111.5 (2)
C15—C20—C19120.5 (2)N1—C21—C4170.5 (3)
C15—C20—H20119.8C25—C26—C27121.57 (19)
C19—C20—H20119.8C25—C26—C43115.91 (18)
N3—C22—C2178.6 (2)C27—C26—C43122.23 (19)
C36—C23—C24119.72 (19)N4—C43—C26174.8 (2)
C14—C1—C2—C31.1 (3)C26—C27—C28—C2927.3 (3)
C15—C1—C2—C3179.4 (2)C36—C27—C28—C29153.8 (2)
C14—C1—C2—C22179.4 (2)C26—C27—C28—C33153.8 (2)
C15—C1—C2—C221.2 (3)C36—C27—C28—C3325.2 (3)
C1—C2—C3—N2177.0 (2)C33—C28—C29—C305.6 (3)
C22—C2—C3—N22.4 (3)C27—C28—C29—C30175.5 (2)
C1—C2—C3—C42.0 (3)C28—C29—C30—C311.5 (4)
C22—C2—C3—C4178.5 (2)C29—C30—C31—C323.0 (4)
C4—C5—C6—C720.2 (3)C30—C31—C32—C333.3 (4)
C14—C5—C6—C7158.7 (2)C31—C32—C33—C280.9 (3)
C4—C5—C6—C11161.23 (19)C31—C32—C33—C34179.3 (2)
C14—C5—C6—C1119.9 (3)C29—C28—C33—C325.2 (3)
C11—C6—C7—C82.8 (3)C27—C28—C33—C32175.78 (19)
C5—C6—C7—C8178.7 (2)C29—C28—C33—C34176.3 (2)
C6—C7—C8—C91.5 (3)C27—C28—C33—C342.7 (3)
C7—C8—C9—C100.6 (3)C32—C33—C34—C35145.8 (2)
C8—C9—C10—C111.3 (3)C28—C33—C34—C3535.8 (3)
C9—C10—C11—C60.0 (3)C33—C34—C35—C3652.5 (2)
C9—C10—C11—C12178.0 (2)C24—C23—C36—C271.1 (3)
C7—C6—C11—C102.1 (3)C37—C23—C36—C27178.39 (19)
C5—C6—C11—C10179.36 (19)C24—C23—C36—C35178.23 (19)
C7—C6—C11—C12179.9 (2)C37—C23—C36—C352.2 (3)
C5—C6—C11—C121.3 (3)C26—C27—C36—C236.1 (3)
C10—C11—C12—C13144.7 (2)C28—C27—C36—C23174.91 (18)
C6—C11—C12—C1337.3 (3)C26—C27—C36—C35173.26 (19)
C11—C12—C13—C1451.9 (3)C28—C27—C36—C355.7 (3)
C2—C1—C14—C52.2 (3)C34—C35—C36—C23146.4 (2)
C15—C1—C14—C5175.98 (19)C34—C35—C36—C2733.0 (3)
C2—C1—C14—C13178.4 (2)C36—C23—C37—C3859.7 (3)
C15—C1—C14—C130.2 (3)C24—C23—C37—C38119.9 (2)
C4—C5—C14—C14.8 (3)C36—C23—C37—C42122.6 (2)
C6—C5—C14—C1174.13 (19)C24—C23—C37—C4257.8 (3)
C4—C5—C14—C13178.92 (19)C42—C37—C38—C390.4 (3)
C6—C5—C14—C132.2 (3)C23—C37—C38—C39177.34 (18)
C12—C13—C14—C1150.0 (2)C37—C38—C39—C400.5 (3)
C12—C13—C14—C533.9 (3)C38—C39—C40—C410.1 (3)
C14—C1—C15—C1688.5 (3)C38—C39—C40—Cl2178.87 (15)
C2—C1—C15—C1693.3 (3)C39—C40—C41—C420.6 (3)
C14—C1—C15—C2093.4 (3)Cl2—C40—C41—C42178.23 (15)
C2—C1—C15—C2084.8 (3)C40—C41—C42—C370.8 (3)
C20—C15—C16—C171.4 (4)C38—C37—C42—C410.3 (3)
C1—C15—C16—C17179.5 (2)C23—C37—C42—C41178.03 (18)
C15—C16—C17—C180.8 (4)C14—C5—C4—C34.0 (3)
C16—C17—C18—C190.3 (4)C6—C5—C4—C3174.93 (19)
C16—C17—C18—Cl1179.78 (19)C14—C5—C4—C21167.1 (3)
C17—C18—C19—C200.7 (4)C6—C5—C4—C2114.1 (4)
Cl1—C18—C19—C20179.38 (17)N2—C3—C4—C5179.6 (2)
C16—C15—C20—C191.0 (3)C2—C3—C4—C50.5 (3)
C1—C15—C20—C19179.1 (2)N2—C3—C4—C217.3 (3)
C18—C19—C20—C150.0 (3)C2—C3—C4—C21171.8 (2)
C36—C23—C24—C253.2 (3)N5—C25—C26—C27175.3 (2)
C37—C23—C24—C25177.26 (19)C24—C25—C26—C272.8 (3)
C36—C23—C24—C44174.06 (19)N5—C25—C26—C4310.7 (3)
C37—C23—C24—C445.5 (3)C24—C25—C26—C43171.22 (19)
C23—C24—C25—N5179.5 (2)C36—C27—C26—C257.1 (3)
C44—C24—C25—N53.1 (3)C28—C27—C26—C25174.00 (19)
C23—C24—C25—C262.4 (3)C36—C27—C26—C43166.5 (2)
C44—C24—C25—C26175.01 (19)C28—C27—C26—C4312.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···N40.882.142.931 (3)149
N5—H52···N30.882.333.136 (3)152

Experimental details

Crystal data
Chemical formula0.2C20H14ClN3·0.8C22H14ClN3
Mr351.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)19.2576 (7), 9.5103 (2), 20.2266 (7)
β (°) 114.018 (4)
V3)3383.7 (2)
Z8
Radiation typeCu Kα
µ (mm1)2.06
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.577, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
12442, 6686, 6272
Rint0.032
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.130, 1.05
No. of reflections6686
No. of parameters471
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.65

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···N40.882.142.931 (3)149
N5—H52···N30.882.333.136 (3)152
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011a). Acta Cryst. E67, o2872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011b). Acta Cryst. E67, o2873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds