organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2977-o2978

rac-syn-Di­ethyl 2-hy­dr­oxy-4-oxo-1-phenyl­cyclo­hexane-1,2-di­carboxyl­ate

aDepartment of Chemistry, Huzhou University, Huzhou, Zhejiang 313000, People's Republic of China
*Correspondence e-mail: shengliangni@163.com

(Received 30 September 2011; accepted 12 October 2011; online 22 October 2011)

The title compound, C18H22O6, was obtained by the domino oxa–Michael–aldol (DOMA) reaction and has the cyclo­hexa­none ring in a chair conformation with intra-annular torsion angles in the range 49.9 (2)–58.9 (2)°. The two eth­oxy­carbonyl substituents on the cyclo­hexa­none ring adopt a syn configurations. In the crystal, the mol­ecules self-assemble through duplex inter­molecular hy­droxy–carbonyl O—H⋯O hydrogen bonds, giving centrosymmetric cyclic dimers [graph set R22(12)] which inter-associate through weak C—H⋯O hydrogen-bonding inter­actions.

Related literature

For general background to proline-catalysed Robinson annulation, see: Eder et al. (1971[Eder, U., Sauer, G. & Wiechert, R. (1971). Angew. Chem. 83, 492-493.]); Hajos & Parrish (1974[Hajos, Z. G. & Parrish, D. R. (1974). J. Org. Chem. 22, 1615-1621.]). For the catalytic asymmetric formation of chiral building blocks, see: Bui & Barbas (2000[Bui, T. & Barbas, C. F. (2000). Tetrahedron Lett. 41, 6951-6954.]); Tanaka et al. (2003[Tanaka, F., Thayumanavan, R. & Barbas, C. F. (2003). J. Am. Chem. Soc. 125, 8523-8528.]). For the the DOMA reaction, see: Nising & Bräse (2008)[Nising, C. F. & Bräse, S. (2008). Chem. Soc. Rev. 37, 1218-1228.]; Sefer et al. (2010[Sefer, A., Emilie, M. C., Gérard, M. S. & Bräse, S. (2010). Synlett, pp. 128-130.]) and for asymmetric C—C bond-forming reactions, see: Sibi & Chen (2001[Sibi, M. P. & Chen, J. (2001). J. Am. Chem. Soc. 123, 9472-9473.]); Tian et al. (2002[Tian, J., Yamagiwa, N., Matsunaga, S. & Shibasaki, M. (2002). Angew. Chem. 114, 3788-3790.]); Gothelf et al. (2002[Gothelf, A. S., Gothelf, K. V., Hazell, R. G. & Jogensen, K. A. (2002). Angew. Chem. 114, 4410-4412.]); Rueping et al. (2009[Rueping, M., Kuenkel, A., Tato, F. & Bats, J. W. (2009). Angew. Chem. Int. Ed. 48, 3699-3702.]). For the synthesis of the title compound, see: Floyd & Miller (1963[Floyd, D. E. & Miller, S. E. (1963). Org. Synth. 4, 141-142.]). For related structures, see: Abell et al. (1988[Abell, C., Allen, F. H., Bugg, T. D. H., Doyle, M. J. & Raithby, P. R. (1988). Acta Cryst. C44, 1287-1290.]); Hernández-Ortega et al. (2001[Hernández-Ortega, S., Jiménez-Cruz, F., Ríos-Olivares, H. & Rubio-Arroyo, M. (2001). Acta Cryst. C57, 425-427.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22O6

  • Mr = 334.36

  • Triclinic, [P \overline 1]

  • a = 8.2069 (10) Å

  • b = 9.9393 (16) Å

  • c = 11.1420 (17) Å

  • α = 87.408 (10)°

  • β = 70.610 (7)°

  • γ = 78.983 (9)°

  • V = 841.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 153 K

  • 0.45 × 0.36 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.957, Tmax = 0.990

  • 8251 measured reflections

  • 3053 independent reflections

  • 2695 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.103

  • S = 1.07

  • 3053 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.91 2.7491 (18) 177
C15—H15⋯O2ii 0.95 2.55 3.486 (2) 169
C8—H8A⋯O5iii 0.99 2.44 3.095 (2) 124
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The domino oxa-Michael-aldol (DOMA) reaction reported herein is related to the proline–catalyzed Robinson annulation pioneered by Wiechert and by Hajos 40 years ago (Eder et al., 1971, Hajos et al., 1974). The catalytic asymmetric formation of chiral building blocks (Bui & Barbas, 2000; Tanaka et al., 2003) represents an increasingly important field in pharmaceutical and organic chemistry owing to the usefulness of these products in further synthetic transformations. To date, the DOMA reaction has attracted considerable attention since they allow an efficient access to highly functionalized scaffolds, which occur in a variety of natural compounds with high biological activities (Nising & Bräse, 2008; Sefer et al., 2010). Among the various asymmetric C—C bond-forming reactions, the direct catalytic domino (Sibi & Chen, 2001; Tian et al., 2002) and cycloaddition reactions (Gothelf et al., 2002; Rueping et al., 2009) are of particular interest since multiple stereogenic centers can be formed in a single reaction.

Here we report the synthesis and structure of the title compound C18H22O6, racemic (syn)-3,4-diethoxycarbonyl-3-hydroxy-4-phenylcyclohexanone, a novel compound which has an interesting application in the synthesis of substituted hydrophenanthrene derivatives. Fortunately, the intramolecular aldol reaction proceeds in a highly diastereoselective fashion to form the six-membered ring so that all large substituents are equatorial and thus are controlled by the stable stereogenic center formed in the initial Michael reaction. The crystal structure of the title compound is reported here.

The asymmetric unit this compound consists of a molecule having the syn configuration (Fig. 1). The cyclohexanone ring adopts a chair conformation with intra-annular torsion angles in the range 49.9 (2)– 58.9 (2) ° [mean 53.9 (2)°], which have the expected values (Abell et al., 1988). The attached 3-hydroxy and 4-phenyl groups are disposed in α-axial and β-equatorial configurations, respectively, while the two ethoxycarbonyl groups adopt syn configurations (Hernández-Ortega et al., 2001). In the crystal, two molecules are connected through duplex intermolecular hydroxyl–carbonyl O—H···O hydrogen bonds (Table 1) giving centrosymmetric cyclic dimers [graph set R22(12) (Etter et al., 1990)] (Fig. 2), which inter-associate through weak C—H···O hydrogen-bonding interactions.

Related literature top

For general background to proline-catalysed Robinson annulation, see: Eder et al. (1971); Hajos & Parrish (1974). For the catalytic asymmetric formation of chiral building blocks, see: Bui & Barbas (2000); Tanaka et al. (2003). For the the DOMA reaction, see: Nising & Bräse (2008); Sefer et al. (2010) and for asymmetric C—C bond-forming reactions, see: Sibi & Chen (2001); Tian et al. (2002); Gothelf et al. (2002); Rueping et al. (2009). For the synthesis of the title compound, see: Floyd & Miller (1963). For related structures, see: Abell et al. (1988); Hernández-Ortega et al. (2001). For graph-set analysis, see: Etter et al. (1990).

Experimental top

Diethyl 2-oxo-3-phenylsuccinate is prepared by condensation of ethyl 2–phenylacetate and diethyl oxalate (Floyd & Miller, 1963). To a suspension of proline (0.069 g, 0.6 mmol) in methyl vinyl α–ketone (0.28 g, 4 mmol) was added diethyl 2-oxo-3-phenylsuccinate (0.53 g, 2 mmol). The resulting mixture was stirred for five hours in a closed vessel with the reaction progress monitored by TLC. After the acceptor ketoester was consumed, the reaction mixture was treated with saturated ammonium chloride solution, then the organic layer was separated, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous sodium sulfate. After removal of solvent, the residue was purified using column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1/5, V/V) to give the light-yellow syn-adduct (I) in 51.4% yield and the anti-adduct (II) in 4.47% yield. The colorless needle-like crystals of (I) were obtained by slowly evaporating a solution of in the mixed solvent (ethyl acetate/petroleum ether = 1/5, V/V) at room temperature for two weeks.

Refinement top

All H-atoms bonded to C were positioned geometrically and refined using a riding model with d(C—H) = 0.93–0.99 Å and Uiso(H) = 1.2Ueq(C) (aromatic and methine) or 1.5Ueq(C) (methyl). The hydroxy H was located in a difference Fourier synthesis and was refined using a riding model, with O—H fixed as initially found and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. Non-associative hydrogen atoms are omitted and displacement ellipsoids are drawn at the 45% probability level.
[Figure 2] Fig. 2. The hydrogen-bonding associations in the title compound with the O—H···O hydrogen bonds indicated by dashed lines.
rac-syn-Diethyl 2-hydroxy-4-oxo-1-phenylcyclohexane-1,2-dicarboxylate top
Crystal data top
C18H22O6Z = 2
Mr = 334.36F(000) = 356
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.2069 (10) ÅCell parameters from 3233 reflections
b = 9.9393 (16) Åθ = 3.1–25.3°
c = 11.1420 (17) ŵ = 0.10 mm1
α = 87.408 (10)°T = 153 K
β = 70.610 (7)°Needle-like, colorless
γ = 78.983 (9)°0.45 × 0.36 × 0.10 mm
V = 841.3 (2) Å3
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
3053 independent reflections
Radiation source: fine-focus sealed tube2695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.2°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.957, Tmax = 0.990l = 1313
8251 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.4508P]
where P = (Fo2 + 2Fc2)/3
3053 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C18H22O6γ = 78.983 (9)°
Mr = 334.36V = 841.3 (2) Å3
Triclinic, P1Z = 2
a = 8.2069 (10) ÅMo Kα radiation
b = 9.9393 (16) ŵ = 0.10 mm1
c = 11.1420 (17) ÅT = 153 K
α = 87.408 (10)°0.45 × 0.36 × 0.10 mm
β = 70.610 (7)°
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
3053 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2695 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.990Rint = 0.019
8251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
3053 reflectionsΔρmin = 0.29 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.79576 (15)0.51980 (12)0.38078 (11)0.0255 (3)
O20.51399 (14)0.29561 (11)0.57801 (10)0.0192 (3)
H20.42110.35440.59180.029*
O30.41781 (18)0.26892 (13)0.85521 (12)0.0369 (3)
O40.45085 (18)0.48608 (12)0.82340 (12)0.0374 (4)
O50.83175 (15)0.31071 (12)0.79925 (11)0.0261 (3)
O61.03868 (14)0.14904 (11)0.67206 (10)0.0207 (3)
C10.8099 (2)0.43872 (16)0.46397 (15)0.0186 (3)
C20.6860 (2)0.45938 (15)0.59878 (15)0.0194 (3)
H2A0.58680.53510.60180.023*
H2B0.74860.48650.65330.023*
C30.61292 (19)0.32920 (15)0.65220 (14)0.0164 (3)
C40.76503 (19)0.20183 (15)0.63581 (14)0.0158 (3)
C50.8748 (2)0.18687 (15)0.49233 (14)0.0180 (3)
H5A0.97180.10680.47940.022*
H5B0.79920.16890.44400.022*
C60.9526 (2)0.31423 (16)0.43916 (15)0.0206 (3)
H6A1.03930.32680.47980.025*
H6B1.01430.30160.34640.025*
C70.4867 (2)0.35472 (16)0.79048 (15)0.0183 (3)
C80.3101 (3)0.5304 (2)0.94311 (18)0.0439 (5)
H8A0.35230.58490.99490.053*
H8B0.27370.44950.99230.053*
C90.1584 (3)0.6149 (3)0.9138 (2)0.0568 (7)
H9A0.19670.69220.86140.085*
H9B0.06590.64960.99320.085*
H9C0.11240.55860.86730.085*
C100.8800 (2)0.22881 (15)0.71235 (14)0.0168 (3)
C111.1587 (2)0.15987 (18)0.74163 (16)0.0234 (4)
H11A1.13620.25490.77440.028*
H11B1.28160.13830.68340.028*
C121.1337 (3)0.0626 (2)0.85057 (19)0.0361 (5)
H12A1.01600.09020.91280.054*
H12B1.22230.06460.89130.054*
H12C1.14650.03050.81880.054*
C130.69874 (19)0.06732 (15)0.68411 (14)0.0169 (3)
C140.6427 (2)0.00903 (16)0.60868 (15)0.0198 (3)
H140.64230.02320.52720.024*
C150.5873 (2)0.13174 (16)0.65096 (17)0.0246 (4)
H150.54870.18210.59850.030*
C160.5881 (2)0.18106 (17)0.76895 (17)0.0265 (4)
H160.55150.26550.79720.032*
C170.6423 (2)0.10641 (18)0.84515 (16)0.0272 (4)
H170.64210.13910.92670.033*
C180.6974 (2)0.01642 (17)0.80311 (15)0.0224 (4)
H180.73480.06660.85640.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (6)0.0241 (6)0.0227 (6)0.0003 (5)0.0040 (5)0.0062 (5)
O20.0176 (6)0.0195 (6)0.0212 (6)0.0007 (4)0.0093 (5)0.0015 (4)
O30.0416 (8)0.0258 (7)0.0282 (7)0.0073 (6)0.0087 (6)0.0009 (5)
O40.0479 (8)0.0205 (6)0.0248 (7)0.0024 (6)0.0120 (6)0.0062 (5)
O50.0252 (6)0.0276 (6)0.0254 (6)0.0010 (5)0.0105 (5)0.0083 (5)
O60.0163 (6)0.0231 (6)0.0228 (6)0.0004 (4)0.0081 (5)0.0006 (5)
C10.0192 (8)0.0168 (8)0.0207 (8)0.0063 (6)0.0063 (7)0.0025 (6)
C20.0197 (8)0.0146 (7)0.0210 (8)0.0006 (6)0.0044 (7)0.0002 (6)
C30.0163 (7)0.0161 (8)0.0172 (8)0.0021 (6)0.0066 (6)0.0001 (6)
C40.0159 (7)0.0142 (7)0.0162 (7)0.0009 (6)0.0047 (6)0.0005 (6)
C50.0189 (8)0.0159 (8)0.0164 (8)0.0003 (6)0.0035 (6)0.0003 (6)
C60.0172 (8)0.0212 (8)0.0195 (8)0.0014 (6)0.0024 (6)0.0025 (6)
C70.0169 (8)0.0177 (8)0.0197 (8)0.0004 (6)0.0068 (6)0.0011 (6)
C80.0530 (13)0.0310 (10)0.0244 (10)0.0039 (9)0.0126 (9)0.0065 (8)
C90.0353 (12)0.0859 (19)0.0386 (12)0.0001 (12)0.0013 (10)0.0235 (12)
C100.0161 (8)0.0159 (7)0.0168 (8)0.0034 (6)0.0034 (6)0.0037 (6)
C110.0173 (8)0.0287 (9)0.0272 (9)0.0050 (7)0.0113 (7)0.0031 (7)
C120.0361 (11)0.0402 (11)0.0400 (11)0.0121 (9)0.0223 (9)0.0165 (9)
C130.0135 (7)0.0154 (7)0.0196 (8)0.0007 (6)0.0034 (6)0.0007 (6)
C140.0187 (8)0.0189 (8)0.0208 (8)0.0013 (6)0.0065 (7)0.0004 (6)
C150.0237 (9)0.0191 (8)0.0318 (9)0.0042 (7)0.0097 (7)0.0033 (7)
C160.0236 (9)0.0181 (8)0.0354 (10)0.0071 (7)0.0053 (7)0.0040 (7)
C170.0306 (9)0.0263 (9)0.0239 (9)0.0076 (7)0.0076 (7)0.0071 (7)
C180.0248 (9)0.0212 (8)0.0224 (8)0.0060 (7)0.0086 (7)0.0021 (7)
Geometric parameters (Å, º) top
O1—C11.2206 (19)C8—C91.486 (3)
O2—C31.4241 (18)C8—H8A0.9900
O2—H20.8400C8—H8B0.9900
O3—C71.194 (2)C9—H9A0.9800
O4—C71.3230 (19)C9—H9B0.9800
O4—C81.464 (2)C9—H9C0.9800
O5—C101.2043 (19)C11—C121.501 (2)
O6—C101.3326 (19)C11—H11A0.9900
O6—C111.4617 (19)C11—H11B0.9900
C1—C61.497 (2)C12—H12A0.9800
C1—C21.505 (2)C12—H12B0.9800
C2—C31.542 (2)C12—H12C0.9800
C2—H2A0.9900C13—C141.393 (2)
C2—H2B0.9900C13—C181.395 (2)
C3—C71.545 (2)C14—C151.391 (2)
C3—C41.568 (2)C14—H140.9500
C4—C101.530 (2)C15—C161.384 (2)
C4—C131.546 (2)C15—H150.9500
C4—C51.550 (2)C16—C171.380 (3)
C5—C61.533 (2)C16—H160.9500
C5—H5A0.9900C17—C181.390 (2)
C5—H5B0.9900C17—H170.9500
C6—H6A0.9900C18—H180.9500
C6—H6B0.9900
C3—O2—H2109.5O4—C8—H8B109.9
C7—O4—C8117.92 (14)C9—C8—H8B109.9
C10—O6—C11117.03 (12)H8A—C8—H8B108.3
O1—C1—C6122.31 (14)C8—C9—H9A109.5
O1—C1—C2121.82 (14)C8—C9—H9B109.5
C6—C1—C2115.86 (13)H9A—C9—H9B109.5
C1—C2—C3112.37 (13)C8—C9—H9C109.5
C1—C2—H2A109.1H9A—C9—H9C109.5
C3—C2—H2A109.1H9B—C9—H9C109.5
C1—C2—H2B109.1O5—C10—O6124.40 (14)
C3—C2—H2B109.1O5—C10—C4124.04 (14)
H2A—C2—H2B107.9O6—C10—C4111.56 (13)
O2—C3—C2108.84 (12)O6—C11—C12110.41 (14)
O2—C3—C7107.31 (12)O6—C11—H11A109.6
C2—C3—C7110.70 (12)C12—C11—H11A109.6
O2—C3—C4104.69 (11)O6—C11—H11B109.6
C2—C3—C4111.26 (12)C12—C11—H11B109.6
C7—C3—C4113.68 (12)H11A—C11—H11B108.1
C10—C4—C13107.52 (12)C11—C12—H12A109.5
C10—C4—C5109.82 (12)C11—C12—H12B109.5
C13—C4—C5110.10 (12)H12A—C12—H12B109.5
C10—C4—C3108.55 (12)C11—C12—H12C109.5
C13—C4—C3113.42 (12)H12A—C12—H12C109.5
C5—C4—C3107.40 (12)H12B—C12—H12C109.5
C6—C5—C4113.04 (12)C14—C13—C18117.75 (14)
C6—C5—H5A109.0C14—C13—C4121.03 (14)
C4—C5—H5A109.0C18—C13—C4121.20 (14)
C6—C5—H5B109.0C15—C14—C13120.96 (15)
C4—C5—H5B109.0C15—C14—H14119.5
H5A—C5—H5B107.8C13—C14—H14119.5
C1—C6—C5110.24 (12)C16—C15—C14120.46 (16)
C1—C6—H6A109.6C16—C15—H15119.8
C5—C6—H6A109.6C14—C15—H15119.8
C1—C6—H6B109.6C17—C16—C15119.34 (16)
C5—C6—H6B109.6C17—C16—H16120.3
H6A—C6—H6B108.1C15—C16—H16120.3
O3—C7—O4124.13 (15)C16—C17—C18120.26 (16)
O3—C7—C3124.09 (14)C16—C17—H17119.9
O4—C7—C3111.44 (13)C18—C17—H17119.9
O4—C8—C9108.77 (17)C17—C18—C13121.22 (15)
O4—C8—H8A109.9C17—C18—H18119.4
C9—C8—H8A109.9C13—C18—H18119.4
O1—C1—C2—C3131.17 (15)C2—C3—C7—O49.43 (18)
C6—C1—C2—C349.84 (18)C4—C3—C7—O4135.52 (14)
C1—C2—C3—O262.33 (16)C7—O4—C8—C9110.0 (2)
C1—C2—C3—C7179.96 (13)C11—O6—C10—O52.0 (2)
C1—C2—C3—C452.53 (17)C11—O6—C10—C4177.03 (12)
O2—C3—C4—C10179.76 (11)C13—C4—C10—O5101.99 (17)
C2—C3—C4—C1062.36 (16)C5—C4—C10—O5138.22 (15)
C7—C3—C4—C1063.44 (16)C3—C4—C10—O521.1 (2)
O2—C3—C4—C1360.81 (15)C13—C4—C10—O677.06 (15)
C2—C3—C4—C13178.21 (12)C5—C4—C10—O642.73 (16)
C7—C3—C4—C1355.99 (17)C3—C4—C10—O6159.87 (12)
O2—C3—C4—C561.07 (14)C10—O6—C11—C1288.62 (17)
C2—C3—C4—C556.33 (16)C10—C4—C13—C14158.13 (14)
C7—C3—C4—C5177.88 (12)C5—C4—C13—C1438.52 (19)
C10—C4—C5—C659.02 (16)C3—C4—C13—C1481.85 (17)
C13—C4—C5—C6177.22 (12)C10—C4—C13—C1820.14 (19)
C3—C4—C5—C658.84 (16)C5—C4—C13—C18139.75 (15)
O1—C1—C6—C5130.89 (16)C3—C4—C13—C1899.88 (17)
C2—C1—C6—C550.13 (18)C18—C13—C14—C150.0 (2)
C4—C5—C6—C155.46 (17)C4—C13—C14—C15178.36 (14)
C8—O4—C7—O34.0 (3)C13—C14—C15—C160.5 (2)
C8—O4—C7—C3169.59 (16)C14—C15—C16—C170.8 (3)
O2—C3—C7—O364.36 (19)C15—C16—C17—C180.7 (3)
C2—C3—C7—O3176.99 (15)C16—C17—C18—C130.2 (3)
C4—C3—C7—O350.9 (2)C14—C13—C18—C170.1 (2)
O2—C3—C7—O4109.22 (14)C4—C13—C18—C17178.23 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.912.7491 (18)177
C15—H15···O2ii0.952.553.486 (2)169
C8—H8A···O5iii0.992.443.095 (2)124
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC18H22O6
Mr334.36
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)8.2069 (10), 9.9393 (16), 11.1420 (17)
α, β, γ (°)87.408 (10), 70.610 (7), 78.983 (9)
V3)841.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.36 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.957, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8251, 3053, 2695
Rint0.019
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.07
No. of reflections3053
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.29

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.912.7491 (18)177
C15—H15···O2ii0.952.553.486 (2)169
C8—H8A···O5iii0.992.443.095 (2)124
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+2.
 

Acknowledgements

This project was supported by the Civic Natural Science Foundation of Huzhou (No. 2009YZ04) and the Outstanding Young Teachers Foundation of Zhejiang Province (No. 2008[201]).

References

First citationAbell, C., Allen, F. H., Bugg, T. D. H., Doyle, M. J. & Raithby, P. R. (1988). Acta Cryst. C44, 1287–1290.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBui, T. & Barbas, C. F. (2000). Tetrahedron Lett. 41, 6951–6954.  Web of Science CrossRef CAS Google Scholar
First citationEder, U., Sauer, G. & Wiechert, R. (1971). Angew. Chem. 83, 492–493.  CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFloyd, D. E. & Miller, S. E. (1963). Org. Synth. 4, 141–142.  Google Scholar
First citationGothelf, A. S., Gothelf, K. V., Hazell, R. G. & Jogensen, K. A. (2002). Angew. Chem. 114, 4410–4412.  CrossRef Google Scholar
First citationHajos, Z. G. & Parrish, D. R. (1974). J. Org. Chem. 22, 1615–1621.  CrossRef Web of Science Google Scholar
First citationHernández-Ortega, S., Jiménez-Cruz, F., Ríos-Olivares, H. & Rubio-Arroyo, M. (2001). Acta Cryst. C57, 425–427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNising, C. F. & Bräse, S. (2008). Chem. Soc. Rev. 37, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRueping, M., Kuenkel, A., Tato, F. & Bats, J. W. (2009). Angew. Chem. Int. Ed. 48, 3699–3702.  Web of Science CSD CrossRef CAS Google Scholar
First citationSefer, A., Emilie, M. C., Gérard, M. S. & Bräse, S. (2010). Synlett, pp. 128–130.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSibi, M. P. & Chen, J. (2001). J. Am. Chem. Soc. 123, 9472–9473.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanaka, F., Thayumanavan, R. & Barbas, C. F. (2003). J. Am. Chem. Soc. 125, 8523–8528.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTian, J., Yamagiwa, N., Matsunaga, S. & Shibasaki, M. (2002). Angew. Chem. 114, 3788–3790.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2977-o2978
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds