metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{2-[(3,4-di­methyl­phen­yl)imino­meth­yl]pyridine-κ2N,N′}copper(II)

aDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Qazvin, Iran, bDepartment of Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran, cFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, and dDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran
*Correspondence e-mail: khalaj_mehdi@yahoo.com

(Received 11 October 2011; accepted 22 October 2011; online 29 October 2011)

In the title complex, [CuCl2(C14H14N2)], the CuII atom exhibits a very distorted tetra­hedral coordination geometry involving two chloride ions and two N-atom donors from the Schiff base ligand. The range for the six bond angles about the Cu2+ cation is 81.49 (11)–145.95 (9)°. The chelate ring including the CuII atom is approximately planar, with a maximum deviation of 0.039 (4) Å for one of the C atoms; this plane forms a dihedral angle of 46.69 (9)° with the CuCl2 plane.

Related literature

For related structures, see: Mahmoudi et al. (2009[Mahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555.]); Wang & Zhong (2009[Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156.]). For background information on diimine complexes, see: Khalaj et al. (2010[Khalaj, M., Dehghanpour, S., Aleeshah, R. & Mahmoudi, A. (2010). Acta Cryst. E66, m1647.]); Salehzadeh et al. (2011[Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C14H14N2)]

  • Mr = 344.71

  • Triclinic, [P \overline 1]

  • a = 8.1171 (4) Å

  • b = 9.5784 (4) Å

  • c = 10.0609 (5) Å

  • α = 67.236 (2)°

  • β = 88.513 (2)°

  • γ = 81.336 (2)°

  • V = 712.61 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 150 K

  • 0.18 × 0.16 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.725, Tmax = 0.830

  • 6451 measured reflections

  • 3189 independent reflections

  • 2256 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.07

  • 3189 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.988 (3)
Cu1—N2 2.025 (3)
Cu1—Cl2 2.2035 (10)
Cu1—Cl1 2.2204 (10)

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Diimine ligands derived from 2-aminopyridine and aniline derivatives are useful bidentate terminal ligands and some complexes with them as ligand have already been published (Mahmoudi et al., 2009; Salehzadeh et al., 2011). We report herein the crystal structure of the title complex [CuCl2(C14H14N2)] which was prepared by the reaction of CuCl2 with the bidentate ligand N-(3,4-dimethylphenyl)-pyridine-2-ylmethyleneamine.

The molecular structure of the title complex is shown in Fig. 1. The CuII ion is in a very distorted tetrahedral environment formed by a bis-chelating ligand and two Cl anions. The dihedral angle between the chelate plane Cu1–N1–C5–C6–N2 and the Cl1–Cu1–Cl2 plane is 46.69(9° and the range for the six bond angles about Cu1 is 81.49 (11)° (N1-Cu1-N2)–145.95 (9)° (N2-Cu1-Cl1). These values show an appreciable distortion towards square planar geometry. A comparison of the dihedral angles between the planes of the pyridine, chelate and the benzene rings indicate that the ligand is distorted from planarity, with a twist of 26.00 (17)° between the chelate (N1—C5—C6—N2) and the benzene (C7–C12) planes. The Cu—Cl and Cu—N bond dimensions compare well with the values found in other tetrahedral diimine complexes of copper(II) chloride (Mahmoudi et al., 2009; Wang & Zhong, 2009).

Related literature top

For related structures, see: Mahmoudi et al. (2009); Wang & Zhong (2009). For background information on diimine complexes, see: Khalaj et al. (2010); Salehzadeh et al. (2011).

Experimental top

The title complex was prepared by the reaction of CuCl2 (13.4 mg, 0.1 mmol) and N-(3,4-dimethylphenyl)-(pyridine-2-ylmethylene)amine (21.0 mg, 0.1 mmol) in 10 ml acetonitrile at room temperature. The green single crystals were obtained after the solution had been allowed to stand at room temperature for two days.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.95–0.98Å and included in the refinement with Uiso(H) = 1.2Ueq(Caromatic) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level.
Dichlorido{2-[(3,4-dimethylphenyl)iminomethyl]pyridine- κ2N,N'}copper(II) top
Crystal data top
[CuCl2(C14H14N2)]Z = 2
Mr = 344.71F(000) = 350
Triclinic, P1Dx = 1.607 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1171 (4) ÅCell parameters from 6451 reflections
b = 9.5784 (4) Åθ = 3.2–27.4°
c = 10.0609 (5) ŵ = 1.89 mm1
α = 67.236 (2)°T = 150 K
β = 88.513 (2)°Block, green
γ = 81.336 (2)°0.18 × 0.16 × 0.10 mm
V = 712.61 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
3189 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 3.2°
ϕ scans and ω scans with κ offsetsh = 1010
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1112
Tmin = 0.725, Tmax = 0.830l = 1213
6451 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.324P]
where P = (Fo2 + 2Fc2)/3
3189 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[CuCl2(C14H14N2)]γ = 81.336 (2)°
Mr = 344.71V = 712.61 (6) Å3
Triclinic, P1Z = 2
a = 8.1171 (4) ÅMo Kα radiation
b = 9.5784 (4) ŵ = 1.89 mm1
c = 10.0609 (5) ÅT = 150 K
α = 67.236 (2)°0.18 × 0.16 × 0.10 mm
β = 88.513 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3189 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2256 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.830Rint = 0.039
6451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 0.83 e Å3
3189 reflectionsΔρmin = 0.62 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.78165 (5)0.20424 (5)0.33299 (5)0.02388 (17)
Cl11.03716 (11)0.14201 (11)0.26876 (12)0.0344 (3)
Cl20.82609 (12)0.35601 (10)0.44190 (11)0.0285 (2)
N10.7024 (4)0.0099 (3)0.3557 (3)0.0214 (7)
N20.5411 (4)0.2901 (3)0.2659 (3)0.0210 (7)
C10.7928 (5)0.1295 (4)0.3991 (4)0.0246 (8)
H1A0.90880.14140.42000.030*
C20.7211 (5)0.2577 (4)0.4146 (4)0.0268 (9)
H2A0.78790.35570.44400.032*
C30.5523 (5)0.2417 (4)0.3868 (4)0.0276 (9)
H3A0.50130.32820.39730.033*
C40.4583 (5)0.0967 (4)0.3432 (4)0.0242 (8)
H4A0.34160.08240.32420.029*
C50.5375 (4)0.0264 (4)0.3280 (4)0.0199 (7)
C60.4535 (5)0.1850 (4)0.2758 (4)0.0226 (8)
H6A0.33790.20990.25000.027*
C70.4663 (5)0.4479 (4)0.2081 (4)0.0221 (8)
C80.5689 (5)0.5567 (4)0.1391 (4)0.0239 (8)
H8A0.68560.52710.13620.029*
C90.4977 (5)0.7090 (4)0.0747 (4)0.0267 (8)
H9A0.56720.78300.02490.032*
C100.3303 (5)0.7572 (4)0.0800 (4)0.0281 (9)
C110.2260 (5)0.6473 (4)0.1520 (4)0.0250 (8)
C120.2963 (5)0.4939 (4)0.2149 (4)0.0265 (8)
H12A0.22710.41910.26340.032*
C130.2548 (5)0.9237 (4)0.0073 (4)0.0321 (9)
H13A0.34060.98340.04560.048*
H13B0.21030.96200.08030.048*
H13C0.16450.93370.06010.048*
C140.0420 (5)0.6938 (4)0.1616 (5)0.0363 (10)
H14A0.00820.60340.21970.054*
H14B0.01020.73960.06440.054*
H14C0.02450.76870.20680.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0176 (3)0.0229 (3)0.0336 (3)0.00222 (18)0.0004 (2)0.0139 (2)
Cl10.0182 (5)0.0407 (6)0.0514 (7)0.0050 (4)0.0058 (4)0.0255 (5)
Cl20.0269 (5)0.0226 (4)0.0390 (6)0.0013 (4)0.0050 (4)0.0156 (4)
N10.0205 (16)0.0209 (15)0.0232 (17)0.0002 (12)0.0008 (13)0.0100 (13)
N20.0222 (16)0.0190 (15)0.0228 (16)0.0036 (12)0.0033 (13)0.0092 (13)
C10.023 (2)0.0270 (19)0.023 (2)0.0004 (15)0.0001 (16)0.0107 (17)
C20.033 (2)0.0204 (18)0.028 (2)0.0005 (16)0.0044 (18)0.0118 (17)
C30.038 (2)0.0225 (19)0.027 (2)0.0094 (17)0.0055 (18)0.0130 (17)
C40.024 (2)0.030 (2)0.023 (2)0.0081 (16)0.0011 (16)0.0129 (17)
C50.0194 (18)0.0211 (17)0.0207 (19)0.0042 (14)0.0025 (15)0.0095 (15)
C60.0180 (18)0.0235 (18)0.027 (2)0.0008 (14)0.0016 (16)0.0114 (17)
C70.026 (2)0.0196 (17)0.0217 (19)0.0018 (15)0.0007 (16)0.0092 (15)
C80.0213 (19)0.0262 (19)0.026 (2)0.0054 (15)0.0013 (16)0.0110 (17)
C90.031 (2)0.0251 (19)0.023 (2)0.0063 (16)0.0010 (17)0.0079 (17)
C100.040 (2)0.0171 (17)0.023 (2)0.0025 (16)0.0032 (18)0.0054 (16)
C110.024 (2)0.027 (2)0.024 (2)0.0012 (16)0.0016 (16)0.0096 (17)
C120.025 (2)0.0255 (19)0.027 (2)0.0038 (16)0.0050 (17)0.0090 (17)
C130.043 (3)0.0233 (19)0.029 (2)0.0015 (17)0.0030 (19)0.0103 (18)
C140.030 (2)0.029 (2)0.039 (3)0.0047 (17)0.0020 (19)0.0039 (19)
Geometric parameters (Å, º) top
Cu1—N11.988 (3)C7—C81.391 (5)
Cu1—N22.025 (3)C7—C121.392 (5)
Cu1—Cl22.2035 (10)C8—C91.384 (5)
Cu1—Cl12.2204 (10)C8—H8A0.9500
N1—C11.335 (4)C9—C101.374 (5)
N1—C51.348 (5)C9—H9A0.9500
N2—C61.290 (4)C10—C111.413 (5)
N2—C71.433 (4)C10—C131.510 (5)
C1—C21.391 (5)C11—C121.390 (5)
C1—H1A0.9500C11—C141.505 (5)
C2—C31.379 (5)C12—H12A0.9500
C2—H2A0.9500C13—H13A0.9800
C3—C41.390 (5)C13—H13B0.9800
C3—H3A0.9500C13—H13C0.9800
C4—C51.383 (5)C14—H14A0.9800
C4—H4A0.9500C14—H14B0.9800
C5—C61.462 (5)C14—H14C0.9800
C6—H6A0.9500
N1—Cu1—N281.49 (11)C8—C7—C12119.9 (3)
N1—Cu1—Cl2145.38 (9)C8—C7—N2117.6 (3)
N2—Cu1—Cl299.33 (8)C12—C7—N2122.5 (3)
N1—Cu1—Cl195.98 (9)C9—C8—C7118.7 (3)
N2—Cu1—Cl1145.95 (9)C9—C8—H8A120.7
Cl2—Cu1—Cl1101.41 (4)C7—C8—H8A120.7
C1—N1—C5119.2 (3)C10—C9—C8122.5 (3)
C1—N1—Cu1127.1 (3)C10—C9—H9A118.8
C5—N1—Cu1113.6 (2)C8—C9—H9A118.8
C6—N2—C7120.0 (3)C9—C10—C11119.0 (3)
C6—N2—Cu1112.6 (2)C9—C10—C13121.6 (3)
C7—N2—Cu1127.4 (2)C11—C10—C13119.4 (3)
N1—C1—C2121.5 (3)C12—C11—C10118.8 (3)
N1—C1—H1A119.2C12—C11—C14120.0 (3)
C2—C1—H1A119.2C10—C11—C14121.2 (3)
C3—C2—C1119.6 (3)C11—C12—C7121.1 (3)
C3—C2—H2A120.2C11—C12—H12A119.4
C1—C2—H2A120.2C7—C12—H12A119.4
C2—C3—C4118.8 (3)C10—C13—H13A109.5
C2—C3—H3A120.6C10—C13—H13B109.5
C4—C3—H3A120.6H13A—C13—H13B109.5
C5—C4—C3118.8 (3)C10—C13—H13C109.5
C5—C4—H4A120.6H13A—C13—H13C109.5
C3—C4—H4A120.6H13B—C13—H13C109.5
N1—C5—C4122.1 (3)C11—C14—H14A109.5
N1—C5—C6114.1 (3)C11—C14—H14B109.5
C4—C5—C6123.7 (3)H14A—C14—H14B109.5
N2—C6—C5118.0 (3)C11—C14—H14C109.5
N2—C6—H6A121.0H14A—C14—H14C109.5
C5—C6—H6A121.0H14B—C14—H14C109.5

Experimental details

Crystal data
Chemical formula[CuCl2(C14H14N2)]
Mr344.71
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.1171 (4), 9.5784 (4), 10.0609 (5)
α, β, γ (°)67.236 (2), 88.513 (2), 81.336 (2)
V3)712.61 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.725, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
6451, 3189, 2256
Rint0.039
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.07
No. of reflections3189
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.62

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.988 (3)Cu1—Cl22.2035 (10)
Cu1—N22.025 (3)Cu1—Cl12.2204 (10)
 

Acknowledgements

The authors would like to acknowledge the Islamic Azad University, Buinzahra Branch Research Council for partial support of this work

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhalaj, M., Dehghanpour, S., Aleeshah, R. & Mahmoudi, A. (2010). Acta Cryst. E66, m1647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationSalehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds