organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tuberostemo­amide hemihydrate

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of, Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China, and bSchool of Biological Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 2 October 2011; accepted 19 October 2011; online 29 October 2011)

In the crystal structure of the title compound {systematic name: (1′S,2R,2′R,3′S,6′R)-3′-ethyl-4-methyl-5H-5′-oxa-10′-aza­spiro­[furan-2,4′-tricyclo­[8.3.0.02,6]trideca­ne]-5,11′-dione hemihydrate}, C17H23NO4·0.5H2O, the asymmetric unit contains two mol­ecules of tuberostemoamide with similar conformations and one water mol­ecule. The tuberostemoamide mol­ecule is composed of one seven-membered ring (A) and three five-membered rings (B, C and D). Ring A exists in a chair conformation, both rings B and C exist in envelope conformations, and ring D is almost planar with a mean deviation of 0.0143 (4) Å in one molecule and 0.0095 (3) Å in the other.. The dihedral angles between the planes of rings C and D are 75.1 (3)° in one mol­ecule and 74.5 (3)° for the other. The solvent water mol­ecule links the tuberostemoamide mol­ecules through O—H⋯O(ketone) hydrogen bonds. Weak C—H⋯O inter­actions are also present, involving both the water mol­ecule and a heterocyclic ether O-atom acceptor.

Related literature

For general background, see: Pilli & Ferreira de Oliveira (2000[Pilli, R.-A. & Ferreira de Oliveira, M.-C. (2000). Nat. Prod. Rep. 17, 117-127.]); Jiang et al. (2006[Jiang, R.-W., Hon, P.-M., Zhou, Y., Xu, Y.-T., Chan, Y.-M., Xu, Y.-T., Xu, H.-X., Shaw, P.-C. & But, P. P.-H. (2006). J. Nat. Prod. 69, 749-754.]). For the biological activity of Stemona alkaloids, see: Xu et al. (2010[Xu, Y.-T., Shaw, P.-C., Jiang, R.-W., Hon, P.-M., Chan, Y. M. & But, P. P.-H. (2010). J. Ethnopharmacol. 128, 679-684.]); Lin et al. (2008[Lin, L.-G., Leung, H. P.-H., Zhu, J.-Y., Tang, C.-P., Ke, C.-Q., Rudd, J.-A., Lin, G. & Ye, Y. (2008). Tetrahedron, 64, 10155-10161.]); Hu et al. (2009[Hu, J.-P., Yang, D.-H., Lin, W.-H. & Cai, S.-Q. (2009). Helv. Chim. Acta, 92, 2125-2133.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23NO4·0.5H2O

  • Mr = 314.37

  • Orthorhombic, P 21 21 21

  • a = 8.6412 (2) Å

  • b = 10.7998 (2) Å

  • c = 36.1685 (7) Å

  • V = 3375.36 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 298 K

  • 0.42 × 0.30 × 0.27 mm

Data collection
  • Oxford Diffraction Gemini S Ultra CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.822, Tmax = 1.000

  • 8573 measured reflections

  • 4837 independent reflections

  • 4514 reflections with I > 2I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.06

  • 4837 reflections

  • 412 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1743 Friedel pairs

  • Flack parameter: −0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.81 1.98 2.796 (3) 175
O1W—H1WB⋯O1′ 0.83 1.97 2.784 (3) 171
C5′—H5′A⋯O3i 0.97 2.58 3.545 (4) 178
C10—H10A⋯O1Wii 0.98 2.58 3.450 (4) 149
Symmetry codes: (i) [x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1998[Bruker (1998). SMART, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin,USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound 2(C17H23NO4) . H2O (Fig. 1) is a hydrate of tuberostemoamide which has been isolated from the roots of Stemona tuberosa. This plant is a rich source of Stemona alkaloids (Pilli & Ferreira de Oliveira, 2000; Jiang et al., 2006) with anti-tussive activity (Xu et al., 2010). Although the phytochemical properties of tuberostemoamide have been studied Hu et al., 2009); Lin et al., 2008) the crystal structure has not previously been reported. In this study, we report the structure of tuberostemoamide hemihydrate.

The asymmetric unit contains two molecules of tuberostemoamide [(1) and (2)] with similar conformations and one water molecule (Fig. 1). The tuberostemoamide molecule is composed of one seven-membered ring (A) and three five-membered rings (B, C and D). Ring A exists in a chair conformation. Ring B exists in an envelope conformation with C1 displaced by 0.4695 Å from the least-squares plane of the remaining four atoms (C2, C3, N4 and C9A), and the corresponding value for molecule (2) is 0.4868 Å. Ring C also exhibits an envelope conformation with C10 displaced by 0.5930 Å from the least-squares plane of the remaining four atoms (C8, C8, O2 and C11), and the corresponding value for molecule (2) is 0.5886 Å. Ring D is planar with a mean deviation 0.0142 Å for (1) and 0.0101 Å for (2). The dihedral angles between the planes of the rings C and D in molecule (1) is 75.1 (3)° and 74.5 (3)° for molecule (2). The absolute configuration for the compound was not determined with certainty in this analysis.

The water molecule links the tuberostemoamide molecules through O—H···O(ketone) hydrogen bonds (Table 1) with only weak intermolecular C—H···O interactions present, involving both the water molecule and a hetero-ring ether O-acceptor (Fig. 2).

Related literature top

For general background, see: Pilli & Ferreira de Oliveira (2000); Jiang et al. (2006). For the biological activity of Stemona alkaloids, see: Xu et al. (2010); Lin et al. (2008); Hu et al. (2009).

Experimental top

The dry ground herbal sample Radix stemonae (8.0 kg) was refluxed with 95% EtOH. After evaporation of the solvent, the crude extract was acidified with 4% HCl and filtered, and the filtrate was washed with diethyl ether (800 ml). The pH of the aqueous layer was raised to 9 with aqueous ammonia (35%) and then extracted with Et2O (800 ml). The Et2O layer was evaporated to afford the crude alkaloids (25 g), which was subjected to column chromatography over silica gel, and eluted with cyclohexane-ethyl acetate (10:1 to 0:1) to yield fourteen fractions. Fraction 8 (4 g) was subjected to reverse phase silica gel chromatography to yield seven subfractions, after which the second subfraction (60% CH3CN, 8 mg) was purified by preparative HPLC eluted by 25% CH3CN to yield tuberostemoamide (4 mg). The colorless crystals were obtained from a methanol solution at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.93 Å (aryl H) and Uiso(H)= 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). In the absence of a suitable heavy atom the Flack parameter determined for the parent compound [-0.1 (2) for 1743 Friedel pairs] is not definitive of the absolute configuration of tuberostemoamide but for the chosen enantiomer, the 5 chiral centers of both independent molecules are C8(R), C9(R), C9A(S), C10(S), C11(R).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme. Inter-species hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram viewed down the a axis showing O—H···O and C—H···O hydrogen bonds as dashed lines.
(1'S,2R,2'R,3'S,6'R)-3'-ethyl-4-methyl- 5H-5'-oxa-10'-azaspiro[furan-2,4'-tricyclo[8.3.0.02,6]tridecane]- 5,11'-dione hemihydrate top
Crystal data top
C17H23NO4·0.5H2OF(000) = 1352
Mr = 314.37Dx = 1.237 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 4774 reflections
a = 8.6412 (2) Åθ = 3.7–62.5°
b = 10.7998 (2) ŵ = 0.73 mm1
c = 36.1685 (7) ÅT = 298 K
V = 3375.36 (12) Å3Block, colorless
Z = 80.42 × 0.30 × 0.27 mm
Data collection top
Oxford Diffraction Gemini S Ultra CCD
diffractometer
4837 independent reflections
Radiation source: fine-focus sealed tube4514 reflections with I > 2˘I)
Graphite monochromatorRint = 0.021
ω scansθmax = 62.6°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.822, Tmax = 1.000k = 1210
8573 measured reflectionsl = 1941
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0913P)2 + 0.4948P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4837 reflectionsΔρmax = 0.51 e Å3
412 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 1743 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C17H23NO4·0.5H2OV = 3375.36 (12) Å3
Mr = 314.37Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 8.6412 (2) ŵ = 0.73 mm1
b = 10.7998 (2) ÅT = 298 K
c = 36.1685 (7) Å0.42 × 0.30 × 0.27 mm
Data collection top
Oxford Diffraction Gemini S Ultra CCD
diffractometer
4837 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4514 reflections with I > 2˘I)
Tmin = 0.822, Tmax = 1.000Rint = 0.021
8573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142Δρmax = 0.51 e Å3
S = 1.06Δρmin = 0.24 e Å3
4837 reflectionsAbsolute structure: Flack (1983), 1743 Friedel pairs
412 parametersAbsolute structure parameter: 0.1 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1'0.3987 (3)0.6908 (2)0.08626 (7)0.0818 (7)
O2'0.9749 (2)0.7450 (2)0.18688 (6)0.0688 (6)
O3'1.0512 (3)0.9441 (2)0.20168 (6)0.0792 (7)
O4'1.2437 (4)1.0530 (3)0.22680 (11)0.1210 (12)
C1'0.4852 (4)0.7634 (3)0.18058 (9)0.0663 (8)
H1'A0.43970.80470.20180.080*
H1'B0.54420.69240.18900.080*
C2'0.3601 (4)0.7249 (4)0.15240 (10)0.0828 (10)
H2'A0.32620.64050.15670.099*
H2'B0.27130.77970.15370.099*
C3'0.4403 (3)0.7360 (3)0.11593 (9)0.0614 (7)
N4'0.5691 (3)0.8034 (2)0.12056 (6)0.0530 (5)
C5'0.6762 (4)0.8299 (3)0.09050 (7)0.0583 (7)
H5'A0.71410.91400.09310.070*
H5'B0.62140.82440.06720.070*
C6'0.8127 (4)0.7416 (3)0.08984 (7)0.0617 (7)
H6'A0.77320.65750.09020.074*
H6'B0.86730.75270.06660.074*
C7'0.9266 (3)0.7555 (3)0.12079 (8)0.0612 (7)
H7'A0.97960.83410.11810.073*
H7'B1.00350.69040.11880.073*
C8'0.8538 (3)0.7500 (3)0.15902 (7)0.0513 (6)
H8'A0.79000.67520.16090.062*
C9'0.7566 (3)0.8615 (2)0.16928 (7)0.0477 (6)
H9'A0.80060.93380.15670.057*
C9A'0.5859 (3)0.8521 (2)0.15822 (7)0.0514 (6)
H9AB0.53970.93490.15920.062*
C10'0.7858 (4)0.8767 (3)0.21083 (7)0.0547 (6)
H10B0.72490.81400.22390.066*
C11'0.9562 (4)0.8396 (3)0.21282 (8)0.0596 (7)
C12'1.0220 (4)0.8032 (3)0.24871 (9)0.0681 (8)
H12B0.98540.73830.26320.082*
C13'1.1403 (4)0.8751 (4)0.25765 (9)0.0762 (9)
C14'1.1569 (4)0.9670 (4)0.22847 (11)0.0810 (10)
C15'1.2413 (6)0.8803 (6)0.29114 (12)0.1187 (17)
H15D1.21590.81290.30730.178*
H15E1.22510.95740.30380.178*
H15F1.34780.87390.28380.178*
C16'0.7445 (6)1.0033 (4)0.22668 (10)0.0858 (11)
H16C0.82301.06180.21880.103*
H16D0.64731.02940.21580.103*
C17'0.7300 (10)1.0123 (6)0.26649 (16)0.157 (3)
H17D0.70491.09600.27320.236*
H17E0.82600.98910.27790.236*
H17F0.64930.95790.27480.236*
O10.0168 (3)0.5873 (2)0.01640 (7)0.0779 (6)
O20.5911 (2)0.31108 (18)0.03973 (5)0.0528 (4)
O30.6774 (2)0.36455 (16)0.09836 (5)0.0564 (5)
O40.8917 (3)0.3499 (2)0.13237 (6)0.0742 (6)
C10.1041 (3)0.3420 (3)0.04581 (9)0.0591 (7)
H1A0.16180.28440.03050.071*
H1B0.05990.29740.06650.071*
C20.0210 (3)0.4071 (3)0.02354 (9)0.0595 (7)
H2A0.05640.35560.00330.071*
H2B0.10870.42830.03900.071*
C30.0582 (3)0.5213 (3)0.00945 (8)0.0545 (6)
N40.1863 (2)0.5401 (2)0.02972 (6)0.0515 (5)
C50.2939 (3)0.6411 (3)0.02211 (9)0.0610 (7)
H5A0.33870.66970.04520.073*
H5B0.23780.70970.01110.073*
C60.4218 (3)0.6016 (3)0.00366 (9)0.0610 (7)
H6A0.47630.67510.01200.073*
H6B0.37550.56330.02520.073*
C70.5400 (3)0.5116 (3)0.01270 (8)0.0544 (7)
H7A0.61140.48670.00660.065*
H7B0.59920.55430.03160.065*
C80.4694 (3)0.3976 (2)0.02940 (7)0.0437 (5)
H8A0.40200.35830.01110.052*
C90.3777 (3)0.4177 (2)0.06508 (7)0.0457 (6)
H9A0.42450.48790.07810.055*
C9A0.2073 (3)0.4480 (2)0.05906 (7)0.0493 (6)
H9AA0.16450.48120.08210.059*
C100.4123 (3)0.3013 (3)0.08746 (7)0.0529 (6)
H10A0.35040.23340.07720.063*
C110.5799 (3)0.2795 (2)0.07690 (7)0.0500 (6)
C120.6566 (3)0.1570 (2)0.08304 (8)0.0576 (7)
H12A0.61920.08190.07420.069*
C130.7846 (3)0.1697 (2)0.10266 (7)0.0536 (6)
C140.7969 (3)0.3011 (2)0.11322 (7)0.0523 (6)
C150.9043 (4)0.0787 (3)0.11504 (10)0.0691 (8)
H15A0.87830.00220.10590.104*
H15B0.90790.07700.14160.104*
H15C1.00360.10280.10560.104*
C160.3768 (5)0.3105 (4)0.12896 (9)0.0858 (11)
H16A0.45570.36170.14040.103*
H16B0.27870.35300.13190.103*
C170.3690 (9)0.1966 (7)0.14874 (13)0.158 (3)
H17A0.34580.21290.17420.238*
H17B0.46660.15460.14700.238*
H17C0.28920.14550.13830.238*
O1W0.1914 (4)0.5014 (3)0.06972 (10)0.1025 (9)
H1WA0.128 (6)0.529 (6)0.0552 (14)0.154*
H1WB0.256 (6)0.553 (5)0.0765 (16)0.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1'0.0742 (14)0.0875 (15)0.0837 (14)0.0204 (13)0.0242 (12)0.0017 (13)
O2'0.0611 (12)0.0800 (13)0.0653 (11)0.0199 (11)0.0105 (10)0.0137 (10)
O3'0.0698 (14)0.0857 (15)0.0821 (14)0.0206 (13)0.0149 (12)0.0174 (13)
O4'0.091 (2)0.112 (2)0.160 (3)0.042 (2)0.032 (2)0.014 (2)
C1'0.0494 (15)0.082 (2)0.0676 (16)0.0068 (16)0.0064 (14)0.0036 (15)
C2'0.0488 (17)0.102 (3)0.098 (2)0.0145 (18)0.0042 (17)0.005 (2)
C3'0.0522 (15)0.0579 (16)0.0743 (18)0.0020 (14)0.0125 (15)0.0050 (14)
N4'0.0514 (12)0.0490 (11)0.0584 (12)0.0085 (10)0.0059 (10)0.0023 (10)
C5'0.0723 (18)0.0559 (15)0.0468 (13)0.0160 (15)0.0060 (13)0.0078 (11)
C6'0.0733 (19)0.0614 (16)0.0504 (13)0.0130 (16)0.0116 (14)0.0043 (12)
C7'0.0525 (15)0.0713 (17)0.0600 (15)0.0030 (14)0.0116 (14)0.0109 (14)
C8'0.0498 (14)0.0514 (13)0.0527 (13)0.0004 (12)0.0008 (12)0.0050 (11)
C9'0.0488 (14)0.0443 (13)0.0499 (12)0.0011 (11)0.0021 (11)0.0011 (10)
C9A'0.0452 (14)0.0500 (14)0.0590 (13)0.0032 (12)0.0023 (11)0.0015 (12)
C10'0.0597 (16)0.0550 (15)0.0495 (13)0.0005 (14)0.0021 (12)0.0034 (12)
C11'0.0627 (17)0.0599 (17)0.0562 (14)0.0039 (15)0.0038 (13)0.0001 (13)
C12'0.078 (2)0.0655 (18)0.0606 (15)0.0022 (17)0.0118 (15)0.0012 (14)
C13'0.077 (2)0.081 (2)0.0708 (18)0.0006 (19)0.0223 (17)0.0044 (17)
C14'0.063 (2)0.083 (2)0.097 (3)0.0072 (19)0.0125 (18)0.006 (2)
C15'0.115 (4)0.149 (4)0.092 (3)0.008 (3)0.049 (3)0.011 (3)
C16'0.113 (3)0.071 (2)0.073 (2)0.017 (2)0.002 (2)0.0231 (16)
C17'0.199 (7)0.147 (5)0.126 (4)0.035 (5)0.007 (5)0.050 (4)
O10.0652 (13)0.0750 (14)0.0937 (15)0.0013 (12)0.0213 (12)0.0129 (12)
O20.0478 (10)0.0594 (10)0.0513 (9)0.0123 (9)0.0013 (8)0.0019 (8)
O30.0622 (11)0.0405 (9)0.0666 (10)0.0009 (9)0.0147 (9)0.0045 (8)
O40.0718 (13)0.0615 (12)0.0894 (14)0.0005 (11)0.0272 (12)0.0171 (11)
C10.0472 (14)0.0535 (15)0.0766 (17)0.0057 (13)0.0086 (14)0.0014 (13)
C20.0387 (13)0.0603 (16)0.0796 (17)0.0042 (12)0.0029 (13)0.0114 (14)
C30.0432 (13)0.0489 (14)0.0715 (16)0.0047 (12)0.0008 (13)0.0056 (13)
N40.0423 (11)0.0430 (11)0.0694 (13)0.0004 (10)0.0003 (10)0.0047 (10)
C50.0508 (14)0.0412 (13)0.0910 (19)0.0048 (12)0.0096 (15)0.0014 (13)
C60.0551 (16)0.0517 (15)0.0762 (17)0.0089 (13)0.0022 (14)0.0142 (14)
C70.0451 (14)0.0561 (15)0.0621 (15)0.0054 (12)0.0043 (12)0.0048 (12)
C80.0390 (12)0.0449 (12)0.0471 (12)0.0019 (11)0.0027 (10)0.0023 (10)
C90.0458 (12)0.0465 (13)0.0449 (12)0.0005 (11)0.0003 (11)0.0059 (10)
C9A0.0465 (13)0.0511 (14)0.0504 (13)0.0016 (12)0.0086 (11)0.0050 (11)
C100.0575 (15)0.0511 (13)0.0501 (13)0.0047 (13)0.0009 (12)0.0020 (11)
C110.0543 (15)0.0437 (13)0.0520 (13)0.0039 (12)0.0072 (12)0.0008 (11)
C120.0657 (17)0.0416 (13)0.0656 (15)0.0039 (13)0.0101 (14)0.0035 (12)
C130.0589 (15)0.0397 (13)0.0621 (14)0.0011 (12)0.0061 (13)0.0011 (11)
C140.0556 (15)0.0461 (13)0.0553 (13)0.0025 (13)0.0057 (13)0.0019 (11)
C150.0646 (18)0.0528 (16)0.090 (2)0.0069 (15)0.0156 (17)0.0028 (15)
C160.102 (3)0.097 (3)0.0583 (17)0.010 (2)0.0197 (19)0.0043 (17)
C170.192 (6)0.202 (6)0.081 (3)0.027 (6)0.009 (4)0.047 (4)
O1W0.104 (2)0.0833 (18)0.120 (2)0.0337 (17)0.0342 (18)0.0232 (15)
Geometric parameters (Å, º) top
O1'—C3'1.233 (4)O2—C111.390 (3)
O2'—C11'1.396 (4)O2—C81.455 (3)
O2'—C8'1.454 (3)O3—C141.351 (3)
O3'—C14'1.354 (4)O3—C111.468 (3)
O3'—C11'1.453 (4)O4—C141.195 (3)
O4'—C14'1.195 (5)C1—C21.521 (4)
C1'—C9A'1.525 (4)C1—C9A1.528 (4)
C1'—C2'1.542 (5)C1—H1A0.9700
C1'—H1'A0.9700C1—H1B0.9700
C1'—H1'B0.9700C2—C31.499 (4)
C2'—C3'1.495 (5)C2—H2A0.9700
C2'—H2'A0.9700C2—H2B0.9700
C2'—H2'B0.9700C3—N41.343 (4)
C3'—N4'1.340 (4)N4—C51.460 (3)
N4'—C5'1.456 (4)N4—C9A1.466 (3)
N4'—C9A'1.467 (3)C5—C61.507 (4)
C5'—C6'1.517 (4)C5—H5A0.9700
C5'—H5'A0.9700C5—H5B0.9700
C5'—H5'B0.9700C6—C71.529 (4)
C6'—C7'1.498 (4)C6—H6A0.9700
C6'—H6'A0.9700C6—H6B0.9700
C6'—H6'B0.9700C7—C81.501 (4)
C7'—C8'1.520 (4)C7—H7A0.9700
C7'—H7'A0.9700C7—H7B0.9700
C7'—H7'B0.9700C8—C91.530 (3)
C8'—C9'1.515 (4)C8—H8A0.9800
C8'—H8'A0.9800C9—C101.524 (4)
C9'—C9A'1.532 (4)C9—C9A1.524 (4)
C9'—C10'1.533 (3)C9—H9A0.9800
C9'—H9'A0.9800C9A—H9AA0.9800
C9A'—H9AB0.9800C10—C111.517 (4)
C10'—C16'1.525 (4)C10—C161.535 (4)
C10'—C11'1.528 (4)C10—H10A0.9800
C10'—H10B0.9800C11—C121.496 (4)
C11'—C12'1.470 (4)C12—C131.321 (4)
C12'—C13'1.324 (5)C12—H12A0.9300
C12'—H12B0.9300C13—C141.473 (4)
C13'—C14'1.456 (5)C13—C151.496 (4)
C13'—C15'1.494 (5)C15—H15A0.9600
C15'—H15D0.9600C15—H15B0.9600
C15'—H15E0.9600C15—H15C0.9600
C15'—H15F0.9600C16—C171.425 (7)
C16'—C17'1.449 (6)C16—H16A0.9700
C16'—H16C0.9700C16—H16B0.9700
C16'—H16D0.9700C17—H17A0.9600
C17'—H17D0.9600C17—H17B0.9600
C17'—H17E0.9600C17—H17C0.9600
C17'—H17F0.9600O1W—H1WA0.81 (2)
O1—C31.229 (4)O1W—H1WB0.82 (2)
C11'—O2'—C8'110.8 (2)C14—O3—C11109.35 (19)
C14'—O3'—C11'108.9 (3)C2—C1—C9A103.5 (2)
C9A'—C1'—C2'102.6 (3)C2—C1—H1A111.1
C9A'—C1'—H1'A111.2C9A—C1—H1A111.1
C2'—C1'—H1'A111.2C2—C1—H1B111.1
C9A'—C1'—H1'B111.2C9A—C1—H1B111.1
C2'—C1'—H1'B111.2H1A—C1—H1B109.0
H1'A—C1'—H1'B109.2C3—C2—C1103.6 (2)
C3'—C2'—C1'103.7 (2)C3—C2—H2A111.0
C3'—C2'—H2'A111.0C1—C2—H2A111.0
C1'—C2'—H2'A111.0C3—C2—H2B111.0
C3'—C2'—H2'B111.0C1—C2—H2B111.0
C1'—C2'—H2'B111.0H2A—C2—H2B109.0
H2'A—C2'—H2'B109.0O1—C3—N4124.6 (3)
O1'—C3'—N4'124.5 (3)O1—C3—C2127.0 (3)
O1'—C3'—C2'126.9 (3)N4—C3—C2108.4 (2)
N4'—C3'—C2'108.6 (3)C3—N4—C5122.3 (2)
C3'—N4'—C5'122.8 (2)C3—N4—C9A113.2 (2)
C3'—N4'—C9A'113.1 (2)C5—N4—C9A124.4 (2)
C5'—N4'—C9A'124.0 (2)N4—C5—C6111.9 (2)
N4'—C5'—C6'112.5 (2)N4—C5—H5A109.2
N4'—C5'—H5'A109.1C6—C5—H5A109.2
C6'—C5'—H5'A109.1N4—C5—H5B109.2
N4'—C5'—H5'B109.1C6—C5—H5B109.2
C6'—C5'—H5'B109.1H5A—C5—H5B107.9
H5'A—C5'—H5'B107.8C5—C6—C7115.5 (2)
C7'—C6'—C5'115.9 (2)C5—C6—H6A108.4
C7'—C6'—H6'A108.3C7—C6—H6A108.4
C5'—C6'—H6'A108.3C5—C6—H6B108.4
C7'—C6'—H6'B108.3C7—C6—H6B108.4
C5'—C6'—H6'B108.3H6A—C6—H6B107.5
H6'A—C6'—H6'B107.4C8—C7—C6113.9 (2)
C6'—C7'—C8'113.8 (2)C8—C7—H7A108.8
C6'—C7'—H7'A108.8C6—C7—H7A108.8
C8'—C7'—H7'A108.8C8—C7—H7B108.8
C6'—C7'—H7'B108.8C6—C7—H7B108.8
C8'—C7'—H7'B108.8H7A—C7—H7B107.7
H7'A—C7'—H7'B107.7O2—C8—C7109.7 (2)
O2'—C8'—C9'105.0 (2)O2—C8—C9104.40 (18)
O2'—C8'—C7'109.5 (2)C7—C8—C9115.7 (2)
C9'—C8'—C7'114.9 (2)O2—C8—H8A108.9
O2'—C8'—H8'A109.1C7—C8—H8A108.9
C9'—C8'—H8'A109.1C9—C8—H8A108.9
C7'—C8'—H8'A109.1C10—C9—C9A116.2 (2)
C8'—C9'—C9A'114.6 (2)C10—C9—C8103.3 (2)
C8'—C9'—C10'103.5 (2)C9A—C9—C8114.2 (2)
C9A'—C9'—C10'114.9 (2)C10—C9—H9A107.5
C8'—C9'—H9'A107.8C9A—C9—H9A107.5
C9A'—C9'—H9'A107.8C8—C9—H9A107.5
C10'—C9'—H9'A107.8N4—C9A—C9111.6 (2)
N4'—C9A'—C1'102.2 (2)N4—C9A—C1102.1 (2)
N4'—C9A'—C9'111.2 (2)C9—C9A—C1116.6 (2)
C1'—C9A'—C9'116.9 (2)N4—C9A—H9AA108.7
N4'—C9A'—H9AB108.7C9—C9A—H9AA108.7
C1'—C9A'—H9AB108.7C1—C9A—H9AA108.7
C9'—C9A'—H9AB108.7C11—C10—C9100.5 (2)
C16'—C10'—C11'116.3 (3)C11—C10—C16116.5 (3)
C16'—C10'—C9'115.2 (3)C9—C10—C16115.3 (3)
C11'—C10'—C9'100.2 (2)C11—C10—H10A108.0
C16'—C10'—H10B108.2C9—C10—H10A108.0
C11'—C10'—H10B108.2C16—C10—H10A108.0
C9'—C10'—H10B108.2O2—C11—O3108.5 (2)
O2'—C11'—O3'108.5 (2)O2—C11—C12109.3 (2)
O2'—C11'—C12'110.7 (3)O3—C11—C12102.7 (2)
O3'—C11'—C12'103.6 (2)O2—C11—C10105.8 (2)
O2'—C11'—C10'105.7 (2)O3—C11—C10108.5 (2)
O3'—C11'—C10'109.1 (2)C12—C11—C10121.6 (2)
C12'—C11'—C10'119.0 (3)C13—C12—C11111.0 (2)
C13'—C12'—C11'110.9 (3)C13—C12—H12A124.5
C13'—C12'—H12B124.5C11—C12—H12A124.5
C11'—C12'—H12B124.5C12—C13—C14107.5 (2)
C12'—C13'—C14'107.4 (3)C12—C13—C15132.2 (3)
C12'—C13'—C15'132.1 (4)C14—C13—C15120.4 (2)
C14'—C13'—C15'120.3 (4)O4—C14—O3122.0 (2)
O4'—C14'—O3'121.9 (4)O4—C14—C13128.7 (3)
O4'—C14'—C13'128.9 (4)O3—C14—C13109.3 (2)
O3'—C14'—C13'109.1 (3)C13—C15—H15A109.5
C13'—C15'—H15D109.5C13—C15—H15B109.5
C13'—C15'—H15E109.5H15A—C15—H15B109.5
H15D—C15'—H15E109.5C13—C15—H15C109.5
C13'—C15'—H15F109.5H15A—C15—H15C109.5
H15D—C15'—H15F109.5H15B—C15—H15C109.5
H15E—C15'—H15F109.5C17—C16—C10116.4 (4)
C17'—C16'—C10'117.0 (4)C17—C16—H16A108.2
C17'—C16'—H16C108.0C10—C16—H16A108.2
C10'—C16'—H16C108.0C17—C16—H16B108.2
C17'—C16'—H16D108.0C10—C16—H16B108.2
C10'—C16'—H16D108.0H16A—C16—H16B107.3
H16C—C16'—H16D107.3C16—C17—H17A109.5
C16'—C17'—H17D109.5C16—C17—H17B109.5
C16'—C17'—H17E109.5H17A—C17—H17B109.5
H17D—C17'—H17E109.5C16—C17—H17C109.5
C16'—C17'—H17F109.5H17A—C17—H17C109.5
H17D—C17'—H17F109.5H17B—C17—H17C109.5
H17E—C17'—H17F109.5H1WA—O1W—H1WB113 (6)
C11—O2—C8110.84 (19)
C9A'—C1'—C2'—C3'28.3 (4)C9A—C1—C2—C328.4 (3)
C1'—C2'—C3'—O1'163.4 (3)C1—C2—C3—O1161.7 (3)
C1'—C2'—C3'—N4'15.8 (4)C1—C2—C3—N417.6 (3)
O1'—C3'—N4'—C5'0.5 (5)O1—C3—N4—C52.0 (4)
C2'—C3'—N4'—C5'178.8 (3)C2—C3—N4—C5177.3 (2)
O1'—C3'—N4'—C9A'176.5 (3)O1—C3—N4—C9A179.5 (3)
C2'—C3'—N4'—C9A'4.2 (3)C2—C3—N4—C9A1.3 (3)
C3'—N4'—C5'—C6'97.1 (3)C3—N4—C5—C691.8 (3)
C9A'—N4'—C5'—C6'86.2 (3)C9A—N4—C5—C686.6 (3)
N4'—C5'—C6'—C7'69.8 (3)N4—C5—C6—C770.3 (3)
C5'—C6'—C7'—C8'53.7 (4)C5—C6—C7—C853.6 (3)
C11'—O2'—C8'—C9'1.6 (3)C11—O2—C8—C7124.5 (2)
C11'—O2'—C8'—C7'125.5 (3)C11—O2—C8—C90.0 (3)
C6'—C7'—C8'—O2'171.3 (3)C6—C7—C8—O2172.6 (2)
C6'—C7'—C8'—C9'70.9 (3)C6—C7—C8—C969.7 (3)
O2'—C8'—C9'—C9A'150.5 (2)O2—C8—C9—C1023.5 (2)
C7'—C8'—C9'—C9A'89.2 (3)C7—C8—C9—C10144.1 (2)
O2'—C8'—C9'—C10'24.5 (3)O2—C8—C9—C9A150.7 (2)
C7'—C8'—C9'—C10'144.9 (2)C7—C8—C9—C9A88.7 (3)
C3'—N4'—C9A'—C1'22.5 (3)C3—N4—C9A—C9144.6 (2)
C5'—N4'—C9A'—C1'160.5 (2)C5—N4—C9A—C933.9 (3)
C3'—N4'—C9A'—C9'147.9 (2)C3—N4—C9A—C119.3 (3)
C5'—N4'—C9A'—C9'35.1 (3)C5—N4—C9A—C1159.2 (2)
C2'—C1'—C9A'—N4'30.1 (3)C10—C9—C9A—N4164.9 (2)
C2'—C1'—C9A'—C9'151.7 (3)C8—C9—C9A—N444.8 (3)
C8'—C9'—C9A'—N4'44.1 (3)C10—C9—C9A—C148.2 (3)
C10'—C9'—C9A'—N4'163.9 (2)C8—C9—C9A—C172.0 (3)
C8'—C9'—C9A'—C1'72.6 (3)C2—C1—C9A—N428.6 (3)
C10'—C9'—C9A'—C1'47.2 (3)C2—C1—C9A—C9150.5 (2)
C8'—C9'—C10'—C16'161.7 (3)C9A—C9—C10—C11162.2 (2)
C9A'—C9'—C10'—C16'72.5 (4)C8—C9—C10—C1136.3 (2)
C8'—C9'—C10'—C11'36.2 (3)C9A—C9—C10—C1671.6 (3)
C9A'—C9'—C10'—C11'161.9 (2)C8—C9—C10—C16162.5 (3)
C8'—O2'—C11'—O3'94.7 (3)C8—O2—C11—O392.3 (2)
C8'—O2'—C11'—C12'152.3 (3)C8—O2—C11—C12156.4 (2)
C8'—O2'—C11'—C10'22.2 (3)C8—O2—C11—C1024.0 (3)
C14'—O3'—C11'—O2'118.9 (3)C14—O3—C11—O2113.1 (2)
C14'—O3'—C11'—C12'1.3 (4)C14—O3—C11—C122.5 (3)
C14'—O3'—C11'—C10'126.3 (3)C14—O3—C11—C10132.4 (2)
C16'—C10'—C11'—O2'160.9 (3)C9—C10—C11—O237.4 (2)
C9'—C10'—C11'—O2'36.0 (3)C16—C10—C11—O2162.7 (3)
C16'—C10'—C11'—O3'44.4 (3)C9—C10—C11—O378.8 (2)
C9'—C10'—C11'—O3'80.5 (3)C16—C10—C11—O346.4 (3)
C16'—C10'—C11'—C12'74.0 (4)C9—C10—C11—C12162.6 (2)
C9'—C10'—C11'—C12'161.1 (3)C16—C10—C11—C1272.2 (4)
O2'—C11'—C12'—C13'115.6 (3)O2—C11—C12—C13111.1 (3)
O3'—C11'—C12'—C13'0.4 (4)O3—C11—C12—C134.0 (3)
C10'—C11'—C12'—C13'121.7 (3)C10—C11—C12—C13125.3 (3)
C11'—C12'—C13'—C14'1.9 (4)C11—C12—C13—C143.8 (3)
C11'—C12'—C13'—C15'177.3 (4)C11—C12—C13—C15177.6 (3)
C11'—O3'—C14'—O4'175.9 (4)C11—O3—C14—O4179.0 (3)
C11'—O3'—C14'—C13'2.5 (4)C11—O3—C14—C130.5 (3)
C12'—C13'—C14'—O4'175.5 (5)C12—C13—C14—O4176.3 (3)
C15'—C13'—C14'—O4'0.6 (7)C15—C13—C14—O42.5 (5)
C12'—C13'—C14'—O3'2.7 (4)C12—C13—C14—O32.1 (3)
C15'—C13'—C14'—O3'178.8 (4)C15—C13—C14—O3179.1 (2)
C11'—C10'—C16'—C17'79.4 (6)C11—C10—C16—C1778.4 (5)
C9'—C10'—C16'—C17'163.8 (5)C9—C10—C16—C17164.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.811.982.796 (3)175
O1W—H1WB···O10.831.972.784 (3)171
C5—H5A···O3i0.972.583.545 (4)178
C10—H10A···O1Wii0.982.583.450 (4)149
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H23NO4·0.5H2O
Mr314.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.6412 (2), 10.7998 (2), 36.1685 (7)
V3)3375.36 (12)
Z8
Radiation typeCu Kα
µ (mm1)0.73
Crystal size (mm)0.42 × 0.30 × 0.27
Data collection
DiffractometerOxford Diffraction Gemini S Ultra CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.822, 1.000
No. of measured, independent and
observed [I > 2˘I)] reflections
8573, 4837, 4514
Rint0.021
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.06
No. of reflections4837
No. of parameters412
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.24
Absolute structureFlack (1983), 1743 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.8141.9842.796 (3)174.8
O1W—H1WB···O1'0.8251.9662.784 (3)171.4
C5'—H5'A···O3i0.9702.5753.545 (4)178.0
C10—H10A···O1Wii0.9802.5763.450 (4)148.5
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by a grant from the New Century Excellent Talents Scheme of the Ministry of Education (grant No. NCET-08–0612), the Guangdong High Level Talent Scheme (to RWJ) and the Fundamental Research Funds for the Central Universities (grant No. 21609202)

References

First citationBruker (1998). SMART, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, J.-P., Yang, D.-H., Lin, W.-H. & Cai, S.-Q. (2009). Helv. Chim. Acta, 92, 2125–2133.  CrossRef CAS Google Scholar
First citationJiang, R.-W., Hon, P.-M., Zhou, Y., Xu, Y.-T., Chan, Y.-M., Xu, Y.-T., Xu, H.-X., Shaw, P.-C. & But, P. P.-H. (2006). J. Nat. Prod. 69, 749–754.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, L.-G., Leung, H. P.-H., Zhu, J.-Y., Tang, C.-P., Ke, C.-Q., Rudd, J.-A., Lin, G. & Ye, Y. (2008). Tetrahedron, 64, 10155–10161.  Web of Science CrossRef CAS Google Scholar
First citationPilli, R.-A. & Ferreira de Oliveira, M.-C. (2000). Nat. Prod. Rep. 17, 117–127.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-T., Shaw, P.-C., Jiang, R.-W., Hon, P.-M., Chan, Y. M. & But, P. P.-H. (2010). J. Ethnopharmacol. 128, 679–684.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds