organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Benzoxazol-2-yl)guanidinium chloride

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M15 6BH, England, bSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England, cDepartment of Chemistry, Faculty of Science, Sohag University, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 October 2011; accepted 25 October 2011; online 29 October 2011)

The non-H atoms of the cation of the title salt, C8H9N4O+·Cl, are approximately co-planar (r.m.s. deviation = 0.024 Å) with one amino group forming an intra­molecular hydrogen bond to the tertiary N atom of the benzoxazole fused-ring system. The cations and anions are linked by cyclic R21(6) N—H⋯Cl hydrogen-bonding associations, generating linear chains running along the a-axis direction.

Related literature

For the synthesis, see: Takahashi & Niino (1943[Takahashi, T. & Niino, A. (1943). Yakugaku Zasshi, 63, 249-252.]). For the structure of a co-crystal of 2-(1,3-benzoxazol-2-yl)guanidine, see: Bishop et al. (2005[Bishop, M. M., Coles, S. J., Lee, A. H. W., Lindoy, L. F., Parkin, A., Thorn-Seshold, O. T. & Turner, P. (2005). Supramol. Chem. 17, 567-578.]) and for the structure of 2-(1,3-benzothia­zol-2-yl)guanidine, see: Mohamed et al. (2011[Mohamed, S. K., Horton, P. N., El-Remaily, M. A. A. & Ng, S. W. (2011). Acta Cryst. E67, o3132.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N4O+·Cl

  • Mr = 212.64

  • Triclinic, [P \overline 1]

  • a = 6.669 (2) Å

  • b = 8.152 (4) Å

  • c = 9.630 (3) Å

  • α = 65.062 (2)°

  • β = 85.020 (2)°

  • γ = 73.710 (2)°

  • V = 455.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 120 K

  • 0.20 × 0.05 × 0.04 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.985

  • 8184 measured reflections

  • 2088 independent reflections

  • 1895 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.03

  • 2088 reflections

  • 147 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl1 0.88 (1) 2.18 (1) 3.047 (2) 168 (2)
N3—H2⋯Cl1 0.88 (1) 2.67 (2) 3.415 (2) 144 (2)
N3—H3⋯Cl1i 0.87 (1) 2.53 (2) 3.297 (2) 147 (2)
N4—H4⋯Cl1i 0.88 (1) 2.33 (1) 3.168 (2) 160 (2)
N4—H5⋯N1 0.88 (1) 2.08 (2) 2.765 (2) 134 (2)
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, O. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The preceding study reports 2-(1,3-benzothiazol-2-yl)guanidinium chloride (Mohamed et al., 2011). Replacing the sulfur in the fused-ring by oxygen leads to the analogous compound, 2-(1,3-benzoxazol-2-yl)guandinium chloride (Scheme I). However, this salt and 2-(1,3-benzothiazol-2-yl)guanidinium chloride are are not isostructural as they belong to different crystal systems. The non-H atoms of the cation of the title salt, C8H9N4O+ Cl- (Fig. 1), lie on a plane with one amino group forming an intramolecular hydrogen bond to the tertiary N atom of the benzoxazole fused-ring. The cations and anions are linked by cyclic R12(6) N—H···Cl hydrogen-bonding associations [Etter et al., 1990)], to generate linear chains running along the a-axis of the tricinic unit cell (Table 1). This salt was first reported in 1943 (Takahashi & Niino, 1943). The structure of a co-crystal of 2-(1,3-benzoxazol-2-yl)guanidine has been reported (Bishop et al., 2005).

Related literature top

For the synthesis, see: Takahashi & Niino (1943). For the structure of a co-crystal of 2-(1,3-benzoxazol-2-yl)guanidine, see: Bishop et al. (2005) and for the structure of 2-(1,3-benzothiazol-2-yl)guanidine, see: Mohamed et al. (2011). For graph-set analysis, see: Etter et al. (1990).

Experimental top

2-(1,3-Benzoxazol-2-yl)guanidine was synthesized by using a literature procedure similar to that used for synthesizing 2-(1,3-benzothioazol-2-yl)guanidine (Takahashi & Niino, 1943). The guanidine (0.05 mol) was heated in ethanol (50 ml) in the presence of a few drops of hydrochloric acid for 3 h. The mixture was cooled and the product was recrystallized from ethanol to give the title compound (m.p. 538 K)in 95% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H = 0.88±0.01 Å, with their isotropic displacement parameters freely refining.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C8H9N4O+ Cl- at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
2-(1,3-Benzoxazol-2-yl)guanidinium chloride top
Crystal data top
C8H9N4O+·ClZ = 2
Mr = 212.64F(000) = 220
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Melting point: 538 K
a = 6.669 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.152 (4) ÅCell parameters from 1979 reflections
c = 9.630 (3) Åθ = 2.9–27.5°
α = 65.062 (2)°µ = 0.39 mm1
β = 85.020 (2)°T = 120 K
γ = 73.710 (2)°Prism, colorless
V = 455.4 (3) Å30.20 × 0.05 × 0.04 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2088 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.926, Tmax = 0.985l = 1212
8184 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.4591P]
where P = (Fo2 + 2Fc2)/3
2088 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.31 e Å3
5 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H9N4O+·Clγ = 73.710 (2)°
Mr = 212.64V = 455.4 (3) Å3
Triclinic, P1Z = 2
a = 6.669 (2) ÅMo Kα radiation
b = 8.152 (4) ŵ = 0.39 mm1
c = 9.630 (3) ÅT = 120 K
α = 65.062 (2)°0.20 × 0.05 × 0.04 mm
β = 85.020 (2)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2088 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1895 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.985Rint = 0.044
8184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0365 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
2088 reflectionsΔρmin = 0.26 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25918 (6)0.37898 (6)0.41313 (5)0.01998 (13)
O10.50373 (17)0.01606 (16)0.27313 (13)0.0176 (3)
N10.8440 (2)0.0414 (2)0.21101 (16)0.0179 (3)
N20.6679 (2)0.1505 (2)0.34140 (17)0.0186 (3)
N30.7839 (2)0.3256 (2)0.43342 (18)0.0215 (3)
N41.0159 (2)0.1588 (2)0.31608 (18)0.0212 (3)
C10.5575 (3)0.1365 (2)0.19970 (19)0.0171 (3)
C20.4318 (3)0.2237 (2)0.1669 (2)0.0197 (3)
H2A0.29040.21100.19600.024*
C30.5268 (3)0.3327 (2)0.0875 (2)0.0224 (4)
H3A0.44820.39750.06190.027*
C40.7347 (3)0.3490 (2)0.0448 (2)0.0221 (4)
H4A0.79300.42290.01060.027*
C50.8592 (3)0.2595 (2)0.0815 (2)0.0210 (4)
H5A1.00100.27190.05330.025*
C60.7658 (3)0.1517 (2)0.16100 (19)0.0178 (3)
C70.6845 (2)0.0303 (2)0.27334 (19)0.0171 (3)
C80.8270 (2)0.2129 (2)0.36229 (19)0.0169 (3)
H10.544 (2)0.201 (3)0.367 (3)0.035 (6)*
H20.654 (2)0.367 (4)0.454 (3)0.046 (7)*
H30.881 (3)0.372 (3)0.446 (3)0.039 (7)*
H41.110 (3)0.205 (3)0.334 (2)0.025 (5)*
H51.035 (4)0.085 (3)0.268 (2)0.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0149 (2)0.0214 (2)0.0280 (2)0.00545 (15)0.00285 (15)0.01445 (17)
O10.0145 (5)0.0191 (6)0.0231 (6)0.0051 (4)0.0008 (4)0.0122 (5)
N10.0169 (7)0.0190 (7)0.0208 (7)0.0048 (5)0.0015 (5)0.0111 (6)
N20.0133 (7)0.0216 (7)0.0259 (8)0.0041 (5)0.0015 (5)0.0151 (6)
N30.0182 (7)0.0238 (8)0.0295 (8)0.0066 (6)0.0011 (6)0.0170 (7)
N40.0162 (7)0.0250 (8)0.0288 (8)0.0068 (6)0.0028 (6)0.0169 (7)
C10.0188 (8)0.0156 (8)0.0171 (8)0.0032 (6)0.0001 (6)0.0076 (6)
C20.0180 (8)0.0196 (8)0.0215 (8)0.0062 (6)0.0008 (6)0.0079 (7)
C30.0241 (9)0.0211 (9)0.0249 (9)0.0074 (7)0.0021 (7)0.0110 (7)
C40.0247 (9)0.0208 (9)0.0232 (9)0.0040 (7)0.0007 (7)0.0127 (7)
C50.0195 (8)0.0221 (9)0.0225 (9)0.0039 (7)0.0025 (7)0.0118 (7)
C60.0173 (8)0.0176 (8)0.0194 (8)0.0049 (6)0.0002 (6)0.0081 (7)
C70.0147 (7)0.0175 (8)0.0199 (8)0.0046 (6)0.0009 (6)0.0079 (7)
C80.0153 (7)0.0170 (8)0.0176 (8)0.0037 (6)0.0005 (6)0.0067 (7)
Geometric parameters (Å, º) top
O1—C71.361 (2)N4—H50.879 (10)
O1—C11.391 (2)C1—C21.371 (2)
N1—C71.292 (2)C1—C61.391 (2)
N1—C61.409 (2)C2—C31.395 (3)
N2—C81.361 (2)C2—H2A0.9500
N2—C71.368 (2)C3—C41.397 (3)
N2—H10.879 (10)C3—H3A0.9500
N3—C81.321 (2)C4—C51.398 (2)
N3—H20.875 (10)C4—H4A0.9500
N3—H30.874 (10)C5—C61.387 (2)
N4—C81.318 (2)C5—H5A0.9500
N4—H40.876 (9)
C7—O1—C1102.84 (12)C2—C3—H3A119.2
C7—N1—C6102.87 (14)C4—C3—H3A119.2
C8—N2—C7125.13 (14)C3—C4—C5121.75 (16)
C8—N2—H1115.8 (16)C3—C4—H4A119.1
C7—N2—H1118.9 (16)C5—C4—H4A119.1
C8—N3—H2119.2 (18)C6—C5—C4116.77 (16)
C8—N3—H3119.4 (16)C6—C5—H5A121.6
H2—N3—H3121 (2)C4—C5—H5A121.6
C8—N4—H4115.4 (14)C5—C6—C1119.91 (16)
C8—N4—H5118.0 (16)C5—C6—N1131.01 (16)
H4—N4—H5127 (2)C1—C6—N1109.06 (14)
C2—C1—O1127.63 (15)N1—C7—O1117.68 (15)
C2—C1—C6124.81 (16)N1—C7—N2129.18 (15)
O1—C1—C6107.55 (14)O1—C7—N2113.14 (14)
C1—C2—C3115.05 (16)N4—C8—N3122.14 (16)
C1—C2—H2A122.5N4—C8—N2120.88 (15)
C3—C2—H2A122.5N3—C8—N2116.97 (15)
C2—C3—C4121.70 (16)
C7—O1—C1—C2179.20 (17)O1—C1—C6—N10.35 (18)
C7—O1—C1—C60.35 (17)C7—N1—C6—C5177.86 (18)
O1—C1—C2—C3178.07 (15)C7—N1—C6—C10.19 (18)
C6—C1—C2—C30.6 (3)C6—N1—C7—O10.0 (2)
C1—C2—C3—C40.4 (3)C6—N1—C7—N2179.71 (17)
C2—C3—C4—C51.1 (3)C1—O1—C7—N10.26 (19)
C3—C4—C5—C60.7 (3)C1—O1—C7—N2179.97 (14)
C4—C5—C6—C10.2 (3)C8—N2—C7—N13.1 (3)
C4—C5—C6—N1178.12 (17)C8—N2—C7—O1177.25 (15)
C2—C1—C6—C50.9 (3)C7—N2—C8—N40.0 (3)
O1—C1—C6—C5177.95 (15)C7—N2—C8—N3178.54 (16)
C2—C1—C6—N1179.24 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl10.88 (1)2.18 (1)3.047 (2)168 (2)
N3—H2···Cl10.88 (1)2.67 (2)3.415 (2)144 (2)
N3—H3···Cl1i0.87 (1)2.53 (2)3.297 (2)147 (2)
N4—H4···Cl1i0.88 (1)2.33 (1)3.168 (2)160 (2)
N4—H5···N10.88 (1)2.08 (2)2.765 (2)134 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H9N4O+·Cl
Mr212.64
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.669 (2), 8.152 (4), 9.630 (3)
α, β, γ (°)65.062 (2), 85.020 (2), 73.710 (2)
V3)455.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.20 × 0.05 × 0.04
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
8184, 2088, 1895
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.03
No. of reflections2088
No. of parameters147
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl10.88 (1)2.18 (1)3.047 (2)168 (2)
N3—H2···Cl10.88 (1)2.67 (2)3.415 (2)144 (2)
N3—H3···Cl1i0.87 (1)2.53 (2)3.297 (2)147 (2)
N4—H4···Cl1i0.88 (1)2.33 (1)3.168 (2)160 (2)
N4—H5···N10.88 (1)2.08 (2)2.765 (2)134 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The use of the EPSRC X-ray crystallographic facilities at the University of Southampton, England, is gratefully acknowledged. We thank Manchester Metropolitan University, Sohag University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBishop, M. M., Coles, S. J., Lee, A. H. W., Lindoy, L. F., Parkin, A., Thorn-Seshold, O. T. & Turner, P. (2005). Supramol. Chem. 17, 567–578.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMohamed, S. K., Horton, P. N., El-Remaily, M. A. A. & Ng, S. W. (2011). Acta Cryst. E67, o3132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, O. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, T. & Niino, A. (1943). Yakugaku Zasshi, 63, 249–252.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds