metal-organic compounds
Dichlorido{2-[(3,4-dimethylphenyl)iminomethyl]pyridine-κ2N,N′}copper(II)
aDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Qazvin, Iran, bDepartment of Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran, cFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, and dDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran
*Correspondence e-mail: khalaj_mehdi@yahoo.com
In the title complex, [CuCl2(C14H14N2)], the CuII atom exhibits a very distorted tetrahedral coordination geometry involving two chloride ions and two N-atom donors from the Schiff base ligand. The range for the six bond angles about the Cu2+ cation is 81.49 (11)–145.95 (9)°. The chelate ring including the CuII atom is approximately planar, with a maximum deviation of 0.039 (4) Å for one of the C atoms; this plane forms a dihedral angle of 46.69 (9)° with the CuCl2 plane.
Related literature
For related structures, see: Mahmoudi et al. (2009); Wang & Zhong (2009). For background information on diimine complexes, see: Khalaj et al. (2010); Salehzadeh et al. (2011).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2002); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S160053681104390X/zs2154sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681104390X/zs2154Isup2.hkl
The title complex was prepared by the reaction of CuCl2 (13.4 mg, 0.1 mmol) and N-(3,4-dimethylphenyl)-(pyridine-2-ylmethylene)amine (21.0 mg, 0.1 mmol) in 10 ml acetonitrile at room temperature. The green single crystals were obtained after the solution had been allowed to stand at room temperature for two days.
Hydrogen atoms were placed in calculated positions with C—H = 0.95–0.98Å and included in the
with Uiso(H) = 1.2Ueq(Caromatic) or 1.5Ueq(Cmethyl).Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. |
[CuCl2(C14H14N2)] | Z = 2 |
Mr = 344.71 | F(000) = 350 |
Triclinic, P1 | Dx = 1.607 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1171 (4) Å | Cell parameters from 6451 reflections |
b = 9.5784 (4) Å | θ = 3.2–27.4° |
c = 10.0609 (5) Å | µ = 1.89 mm−1 |
α = 67.236 (2)° | T = 150 K |
β = 88.513 (2)° | Block, green |
γ = 81.336 (2)° | 0.18 × 0.16 × 0.10 mm |
V = 712.61 (6) Å3 |
Nonius KappaCCD diffractometer | 3189 independent reflections |
Radiation source: fine-focus sealed tube | 2256 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 9 pixels mm-1 | θmax = 27.4°, θmin = 3.2° |
ϕ scans and ω scans with κ offsets | h = −10→10 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −11→12 |
Tmin = 0.725, Tmax = 0.830 | l = −12→13 |
6451 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0585P)2 + 0.324P] where P = (Fo2 + 2Fc2)/3 |
3189 reflections | (Δ/σ)max < 0.001 |
174 parameters | Δρmax = 0.83 e Å−3 |
0 restraints | Δρmin = −0.62 e Å−3 |
[CuCl2(C14H14N2)] | γ = 81.336 (2)° |
Mr = 344.71 | V = 712.61 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1171 (4) Å | Mo Kα radiation |
b = 9.5784 (4) Å | µ = 1.89 mm−1 |
c = 10.0609 (5) Å | T = 150 K |
α = 67.236 (2)° | 0.18 × 0.16 × 0.10 mm |
β = 88.513 (2)° |
Nonius KappaCCD diffractometer | 3189 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2256 reflections with I > 2σ(I) |
Tmin = 0.725, Tmax = 0.830 | Rint = 0.039 |
6451 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.83 e Å−3 |
3189 reflections | Δρmin = −0.62 e Å−3 |
174 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.78165 (5) | 0.20424 (5) | 0.33299 (5) | 0.02388 (17) | |
Cl1 | 1.03716 (11) | 0.14201 (11) | 0.26876 (12) | 0.0344 (3) | |
Cl2 | 0.82609 (12) | 0.35601 (10) | 0.44190 (11) | 0.0285 (2) | |
N1 | 0.7024 (4) | 0.0099 (3) | 0.3557 (3) | 0.0214 (7) | |
N2 | 0.5411 (4) | 0.2901 (3) | 0.2659 (3) | 0.0210 (7) | |
C1 | 0.7928 (5) | −0.1295 (4) | 0.3991 (4) | 0.0246 (8) | |
H1A | 0.9088 | −0.1414 | 0.4200 | 0.030* | |
C2 | 0.7211 (5) | −0.2577 (4) | 0.4146 (4) | 0.0268 (9) | |
H2A | 0.7879 | −0.3557 | 0.4440 | 0.032* | |
C3 | 0.5523 (5) | −0.2417 (4) | 0.3868 (4) | 0.0276 (9) | |
H3A | 0.5013 | −0.3282 | 0.3973 | 0.033* | |
C4 | 0.4583 (5) | −0.0967 (4) | 0.3432 (4) | 0.0242 (8) | |
H4A | 0.3416 | −0.0824 | 0.3242 | 0.029* | |
C5 | 0.5375 (4) | 0.0264 (4) | 0.3280 (4) | 0.0199 (7) | |
C6 | 0.4535 (5) | 0.1850 (4) | 0.2758 (4) | 0.0226 (8) | |
H6A | 0.3379 | 0.2099 | 0.2500 | 0.027* | |
C7 | 0.4663 (5) | 0.4479 (4) | 0.2081 (4) | 0.0221 (8) | |
C8 | 0.5689 (5) | 0.5567 (4) | 0.1391 (4) | 0.0239 (8) | |
H8A | 0.6856 | 0.5271 | 0.1362 | 0.029* | |
C9 | 0.4977 (5) | 0.7090 (4) | 0.0747 (4) | 0.0267 (8) | |
H9A | 0.5672 | 0.7830 | 0.0249 | 0.032* | |
C10 | 0.3303 (5) | 0.7572 (4) | 0.0800 (4) | 0.0281 (9) | |
C11 | 0.2260 (5) | 0.6473 (4) | 0.1520 (4) | 0.0250 (8) | |
C12 | 0.2963 (5) | 0.4939 (4) | 0.2149 (4) | 0.0265 (8) | |
H12A | 0.2271 | 0.4191 | 0.2634 | 0.032* | |
C13 | 0.2548 (5) | 0.9237 (4) | 0.0073 (4) | 0.0321 (9) | |
H13A | 0.3406 | 0.9834 | −0.0456 | 0.048* | |
H13B | 0.2103 | 0.9620 | 0.0803 | 0.048* | |
H13C | 0.1645 | 0.9337 | −0.0601 | 0.048* | |
C14 | 0.0420 (5) | 0.6938 (4) | 0.1616 (5) | 0.0363 (10) | |
H14A | −0.0082 | 0.6034 | 0.2197 | 0.054* | |
H14B | −0.0102 | 0.7396 | 0.0644 | 0.054* | |
H14C | 0.0245 | 0.7687 | 0.2068 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0176 (3) | 0.0229 (3) | 0.0336 (3) | −0.00222 (18) | 0.0004 (2) | −0.0139 (2) |
Cl1 | 0.0182 (5) | 0.0407 (6) | 0.0514 (7) | −0.0050 (4) | 0.0058 (4) | −0.0255 (5) |
Cl2 | 0.0269 (5) | 0.0226 (4) | 0.0390 (6) | −0.0013 (4) | −0.0050 (4) | −0.0156 (4) |
N1 | 0.0205 (16) | 0.0209 (15) | 0.0232 (17) | −0.0002 (12) | −0.0008 (13) | −0.0100 (13) |
N2 | 0.0222 (16) | 0.0190 (15) | 0.0228 (16) | −0.0036 (12) | 0.0033 (13) | −0.0092 (13) |
C1 | 0.023 (2) | 0.0270 (19) | 0.023 (2) | 0.0004 (15) | 0.0001 (16) | −0.0107 (17) |
C2 | 0.033 (2) | 0.0204 (18) | 0.028 (2) | −0.0005 (16) | 0.0044 (18) | −0.0118 (17) |
C3 | 0.038 (2) | 0.0225 (19) | 0.027 (2) | −0.0094 (17) | 0.0055 (18) | −0.0130 (17) |
C4 | 0.024 (2) | 0.030 (2) | 0.023 (2) | −0.0081 (16) | 0.0011 (16) | −0.0129 (17) |
C5 | 0.0194 (18) | 0.0211 (17) | 0.0207 (19) | −0.0042 (14) | 0.0025 (15) | −0.0095 (15) |
C6 | 0.0180 (18) | 0.0235 (18) | 0.027 (2) | −0.0008 (14) | 0.0016 (16) | −0.0114 (17) |
C7 | 0.026 (2) | 0.0196 (17) | 0.0217 (19) | −0.0018 (15) | 0.0007 (16) | −0.0092 (15) |
C8 | 0.0213 (19) | 0.0262 (19) | 0.026 (2) | −0.0054 (15) | 0.0013 (16) | −0.0110 (17) |
C9 | 0.031 (2) | 0.0251 (19) | 0.023 (2) | −0.0063 (16) | −0.0010 (17) | −0.0079 (17) |
C10 | 0.040 (2) | 0.0171 (17) | 0.023 (2) | 0.0025 (16) | 0.0032 (18) | −0.0054 (16) |
C11 | 0.024 (2) | 0.027 (2) | 0.024 (2) | −0.0012 (16) | 0.0016 (16) | −0.0096 (17) |
C12 | 0.025 (2) | 0.0255 (19) | 0.027 (2) | −0.0038 (16) | 0.0050 (17) | −0.0090 (17) |
C13 | 0.043 (3) | 0.0233 (19) | 0.029 (2) | −0.0015 (17) | −0.0030 (19) | −0.0103 (18) |
C14 | 0.030 (2) | 0.029 (2) | 0.039 (3) | 0.0047 (17) | 0.0020 (19) | −0.0039 (19) |
Cu1—N1 | 1.988 (3) | C7—C8 | 1.391 (5) |
Cu1—N2 | 2.025 (3) | C7—C12 | 1.392 (5) |
Cu1—Cl2 | 2.2035 (10) | C8—C9 | 1.384 (5) |
Cu1—Cl1 | 2.2204 (10) | C8—H8A | 0.9500 |
N1—C1 | 1.335 (4) | C9—C10 | 1.374 (5) |
N1—C5 | 1.348 (5) | C9—H9A | 0.9500 |
N2—C6 | 1.290 (4) | C10—C11 | 1.413 (5) |
N2—C7 | 1.433 (4) | C10—C13 | 1.510 (5) |
C1—C2 | 1.391 (5) | C11—C12 | 1.390 (5) |
C1—H1A | 0.9500 | C11—C14 | 1.505 (5) |
C2—C3 | 1.379 (5) | C12—H12A | 0.9500 |
C2—H2A | 0.9500 | C13—H13A | 0.9800 |
C3—C4 | 1.390 (5) | C13—H13B | 0.9800 |
C3—H3A | 0.9500 | C13—H13C | 0.9800 |
C4—C5 | 1.383 (5) | C14—H14A | 0.9800 |
C4—H4A | 0.9500 | C14—H14B | 0.9800 |
C5—C6 | 1.462 (5) | C14—H14C | 0.9800 |
C6—H6A | 0.9500 | ||
N1—Cu1—N2 | 81.49 (11) | C8—C7—C12 | 119.9 (3) |
N1—Cu1—Cl2 | 145.38 (9) | C8—C7—N2 | 117.6 (3) |
N2—Cu1—Cl2 | 99.33 (8) | C12—C7—N2 | 122.5 (3) |
N1—Cu1—Cl1 | 95.98 (9) | C9—C8—C7 | 118.7 (3) |
N2—Cu1—Cl1 | 145.95 (9) | C9—C8—H8A | 120.7 |
Cl2—Cu1—Cl1 | 101.41 (4) | C7—C8—H8A | 120.7 |
C1—N1—C5 | 119.2 (3) | C10—C9—C8 | 122.5 (3) |
C1—N1—Cu1 | 127.1 (3) | C10—C9—H9A | 118.8 |
C5—N1—Cu1 | 113.6 (2) | C8—C9—H9A | 118.8 |
C6—N2—C7 | 120.0 (3) | C9—C10—C11 | 119.0 (3) |
C6—N2—Cu1 | 112.6 (2) | C9—C10—C13 | 121.6 (3) |
C7—N2—Cu1 | 127.4 (2) | C11—C10—C13 | 119.4 (3) |
N1—C1—C2 | 121.5 (3) | C12—C11—C10 | 118.8 (3) |
N1—C1—H1A | 119.2 | C12—C11—C14 | 120.0 (3) |
C2—C1—H1A | 119.2 | C10—C11—C14 | 121.2 (3) |
C3—C2—C1 | 119.6 (3) | C11—C12—C7 | 121.1 (3) |
C3—C2—H2A | 120.2 | C11—C12—H12A | 119.4 |
C1—C2—H2A | 120.2 | C7—C12—H12A | 119.4 |
C2—C3—C4 | 118.8 (3) | C10—C13—H13A | 109.5 |
C2—C3—H3A | 120.6 | C10—C13—H13B | 109.5 |
C4—C3—H3A | 120.6 | H13A—C13—H13B | 109.5 |
C5—C4—C3 | 118.8 (3) | C10—C13—H13C | 109.5 |
C5—C4—H4A | 120.6 | H13A—C13—H13C | 109.5 |
C3—C4—H4A | 120.6 | H13B—C13—H13C | 109.5 |
N1—C5—C4 | 122.1 (3) | C11—C14—H14A | 109.5 |
N1—C5—C6 | 114.1 (3) | C11—C14—H14B | 109.5 |
C4—C5—C6 | 123.7 (3) | H14A—C14—H14B | 109.5 |
N2—C6—C5 | 118.0 (3) | C11—C14—H14C | 109.5 |
N2—C6—H6A | 121.0 | H14A—C14—H14C | 109.5 |
C5—C6—H6A | 121.0 | H14B—C14—H14C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [CuCl2(C14H14N2)] |
Mr | 344.71 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 8.1171 (4), 9.5784 (4), 10.0609 (5) |
α, β, γ (°) | 67.236 (2), 88.513 (2), 81.336 (2) |
V (Å3) | 712.61 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.89 |
Crystal size (mm) | 0.18 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.725, 0.830 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6451, 3189, 2256 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.126, 1.07 |
No. of reflections | 3189 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.83, −0.62 |
Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors would like to acknowledge the Islamic Azad University, Buinzahra Branch Research Council for partial support of this work
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Khalaj, M., Dehghanpour, S., Aleeshah, R. & Mahmoudi, A. (2010). Acta Cryst. E66, m1647. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press. Google Scholar
Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Diimine ligands derived from 2-aminopyridine and aniline derivatives are useful bidentate terminal ligands and some complexes with them as ligand have already been published (Mahmoudi et al., 2009; Salehzadeh et al., 2011). We report herein the crystal structure of the title complex [CuCl2(C14H14N2)] which was prepared by the reaction of CuCl2 with the bidentate ligand N-(3,4-dimethylphenyl)-pyridine-2-ylmethyleneamine.
The molecular structure of the title complex is shown in Fig. 1. The CuII ion is in a very distorted tetrahedral environment formed by a bis-chelating ligand and two Cl anions. The dihedral angle between the chelate plane Cu1–N1–C5–C6–N2 and the Cl1–Cu1–Cl2 plane is 46.69(9° and the range for the six bond angles about Cu1 is 81.49 (11)° (N1-Cu1-N2)–145.95 (9)° (N2-Cu1-Cl1). These values show an appreciable distortion towards square planar geometry. A comparison of the dihedral angles between the planes of the pyridine, chelate and the benzene rings indicate that the ligand is distorted from planarity, with a twist of 26.00 (17)° between the chelate (N1—C5—C6—N2) and the benzene (C7–C12) planes. The Cu—Cl and Cu—N bond dimensions compare well with the values found in other tetrahedral diimine complexes of copper(II) chloride (Mahmoudi et al., 2009; Wang & Zhong, 2009).