organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Benzo­thia­zol-2-yl)guanidinium chloride

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M15 6BH, England, bSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England, cDepartment of Chemistry, Faculty of Science, Sohag University, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 October 2011; accepted 25 October 2011; online 29 October 2011)

The non-H atoms of the cation of the title salt, C8H9N4S+·Cl, are approximately co-planar (r.m.s. deviation = 0.037 Å), with one amino group forming an intra­molecular hydrogen bond to the tertiary N atom of the benzothia­zole fused-ring system. The cations and anions are linked by cyclic R21(6) N—H⋯Cl hydrogen-bonding associations, generating helical chains running along the b-axis direction.

Related literature

For the synthesis, see: Takahashi & Niino (1943[Takahashi, T. & Niino, A. (1943). Yakugaku Zasshi, 63, 249-252.]). For the structure of 2-(1,3-benzothia­zol-2-yl)guanidine, see: Mohamed et al. (2011[Mohamed, S. K., El-Remaily, M. A. A., Soliman, A. M., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o786.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N4S+·Cl

  • Mr = 228.71

  • Orthorhombic, P 21 21 21

  • a = 3.8857 (5) Å

  • b = 11.0349 (17) Å

  • c = 22.186 (3) Å

  • V = 951.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 120 K

  • 0.12 × 0.03 × 0.01 mm

Data collection
  • Rigaku Saturn 724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.933, Tmax = 0.994

  • 14016 measured reflections

  • 2146 independent reflections

  • 2117 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.07

  • 2146 reflections

  • 147 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 839 Friedel pairs

  • Flack parameter: −0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl1i 0.88 (1) 2.21 (1) 3.074 (2) 165 (2)
N3—H2⋯Cl1 0.88 (1) 2.62 (2) 3.380 (2) 146 (2)
N4—H3⋯Cl1 0.88 (1) 2.31 (1) 3.157 (2) 160 (2)
N4—H4⋯N1 0.88 (1) 2.06 (2) 2.713 (2) 131 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent study (Mohamed et al., 2011) describes the crystal structure of 2-(1,3-benzothiazol-2-yl)guanidine, which was synthesized by the reaction of 2-aminothiophenol and cyanoguanidine in 10% sulfuric acid medium. The product of the reaction is probably a sulfate or bisulfate salt that is then converted to the neutral compound upon treatment with sodium hydroxide. In the present study, 2-(1,3-benzothioazol-2-yl)guanidine is converted to the hydrochloride salt by treatment with hydrochloric acid. The non-H atoms of the cation of the title salt, C8H9N4S+ Cl- (Scheme I), lie on a plane (r.m.s. deviation 0.037 Å), with one amino group forming an intramolecular hydrogen bond to the tertiary N atom of the benzothiazole fused-ring (Fig. 1). The cations and anions are linked by cyclic N—H···Cl hydrogen-bonding associations [graph set R12(6) (Etter et al., 1990)] (Table 1), to generate helical chains running along the b-axis of the orthorhombic unit cell. This salt was first reported in 1943 (Takahashi & Niino, 1943).

Related literature top

For the synthesis, see: Takahashi & Niino (1943). For the structure of 2-(1,3-benzothiazol-2-yl)guanidine, see: Mohamed et al. (2011). For graph-set analysis, see: Etter et al. (1990).

Experimental top

2-(1,3-Benzothiazol-2-yl)guanidine (0.05 mol) was heated in ethanol (50 ml) in the presence of a few drops of hydrochloric acid for 3 h. The mixture was cooled and the product was collected and recrystallized from ethanol to give the title compound (m.p. 523 K) in 95% yield; .

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å with their isotropic displacement parameters freely refining.

Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF(Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C8H9N4S+ Cl- at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
2-(1,3-Benzothiazol-2-yl)guanidinium chloride top
Crystal data top
C8H9N4S+·ClDx = 1.597 Mg m3
Mr = 228.71Melting point: 523 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3321 reflections
a = 3.8857 (5) Åθ = 2.1–31.0°
b = 11.0349 (17) ŵ = 0.58 mm1
c = 22.186 (3) ÅT = 120 K
V = 951.3 (2) Å3Lath, colorless
Z = 40.12 × 0.03 × 0.01 mm
F(000) = 472
Data collection top
Rigaku Saturn 724+
diffractometer
2146 independent reflections
Radiation source: rotating anode2117 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.034
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scansh = 44
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2011)
k = 1414
Tmin = 0.933, Tmax = 0.994l = 2828
14016 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.3169P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2146 reflectionsΔρmax = 0.26 e Å3
147 parametersΔρmin = 0.27 e Å3
5 restraintsAbsolute structure: Flack (1983), 839 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C8H9N4S+·ClV = 951.3 (2) Å3
Mr = 228.71Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.8857 (5) ŵ = 0.58 mm1
b = 11.0349 (17) ÅT = 120 K
c = 22.186 (3) Å0.12 × 0.03 × 0.01 mm
Data collection top
Rigaku Saturn 724+
diffractometer
2146 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2011)
2117 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.994Rint = 0.034
14016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.26 e Å3
S = 1.07Δρmin = 0.27 e Å3
2146 reflectionsAbsolute structure: Flack (1983), 839 Friedel pairs
147 parametersAbsolute structure parameter: 0.01 (7)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.94400 (14)0.19472 (4)0.72036 (2)0.02120 (13)
S10.32449 (13)0.63436 (4)0.96176 (2)0.01619 (12)
N10.6155 (4)0.42234 (14)0.95141 (7)0.0168 (4)
N20.4500 (5)0.51363 (15)0.85919 (7)0.0175 (4)
H10.344 (7)0.5752 (17)0.8420 (12)0.032 (7)*
N30.4832 (5)0.43982 (16)0.76315 (7)0.0209 (4)
H20.539 (7)0.3806 (17)0.7388 (10)0.027 (7)*
H50.390 (8)0.5097 (17)0.7530 (14)0.053 (10)*
N40.7193 (5)0.32801 (15)0.83996 (8)0.0211 (4)
H30.792 (7)0.2752 (18)0.8130 (9)0.029 (7)*
H40.766 (7)0.320 (2)0.8786 (5)0.023 (6)*
C10.4490 (5)0.55994 (17)1.02742 (9)0.0168 (4)
C20.4162 (5)0.59888 (18)1.08674 (9)0.0179 (4)
H2A0.31420.67481.09620.021*
C30.5382 (5)0.52252 (18)1.13174 (9)0.0195 (4)
H3A0.52070.54671.17270.023*
C40.6856 (6)0.41107 (18)1.11753 (9)0.0188 (4)
H4A0.76570.36021.14910.023*
C50.7178 (6)0.37284 (18)1.05846 (9)0.0186 (4)
H5A0.81870.29671.04920.022*
C60.5993 (5)0.44847 (17)1.01311 (9)0.0160 (4)
C70.4809 (5)0.51068 (17)0.92100 (9)0.0158 (4)
C80.5560 (6)0.42508 (17)0.82086 (8)0.0162 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0242 (3)0.0190 (2)0.0205 (2)0.0008 (2)0.00028 (19)0.00403 (19)
S10.0198 (2)0.0132 (2)0.0156 (2)0.00165 (17)0.0007 (2)0.00035 (18)
N10.0209 (9)0.0139 (7)0.0155 (8)0.0013 (6)0.0004 (7)0.0005 (6)
N20.0254 (9)0.0127 (7)0.0144 (8)0.0006 (7)0.0006 (7)0.0001 (6)
N30.0310 (10)0.0157 (8)0.0159 (8)0.0017 (8)0.0003 (8)0.0036 (7)
N40.0290 (10)0.0167 (8)0.0174 (8)0.0022 (8)0.0016 (8)0.0009 (7)
C10.0172 (9)0.0141 (8)0.0191 (9)0.0010 (8)0.0012 (8)0.0029 (7)
C20.0183 (10)0.0164 (9)0.0189 (9)0.0014 (8)0.0021 (8)0.0008 (7)
C30.0190 (10)0.0228 (10)0.0167 (9)0.0059 (9)0.0013 (8)0.0004 (8)
C40.0181 (9)0.0204 (9)0.0178 (9)0.0017 (9)0.0013 (8)0.0053 (7)
C50.0205 (10)0.0155 (9)0.0199 (9)0.0007 (8)0.0004 (8)0.0007 (7)
C60.0158 (10)0.0154 (9)0.0169 (9)0.0022 (7)0.0009 (7)0.0000 (7)
C70.0161 (10)0.0134 (8)0.0179 (9)0.0015 (7)0.0011 (8)0.0006 (7)
C80.0191 (9)0.0142 (8)0.0154 (9)0.0024 (8)0.0033 (8)0.0008 (7)
Geometric parameters (Å, º) top
S1—C11.7409 (19)N4—H40.882 (10)
S1—C71.746 (2)C1—C21.390 (3)
N1—C71.296 (2)C1—C61.398 (3)
N1—C61.400 (2)C2—C31.390 (3)
N2—C81.359 (2)C2—H2A0.9500
N2—C71.377 (2)C3—C41.393 (3)
N2—H10.882 (10)C3—H3A0.9500
N3—C81.321 (3)C4—C51.382 (3)
N3—H20.876 (10)C4—H4A0.9500
N3—H50.880 (10)C5—C61.386 (3)
N4—C81.315 (3)C5—H5A0.9500
N4—H30.883 (10)
C1—S1—C788.16 (9)C2—C3—H3A119.6
C7—N1—C6109.63 (17)C4—C3—H3A119.6
C8—N2—C7125.43 (17)C5—C4—C3121.41 (19)
C8—N2—H1115.2 (19)C5—C4—H4A119.3
C7—N2—H1119.3 (19)C3—C4—H4A119.3
C8—N3—H2116.9 (18)C4—C5—C6118.31 (19)
C8—N3—H5116 (2)C4—C5—H5A120.8
H2—N3—H5127 (3)C6—C5—H5A120.8
C8—N4—H3118.3 (16)C5—C6—C1120.25 (18)
C8—N4—H4119.6 (16)C5—C6—N1124.80 (18)
H3—N4—H4122 (2)C1—C6—N1114.95 (17)
C2—C1—C6121.68 (18)N1—C7—N2124.85 (18)
C2—C1—S1128.38 (15)N1—C7—S1117.31 (15)
C6—C1—S1109.95 (14)N2—C7—S1117.84 (14)
C3—C2—C1117.47 (18)N4—C8—N3121.06 (18)
C3—C2—H2A121.3N4—C8—N2122.02 (18)
C1—C2—H2A121.3N3—C8—N2116.92 (18)
C2—C3—C4120.87 (19)
C7—S1—C1—C2179.9 (2)S1—C1—C6—N10.1 (2)
C7—S1—C1—C60.28 (16)C7—N1—C6—C5179.4 (2)
C6—C1—C2—C30.1 (3)C7—N1—C6—C10.3 (2)
S1—C1—C2—C3179.68 (17)C6—N1—C7—N2178.94 (19)
C1—C2—C3—C40.3 (3)C6—N1—C7—S10.5 (2)
C2—C3—C4—C50.4 (3)C8—N2—C7—N10.2 (3)
C3—C4—C5—C60.0 (3)C8—N2—C7—S1179.64 (17)
C4—C5—C6—C10.5 (3)C1—S1—C7—N10.50 (16)
C4—C5—C6—N1179.77 (19)C1—S1—C7—N2179.02 (17)
C2—C1—C6—C50.6 (3)C7—N2—C8—N43.7 (3)
S1—C1—C6—C5179.81 (16)C7—N2—C8—N3175.3 (2)
C2—C1—C6—N1179.68 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl1i0.88 (1)2.21 (1)3.074 (2)165 (2)
N3—H2···Cl10.88 (1)2.62 (2)3.380 (2)146 (2)
N4—H3···Cl10.88 (1)2.31 (1)3.157 (2)160 (2)
N4—H4···N10.88 (1)2.06 (2)2.713 (2)131 (2)
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H9N4S+·Cl
Mr228.71
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)3.8857 (5), 11.0349 (17), 22.186 (3)
V3)951.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.12 × 0.03 × 0.01
Data collection
DiffractometerRigaku Saturn 724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2011)
Tmin, Tmax0.933, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
14016, 2146, 2117
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.07
No. of reflections2146
No. of parameters147
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.27
Absolute structureFlack (1983), 839 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: CrystalClear (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF(Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl1i0.88 (1)2.21 (1)3.074 (2)165 (2)
N3—H2···Cl10.88 (1)2.62 (2)3.380 (2)146 (2)
N4—H3···Cl10.88 (1)2.31 (1)3.157 (2)160 (2)
N4—H4···N10.88 (1)2.06 (2)2.713 (2)131 (2)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The use of the EPSRC X-ray crystallographic facilities at the University of Southampton, England, is gratefully acknowledged. We thank Manchester Metropolitan University, Sohag University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMohamed, S. K., El-Remaily, M. A. A., Soliman, A. M., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, T. & Niino, A. (1943). Yakugaku Zasshi, 63, 249–252.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds