metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis{2-[(di­methyl­amino)­meth­yl]phen­yl}bis­­{2-[(di­methyl­aza­nium­yl)meth­yl]phen­yl}di-μ-hydroxido-di-μ3-oxido-tetra­phenyl­tetra­tin(IV) dichloride deutero­chloro­form deca­solvate

aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
*Correspondence e-mail: zdenka.padelkova@upce.cz

(Received 9 August 2011; accepted 16 November 2011; online 30 November 2011)

The ladder-like structure of the tetranuclear title compound, [Sn4(C6H5)4Cl2O2(OH)2(C9H13N)2(C9H12N)2]Cl2·10CDCl3, consists of two five- and two six-coordinated SnIV atoms bridged by oxide or hydroxide groups. The chelating ligands reveal rather strong Sn—N bonds [2.517 (4) Å], but the protonated dimethylamino groups in the periphery of the complex show no interaction with the metal atoms. The complex cation is located on an inversion centre. The chloride anion is linked to the complex mol­ecule by strong intra­molecular O—H⋯Cl and N—H⋯Cl hydrogen bonds. Five independent deuterochloroform accompany the complex, two of them are disordered [occupancy ratios 0.63 (2):0.27 (2) and 0.60 (2):0.40 (2)].

Related literature

For related structures, see: Novák et al. (2006[Novák, P., Padělková, Z., Císařová, I., Kolářová, L., Růžička, A. & Holeček, J. (2006). Appl. Organomet. Chem. 20, 226-232.], 2007[Novák, P., Císařová, I., Kolářová, L., Růžička, A. & Holeček, J. (2007). J. Organomet. Chem. 692, 4287-4296.]); Varga & Silvestru (2007[Varga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m48-m50.]); Thoonen et al. (2006[Thoonen, S. H. L., van Hoek, H., de Wolf, E., Lutz, M., Spek, A. L., Deelman, B.-J. & van Koten, G. (2006). J. Organomet. Chem. 691, 1544-1553.]); Jambor et al. (2001[Jambor, R., Růžička, A., Brus, J., Císařová, I. & Holeček, J. (2001). Inorg. Chem. Commun. 4, 257-260.]); Padělková et al. (2007[Padělková, Z., Weidlich, T., Kolářová, L., Eisner, A., Císařová, I., Zevaco, T. A. & Růžička, A. (2007). J. Organomet. Chem. 692, 5633-5645.]). For similar tetra­nuclear aggregates, see: Beckmann et al. (2001[Beckmann, J., Jurkschat, K., Rabe, S., Schurmann, M. & Dakternieks, D. (2001). Z. Anorg. Allg. Chem. 627, 458-464.]); Cox & Tiekink (1994[Cox, M. J. & Tiekink, E. R. T. (1994). Z. Kristallogr. 209, 622-624.]); Kresinski et al. (1994[Kresinski, R. A., Staples, R. J. & Fackler, J. P. (1994). Acta Cryst. C50, 40-41.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m593.]); Mohamed et al. (2004[Mohamed, E. M., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2004). Acta Cryst. E60, m489-m491.]); Puff et al. (1983[Puff, H., Bung, I., Friedrichs, E. & Jansen, A. (1983). J. Organomet. Chem. 254, 23-32.]); Tiekink (1991[Tiekink, E. R. T. (1991). Acta Cryst. C47, 661-662.]); Vollano et al. (1984[Vollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745-750.]); Zhang et al. (2009[Zhang, Q.-J., Yin, H.-D., Wen, L.-Y. & Wang, D.-Q. (2009). Acta Cryst. E65, m1494.]). For similar hydrogen bonding in C,N-chelated organotin compounds, see: Padělková et al. (2009[Padělková, Z., Weidlich, T., Císařová, I. & Růžička, A. (2009). Appl. Organomet. Chem. 23, 253-257.]); Švec et al. (2010[Švec, P., Černošková, E., Padělková, Z., Růžička, A. & Holeček, J. (2010). J. Organomet. Chem. 695, 2475-2485.], 2011[Švec, P., Padělková, Z., Růžička, A., Weidlich, T., Dušek, L. & Plasseraud, L. (2011). J. Organomet. Chem. 696, 676-686.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(C6H5)4Cl2O2(OH)2(C9H13N)2(C9H12N)2]Cl2·10CDCl3

  • Mr = 2733.56

  • Triclinic, [P \overline 1]

  • a = 11.9279 (5) Å

  • b = 15.4080 (12) Å

  • c = 15.9651 (14) Å

  • α = 83.752 (7)°

  • β = 68.178 (4)°

  • γ = 76.339 (5)°

  • V = 2646.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 150 K

  • 0.28 × 0.26 × 0.21 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.758, Tmax = 0.820

  • 51386 measured reflections

  • 12052 independent reflections

  • 9459 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.146

  • S = 1.08

  • 12052 reflections

  • 598 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.95 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl2 0.93 2.21 3.079 (4) 156.0
N1—H1⋯Cl2 0.91 2.30 3.106 (5) 147.6

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT, Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The common feature of the interaction of C,N-chelated organotin(IV) compounds with protic acids, as well as the mono- and diorganotin compounds, which have the most Lewis acidic tin atom centre, is the hydrolysis. A plethora of such hydrolytic products was identified in the past, including a number of molecular structures determined by X-ray diffraction techniques. The molecular structure of the title compound (Fig. 1) consists of a tetranuclear, nearly planar, aggregate of two central LCNPhSnO units and two peripherical LCNPhSn(OH)Cl units (LCN = 2-(Me2NCH2)C6H4-). Similar tetranuclear aggregates were found earlier, for example for octabenzyl- (Mohamed et al., 2004), octaisopropyl- (Puff et al., 1983), octa(trimethylsilylmethyl)- (Puff et al., 1983), octaphenyl- (Vollano et al., 1984), octa(2-chlorobenzyl)- (Zhang et al., 2009) , octa(4-chlorobenzyl)- (Lo & Ng, 2009) octaphenyl (Kresinski et al, 1994; Cox & Tiekink, 1994; Tiekink, 1991) and tetra(trimethylsilylmethyl)-tetra-t-butyl- (Beckmann et al., 2001) derivative, respectively. The major difference between I and the rest of compounds is that all these compounds have all the tin atoms five coordinated. In I, the chelating dimethylaminomethyl arms of outer units are protonated by HCl. The chlorine anion is being out of the primary tin coordination sphere but is strongly connected by hydrogen bridges to both OH and NH groups (3.079 (4) Å, 3.106 (5) Å; Fig. 2). These hydrogen bonds are typical for C,N-chelated organotin compounds, as for example for LCN(n-Bu)2SnCl.HCl (Švec et al., 2010) or [LCN(n-Bu)SnOC(O)CF3]2(µ-OH)2 (Švec et al., 2011), but the presence of both types of hydrogen bonds in the same molecule were not observed before. The inner tin atoms coordination polyhedra are of very deformed trigonal bipyramids with both carbon atoms of the ligand and phenyl substituent and the bridging oxygen atom in equatorial positions, despite of that the value of the sum of interatomic angles in equatorial girdle is rather low (323.7°). The axial positions of these tin atoms are filled with the bridging OH group and the second bridging oxygen atom, where Sn1–O2 distances are a bit longer than in cases of the equatorial ones. The equatorial angle is shorter than ideally 180° being only 150.66 (13)°. The outer tin atoms have the C,C-transoidal coordination geometry of strongly deformed octahedron with mutually cis-coordinated O and OH groups, and chlorine and strongly interacting amino nitrogen (Sn–N 2.517 (4) Å) atoms, respectively. The C16–Sn2–C25 angle is wider (158.41 (19)°) than similar angles found in related ladder-like structures (~ 125°, for references see above). The solvent molecules (deuterochloroform) interact with the chloride anions.

Related literature top

For related structures, see: Novák et al. (2006, 2007); Varga et al. (2007); Thoonen et al. (2006); Jambor et al. (2001); Padělková et al. (2007). For similar tetranuclear aggregates, see: Beckmann et al. (2001); Cox & Tiekink (1994); Kresinski et al. (1994); Lo & Ng (2009); Mohamed et al. (2004); Puff et al. (1983); Tiekink (1991); Vollano et al. (1984); Zhang et al. (2009). For similar hydrogen-bonding schemes in C,N-chelated organotin compounds, see: Padělková et al. (2009); Švec et al. (2010, 2011).

Experimental top

The title compound (I, Scheme 1) has been obtained from the reaction mixture of ethylacetoacetate, cyclohexanol and [LCNPhSn(Cl)]2O (LCN = 2-(Me2NCH2)C6H4-) (1 mol %) in deuterochloroform used as a catalyst in this transesterfication reaction (Padělková et al., 2009) by slow evaporation on the air.

Refinement top

All the hydrogens were discernible in the difference electron density map. However, all the hydrogens were situated into idealized positions and refined riding on their parent C, O or N atoms, with O–H = 0.82 Å, N–H = 0.86 Å, C–H = 0.97 Å for methylene, 0.96 Å for methine, 0.93 Å for aromatic H atoms, with U(H) = 1.5Ueq(C/O) for methyl and OH groups and U(H) = 1.2Ueq(C/N) for other H atoms. SHELXL ISOR restraints were applied to the C atoms of the disordered deuterochloroform molecules.

other H atoms, respectively. There is disordered solvent (chlororform) in this structure. Successful attempts were made to resolve the disorder.

Structure description top

The common feature of the interaction of C,N-chelated organotin(IV) compounds with protic acids, as well as the mono- and diorganotin compounds, which have the most Lewis acidic tin atom centre, is the hydrolysis. A plethora of such hydrolytic products was identified in the past, including a number of molecular structures determined by X-ray diffraction techniques. The molecular structure of the title compound (Fig. 1) consists of a tetranuclear, nearly planar, aggregate of two central LCNPhSnO units and two peripherical LCNPhSn(OH)Cl units (LCN = 2-(Me2NCH2)C6H4-). Similar tetranuclear aggregates were found earlier, for example for octabenzyl- (Mohamed et al., 2004), octaisopropyl- (Puff et al., 1983), octa(trimethylsilylmethyl)- (Puff et al., 1983), octaphenyl- (Vollano et al., 1984), octa(2-chlorobenzyl)- (Zhang et al., 2009) , octa(4-chlorobenzyl)- (Lo & Ng, 2009) octaphenyl (Kresinski et al, 1994; Cox & Tiekink, 1994; Tiekink, 1991) and tetra(trimethylsilylmethyl)-tetra-t-butyl- (Beckmann et al., 2001) derivative, respectively. The major difference between I and the rest of compounds is that all these compounds have all the tin atoms five coordinated. In I, the chelating dimethylaminomethyl arms of outer units are protonated by HCl. The chlorine anion is being out of the primary tin coordination sphere but is strongly connected by hydrogen bridges to both OH and NH groups (3.079 (4) Å, 3.106 (5) Å; Fig. 2). These hydrogen bonds are typical for C,N-chelated organotin compounds, as for example for LCN(n-Bu)2SnCl.HCl (Švec et al., 2010) or [LCN(n-Bu)SnOC(O)CF3]2(µ-OH)2 (Švec et al., 2011), but the presence of both types of hydrogen bonds in the same molecule were not observed before. The inner tin atoms coordination polyhedra are of very deformed trigonal bipyramids with both carbon atoms of the ligand and phenyl substituent and the bridging oxygen atom in equatorial positions, despite of that the value of the sum of interatomic angles in equatorial girdle is rather low (323.7°). The axial positions of these tin atoms are filled with the bridging OH group and the second bridging oxygen atom, where Sn1–O2 distances are a bit longer than in cases of the equatorial ones. The equatorial angle is shorter than ideally 180° being only 150.66 (13)°. The outer tin atoms have the C,C-transoidal coordination geometry of strongly deformed octahedron with mutually cis-coordinated O and OH groups, and chlorine and strongly interacting amino nitrogen (Sn–N 2.517 (4) Å) atoms, respectively. The C16–Sn2–C25 angle is wider (158.41 (19)°) than similar angles found in related ladder-like structures (~ 125°, for references see above). The solvent molecules (deuterochloroform) interact with the chloride anions.

For related structures, see: Novák et al. (2006, 2007); Varga et al. (2007); Thoonen et al. (2006); Jambor et al. (2001); Padělková et al. (2007). For similar tetranuclear aggregates, see: Beckmann et al. (2001); Cox & Tiekink (1994); Kresinski et al. (1994); Lo & Ng (2009); Mohamed et al. (2004); Puff et al. (1983); Tiekink (1991); Vollano et al. (1984); Zhang et al. (2009). For similar hydrogen-bonding schemes in C,N-chelated organotin compounds, see: Padělková et al. (2009); Švec et al. (2010, 2011).

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the displacement ellipsoids shown on 50% probability level. Most H atoms are omitted for clarity, H atoms involved in hydrogen bonding are shown. Symmetry code: (a) ?x + 2, ?y + 2, ?z.
[Figure 2] Fig. 2. View of the I structure with the hydrogen bonding along the a axis.
bis{2-[2-(dimethylazaniumyl)methyl]phenyl}-2κC1,3κC1- bis{2-[(dimethylamino)methyl]phenyl}-1κC1,4κC1- dichlorido-1κCl,4κCl- di-µ-hydroxido-1:2κ2O:O;3:4κ2O:O- di-µ3-oxido-1:2:3κ3O:O:O;2:3:4κ3O: O:O-tetraphenyl- 1κC1,2κC1,3κC1,4κC1-tetratin(IV) dichloride deuterochloroform decasolvate top
Crystal data top
[Sn4(C6H5)4Cl2O2(OH)2(C9H13N)2(C9H12N)2]Cl2·10CDCl3Z = 1
Mr = 2733.56F(000) = 1340
Triclinic, P1Dx = 1.715 Mg m3
Hall symbol: -P 1Melting point: 395(2) K
a = 11.9279 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.4080 (12) ÅCell parameters from 51386 reflections
c = 15.9651 (14) Åθ = 1–27.5°
α = 83.752 (7)°µ = 1.84 mm1
β = 68.178 (4)°T = 150 K
γ = 76.339 (5)°Block, colourless
V = 2646.1 (3) Å30.28 × 0.26 × 0.21 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
12052 independent reflections
Radiation source: fine-focus sealed tube9459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.9°
φ and ω scans to fill the Ewald sphereh = 1415
Absorption correction: gaussian
(Coppens, 1970)
k = 1920
Tmin = 0.758, Tmax = 0.820l = 020
51386 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0647P)2 + 12.7718P]
where P = (Fo2 + 2Fc2)/3
12052 reflections(Δ/σ)max = 0.001
598 parametersΔρmax = 1.95 e Å3
12 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Sn4(C6H5)4Cl2O2(OH)2(C9H13N)2(C9H12N)2]Cl2·10CDCl3γ = 76.339 (5)°
Mr = 2733.56V = 2646.1 (3) Å3
Triclinic, P1Z = 1
a = 11.9279 (5) ÅMo Kα radiation
b = 15.4080 (12) ŵ = 1.84 mm1
c = 15.9651 (14) ÅT = 150 K
α = 83.752 (7)°0.28 × 0.26 × 0.21 mm
β = 68.178 (4)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
12052 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
9459 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.820Rint = 0.065
51386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05412 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0647P)2 + 12.7718P]
where P = (Fo2 + 2Fc2)/3
12052 reflectionsΔρmax = 1.95 e Å3
598 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.95841 (3)0.92734 (2)0.08172 (2)0.01807 (9)
Sn21.05036 (3)0.81140 (2)0.10648 (2)0.01954 (9)
Cl20.90846 (13)0.65544 (9)0.18634 (10)0.0339 (3)
Cl11.09431 (12)0.89042 (9)0.26447 (8)0.0299 (3)
O20.9965 (3)0.7941 (2)0.0363 (2)0.0231 (7)
H20.99090.74140.07050.035*
O10.9676 (3)1.0635 (2)0.0551 (2)0.0197 (7)
C170.8196 (5)0.7435 (3)0.0818 (4)0.0262 (11)
N10.8708 (5)0.7981 (3)0.3231 (3)0.0329 (10)
H10.89010.77550.26790.039*
N21.0295 (4)0.6531 (3)0.1091 (3)0.0262 (9)
C61.2090 (5)0.8765 (3)0.0998 (4)0.0257 (11)
H61.23250.88500.03760.031*
C210.7933 (5)0.9018 (4)0.1142 (4)0.0305 (12)
H210.82560.95310.12930.037*
C241.1034 (5)0.5831 (4)0.0692 (4)0.0317 (12)
H24A1.18970.58210.10100.048*
H24B1.08680.52620.07350.048*
H24C1.08210.59560.00680.048*
C11.0852 (5)0.8880 (3)0.1516 (4)0.0230 (10)
C251.2430 (4)0.7559 (3)0.1350 (4)0.0232 (10)
C100.7635 (4)0.9427 (3)0.1424 (3)0.0238 (10)
C160.8670 (5)0.8216 (3)0.1023 (4)0.0246 (10)
C21.0492 (5)0.8764 (4)0.2462 (4)0.0267 (11)
C301.2839 (5)0.7242 (4)0.0643 (4)0.0285 (11)
H301.22720.72650.00550.034*
C31.1427 (5)0.8541 (4)0.2844 (4)0.0325 (12)
H31.12040.84750.34670.039*
C271.4542 (5)0.7151 (4)0.2384 (4)0.0353 (13)
H271.51140.71260.29710.042*
C51.2996 (5)0.8526 (4)0.1379 (4)0.0331 (12)
H51.38280.84370.10160.040*
C291.4068 (5)0.6895 (4)0.0799 (4)0.0337 (12)
H291.43290.66920.03180.040*
C220.8976 (5)0.6565 (4)0.0624 (4)0.0289 (11)
H22A0.88000.64980.00210.035*
H22B0.87570.60710.08120.035*
C261.3293 (5)0.7499 (4)0.2228 (4)0.0318 (12)
H261.30350.76930.27120.038*
C150.7063 (5)0.8753 (4)0.1408 (4)0.0316 (12)
H150.75310.82280.11110.038*
C70.9177 (5)0.8830 (4)0.3073 (4)0.0314 (12)
H7A0.86590.92790.28230.038*
H7B0.90810.90390.36520.038*
C180.6992 (5)0.7496 (4)0.0742 (4)0.0340 (13)
H180.66710.69830.06150.041*
C231.0672 (6)0.6345 (4)0.2063 (4)0.0354 (13)
H23A1.15390.63290.23590.053*
H23B1.02140.68080.23360.053*
H23C1.05050.57790.21220.053*
C41.2641 (6)0.8420 (4)0.2317 (4)0.0352 (13)
H41.32390.82670.25800.042*
C281.4927 (5)0.6847 (4)0.1682 (5)0.0374 (14)
H281.57590.66090.17890.045*
C190.6255 (5)0.8298 (4)0.0850 (5)0.0388 (14)
H190.54440.83260.07980.047*
C200.6726 (6)0.9066 (4)0.1038 (5)0.0397 (14)
H200.62240.96150.10930.048*
C140.5783 (5)0.8856 (4)0.1835 (4)0.0352 (13)
H140.54030.83970.18240.042*
C110.6917 (5)1.0208 (4)0.1856 (4)0.0354 (14)
H110.72921.06710.18630.042*
C130.5093 (5)0.9624 (4)0.2265 (5)0.0415 (15)
H130.42440.96860.25510.050*
C90.7376 (6)0.8137 (5)0.3664 (5)0.0482 (17)
H9A0.69980.85820.33250.072*
H9B0.71400.83400.42660.072*
H9C0.71080.75910.36890.072*
C120.5639 (6)1.0314 (4)0.2281 (6)0.0514 (19)
H120.51631.08410.25700.062*
C80.9315 (7)0.7289 (5)0.3745 (5)0.0475 (17)
H8A1.01960.71920.34480.071*
H8B0.90510.67410.37710.071*
H8C0.90890.74890.43460.071*
C501.2065 (7)0.5493 (5)0.1665 (7)0.058 (2)
D501.12900.57640.15690.070*
Cl511.3126 (2)0.50334 (13)0.06538 (15)0.0599 (5)
Cl521.1760 (2)0.46445 (16)0.25107 (16)0.0680 (6)
Cl531.2564 (3)0.6331 (2)0.1980 (3)0.1126 (13)
C600.3786 (6)0.4030 (5)0.7682 (5)0.0476 (16)
D600.29320.40940.77180.057*
Cl610.3904 (2)0.35616 (16)0.87085 (14)0.0653 (5)
Cl620.4761 (2)0.33095 (14)0.68003 (14)0.0679 (6)
Cl630.4152 (2)0.50854 (13)0.74811 (19)0.0746 (7)
C70A1.141 (4)0.165 (3)0.361 (3)0.089 (13)0.37 (2)
D70A1.12930.15330.30640.107*0.37 (2)
Cl750.992 (2)0.2562 (10)0.4102 (13)0.093 (5)0.37 (2)
Cl741.217 (2)0.2208 (11)0.3248 (8)0.107 (5)0.37 (2)
Cl761.1541 (16)0.0616 (7)0.4047 (10)0.094 (4)0.37 (2)
C701.0976 (12)0.1618 (10)0.3631 (8)0.038 (3)0.63 (2)
D701.08990.15130.30630.045*0.63 (2)
Cl710.9801 (12)0.2362 (10)0.4232 (8)0.141 (5)0.63 (2)
Cl721.2500 (6)0.1749 (11)0.3461 (8)0.137 (5)0.63 (2)
Cl731.0761 (16)0.0688 (5)0.4391 (7)0.119 (4)0.63 (2)
C800.670 (3)0.167 (2)0.4596 (17)0.049 (8)0.40 (2)
D800.74920.15550.40890.059*0.40 (2)
Cl810.619 (2)0.2718 (12)0.4575 (9)0.108 (5)0.40 (2)
Cl820.7067 (8)0.1475 (7)0.5587 (5)0.066 (3)0.40 (2)
Cl830.5908 (14)0.0680 (14)0.4646 (18)0.133 (7)0.40 (2)
C80A0.652 (3)0.1390 (16)0.4638 (19)0.064 (7)0.60 (2)
D80A0.73750.13290.42100.077*0.60 (2)
Cl840.5572 (11)0.2548 (6)0.4667 (4)0.095 (3)0.60 (2)
Cl860.6429 (19)0.1145 (11)0.5677 (6)0.159 (7)0.60 (2)
Cl850.5654 (14)0.0996 (8)0.4272 (7)0.143 (4)0.60 (2)
C900.7388 (15)0.4945 (8)0.5226 (12)0.124 (5)
D900.69800.46040.57630.148*
Cl910.7081 (5)0.6026 (3)0.5531 (3)0.169 (2)
Cl920.9047 (7)0.4615 (5)0.4986 (5)0.220 (3)
Cl930.6965 (8)0.4755 (5)0.4449 (6)0.226 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01544 (16)0.02144 (17)0.01780 (16)0.00579 (12)0.00581 (12)0.00129 (12)
Sn20.01716 (17)0.02137 (17)0.02117 (17)0.00468 (12)0.00731 (13)0.00201 (13)
Cl20.0337 (7)0.0332 (7)0.0328 (7)0.0078 (6)0.0101 (6)0.0028 (6)
Cl10.0285 (6)0.0367 (7)0.0217 (6)0.0045 (5)0.0079 (5)0.0009 (5)
O20.0244 (18)0.0201 (17)0.0257 (18)0.0057 (14)0.0100 (15)0.0023 (14)
O10.0223 (17)0.0207 (16)0.0160 (15)0.0067 (13)0.0057 (13)0.0001 (12)
C170.026 (3)0.025 (3)0.030 (3)0.006 (2)0.011 (2)0.005 (2)
N10.037 (3)0.040 (3)0.024 (2)0.013 (2)0.011 (2)0.002 (2)
N20.029 (2)0.024 (2)0.028 (2)0.0054 (18)0.0125 (19)0.0030 (18)
C60.029 (3)0.028 (3)0.021 (2)0.009 (2)0.007 (2)0.003 (2)
C210.031 (3)0.028 (3)0.039 (3)0.009 (2)0.018 (2)0.001 (2)
C240.029 (3)0.024 (3)0.044 (3)0.007 (2)0.014 (3)0.001 (2)
C10.025 (2)0.022 (2)0.028 (3)0.0080 (19)0.013 (2)0.002 (2)
C250.018 (2)0.023 (2)0.031 (3)0.0039 (18)0.010 (2)0.003 (2)
C100.016 (2)0.028 (3)0.024 (2)0.0062 (19)0.0041 (19)0.006 (2)
C160.022 (2)0.027 (3)0.027 (3)0.008 (2)0.011 (2)0.000 (2)
C20.027 (3)0.027 (3)0.030 (3)0.008 (2)0.014 (2)0.001 (2)
C300.027 (3)0.032 (3)0.028 (3)0.010 (2)0.010 (2)0.001 (2)
C30.034 (3)0.042 (3)0.026 (3)0.010 (2)0.016 (2)0.002 (2)
C270.024 (3)0.038 (3)0.037 (3)0.006 (2)0.001 (2)0.008 (3)
C50.021 (3)0.034 (3)0.043 (3)0.005 (2)0.010 (2)0.004 (2)
C290.027 (3)0.038 (3)0.038 (3)0.003 (2)0.017 (2)0.001 (2)
C220.028 (3)0.024 (3)0.041 (3)0.009 (2)0.017 (2)0.002 (2)
C260.024 (3)0.034 (3)0.033 (3)0.000 (2)0.009 (2)0.004 (2)
C150.020 (3)0.031 (3)0.042 (3)0.005 (2)0.009 (2)0.006 (2)
C70.032 (3)0.038 (3)0.026 (3)0.008 (2)0.012 (2)0.000 (2)
C180.031 (3)0.034 (3)0.046 (3)0.016 (2)0.020 (3)0.002 (3)
C230.043 (3)0.036 (3)0.027 (3)0.007 (3)0.011 (3)0.007 (2)
C40.035 (3)0.040 (3)0.039 (3)0.009 (3)0.024 (3)0.003 (3)
C280.020 (3)0.039 (3)0.052 (4)0.001 (2)0.014 (3)0.009 (3)
C190.025 (3)0.039 (3)0.061 (4)0.009 (2)0.022 (3)0.005 (3)
C200.029 (3)0.031 (3)0.062 (4)0.002 (2)0.023 (3)0.003 (3)
C140.022 (3)0.036 (3)0.048 (4)0.010 (2)0.009 (3)0.005 (3)
C110.019 (3)0.029 (3)0.051 (4)0.010 (2)0.000 (2)0.010 (3)
C130.017 (3)0.046 (4)0.053 (4)0.009 (2)0.004 (3)0.007 (3)
C90.042 (4)0.059 (4)0.041 (4)0.021 (3)0.005 (3)0.003 (3)
C120.026 (3)0.033 (3)0.083 (5)0.002 (3)0.007 (3)0.019 (3)
C80.063 (5)0.046 (4)0.042 (4)0.023 (3)0.025 (3)0.018 (3)
C500.038 (4)0.038 (4)0.104 (7)0.004 (3)0.033 (4)0.007 (4)
Cl510.0641 (12)0.0436 (9)0.0749 (13)0.0156 (9)0.0282 (10)0.0075 (9)
Cl520.0540 (11)0.0742 (14)0.0687 (13)0.0092 (10)0.0166 (10)0.0027 (11)
Cl530.0833 (18)0.0798 (17)0.175 (3)0.0312 (14)0.0204 (19)0.066 (2)
C600.037 (3)0.050 (4)0.050 (4)0.011 (3)0.005 (3)0.011 (3)
Cl610.0648 (13)0.0799 (14)0.0492 (11)0.0178 (11)0.0140 (9)0.0108 (10)
Cl620.0832 (15)0.0562 (11)0.0487 (11)0.0074 (10)0.0056 (10)0.0183 (9)
Cl630.0578 (12)0.0408 (10)0.1034 (18)0.0133 (9)0.0011 (12)0.0153 (11)
C70A0.093 (16)0.078 (15)0.087 (15)0.010 (10)0.025 (10)0.005 (9)
Cl750.126 (11)0.062 (5)0.080 (7)0.011 (5)0.045 (6)0.001 (5)
Cl740.154 (12)0.120 (9)0.094 (6)0.090 (9)0.070 (7)0.038 (6)
Cl760.111 (9)0.056 (4)0.092 (7)0.001 (5)0.026 (6)0.014 (4)
C700.030 (6)0.060 (7)0.031 (5)0.006 (5)0.020 (5)0.008 (5)
Cl710.118 (7)0.197 (10)0.107 (6)0.084 (7)0.083 (6)0.105 (7)
Cl720.062 (3)0.223 (11)0.115 (7)0.007 (5)0.024 (3)0.065 (7)
Cl730.184 (11)0.089 (4)0.092 (5)0.005 (5)0.074 (7)0.001 (3)
C800.066 (18)0.051 (16)0.016 (8)0.006 (13)0.008 (9)0.005 (9)
Cl810.088 (9)0.144 (9)0.064 (5)0.038 (8)0.020 (6)0.048 (5)
Cl820.059 (5)0.094 (5)0.045 (3)0.008 (3)0.032 (3)0.010 (3)
Cl830.118 (8)0.109 (11)0.156 (16)0.028 (8)0.019 (9)0.043 (10)
C80A0.047 (8)0.064 (11)0.063 (9)0.003 (7)0.007 (6)0.004 (7)
Cl840.078 (5)0.121 (5)0.049 (2)0.027 (4)0.008 (3)0.013 (3)
Cl860.177 (13)0.175 (10)0.097 (5)0.037 (10)0.063 (6)0.006 (5)
Cl850.143 (8)0.132 (7)0.107 (6)0.035 (6)0.002 (5)0.041 (5)
C900.134 (13)0.068 (7)0.140 (13)0.014 (8)0.024 (10)0.014 (8)
Cl910.195 (5)0.098 (3)0.116 (3)0.013 (3)0.028 (3)0.004 (2)
Cl920.197 (6)0.222 (7)0.193 (6)0.037 (5)0.058 (5)0.032 (5)
Cl930.252 (8)0.238 (8)0.219 (7)0.082 (6)0.102 (7)0.001 (6)
Geometric parameters (Å, º) top
Sn1—O1i2.031 (3)C15—H150.9300
Sn1—O12.115 (3)C7—H7A0.9700
Sn1—C102.125 (5)C7—H7B0.9700
Sn1—C12.139 (5)C18—C191.372 (9)
Sn1—O22.142 (3)C18—H180.9300
Sn1—Sn1i3.2649 (7)C23—H23A0.9600
Sn2—O1i2.110 (3)C23—H23B0.9600
Sn2—O22.130 (4)C23—H23C0.9600
Sn2—C162.132 (5)C4—H40.9300
Sn2—C252.144 (5)C28—H280.9300
Sn2—N22.517 (4)C19—C201.385 (9)
Sn2—Cl12.6017 (13)C19—H190.9300
O2—H20.9300C20—H200.9300
O1—Sn1i2.031 (3)C14—C131.359 (9)
O1—Sn2i2.110 (3)C14—H140.9300
C17—C181.377 (8)C11—C121.396 (8)
C17—C161.404 (7)C11—H110.9300
C17—C221.515 (7)C13—C121.377 (9)
N1—C91.448 (8)C13—H130.9300
N1—C81.490 (8)C9—H9A0.9600
N1—C71.502 (8)C9—H9B0.9600
N1—H10.9100C9—H9C0.9600
N2—C221.460 (7)C12—H120.9300
N2—C241.472 (7)C8—H8A0.9600
N2—C231.486 (7)C8—H8B0.9600
C6—C11.377 (7)C8—H8C0.9600
C6—C51.387 (8)C50—Cl531.732 (8)
C6—H60.9300C50—Cl511.737 (9)
C21—C201.371 (8)C50—Cl521.772 (9)
C21—C161.377 (8)C50—D500.9800
C21—H210.9300C60—Cl631.748 (7)
C24—H24A0.9600C60—Cl621.754 (7)
C24—H24B0.9600C60—Cl611.759 (8)
C24—H24C0.9600C60—D600.9800
C1—C21.411 (7)C70A—Cl741.32 (5)
C25—C301.388 (8)C70A—Cl761.67 (4)
C25—C261.395 (8)C70A—Cl751.94 (5)
C10—C151.376 (7)C70A—D70A0.9800
C10—C111.383 (8)Cl75—Cl742.47 (3)
C2—C31.418 (8)C70—Cl711.636 (17)
C2—C71.494 (8)C70—Cl731.776 (17)
C30—C291.373 (8)C70—Cl721.793 (14)
C30—H300.9300C70—D700.9800
C3—C41.356 (9)C80—Cl811.58 (3)
C3—H30.9300C80—Cl821.77 (3)
C27—C281.363 (9)C80—Cl831.96 (4)
C27—C261.394 (8)C80—D800.9800
C27—H270.9300C80A—Cl851.61 (3)
C5—C41.398 (9)C80A—Cl861.63 (3)
C5—H50.9300C80A—Cl841.87 (3)
C29—C281.398 (9)C80A—D80A0.9800
C29—H290.9300C90—Cl931.579 (18)
C22—H22A0.9700C90—Cl911.704 (14)
C22—H22B0.9700C90—Cl921.824 (17)
C26—H260.9300C90—D900.9800
C15—C141.400 (8)
O1i—Sn1—O176.15 (14)C27—C26—H26119.8
O1i—Sn1—C10117.58 (17)C25—C26—H26119.8
O1—Sn1—C1098.97 (17)C10—C15—C14120.4 (5)
O1i—Sn1—C1116.88 (17)C10—C15—H15119.8
O1—Sn1—C199.62 (16)C14—C15—H15119.8
C10—Sn1—C1125.1 (2)C2—C7—N1115.8 (5)
O1i—Sn1—O274.63 (13)C2—C7—H7A108.3
O1—Sn1—O2150.66 (13)N1—C7—H7A108.3
C10—Sn1—O296.77 (17)C2—C7—H7B108.3
C1—Sn1—O291.22 (16)N1—C7—H7B108.3
O1i—Sn1—Sn1i38.98 (9)H7A—C7—H7B107.4
O1—Sn1—Sn1i37.17 (9)C19—C18—C17121.5 (5)
C10—Sn1—Sn1i112.90 (14)C19—C18—H18119.3
C1—Sn1—Sn1i112.93 (14)C17—C18—H18119.3
O2—Sn1—Sn1i113.57 (10)N2—C23—H23A109.5
O1i—Sn2—O273.31 (13)N2—C23—H23B109.5
O1i—Sn2—C16100.53 (17)H23A—C23—H23B109.5
O2—Sn2—C1692.56 (17)N2—C23—H23C109.5
O1i—Sn2—C25100.96 (16)H23A—C23—H23C109.5
O2—Sn2—C2595.58 (17)H23B—C23—H23C109.5
C16—Sn2—C25158.41 (19)C3—C4—C5120.3 (5)
O1i—Sn2—N2159.45 (14)C3—C4—H4119.9
O2—Sn2—N286.82 (14)C5—C4—H4119.9
C16—Sn2—N274.65 (17)C27—C28—C29119.8 (5)
C25—Sn2—N285.85 (17)C27—C28—H28120.1
O1i—Sn2—Cl187.05 (9)C29—C28—H28120.1
O2—Sn2—Cl1159.94 (10)C18—C19—C20119.5 (5)
C16—Sn2—Cl186.94 (15)C18—C19—H19120.2
C25—Sn2—Cl192.07 (15)C20—C19—H19120.2
N2—Sn2—Cl1112.25 (11)C21—C20—C19120.0 (6)
Sn2—O2—Sn1103.23 (14)C21—C20—H20120.0
Sn2—O2—H2128.4C19—C20—H20120.0
Sn1—O2—H2128.4C13—C14—C15120.1 (5)
Sn1i—O1—Sn2i107.90 (15)C13—C14—H14120.0
Sn1i—O1—Sn1103.85 (14)C15—C14—H14120.0
Sn2i—O1—Sn1147.88 (17)C10—C11—C12121.1 (5)
C18—C17—C16118.4 (5)C10—C11—H11119.5
C18—C17—C22121.4 (5)C12—C11—H11119.5
C16—C17—C22120.0 (5)C14—C13—C12120.8 (5)
C9—N1—C8110.4 (5)C14—C13—H13119.6
C9—N1—C7112.3 (5)C12—C13—H13119.6
C8—N1—C7112.7 (5)N1—C9—H9A109.5
C9—N1—H1107.0N1—C9—H9B109.5
C8—N1—H1107.0H9A—C9—H9B109.5
C7—N1—H1107.0N1—C9—H9C109.5
C22—N2—C24111.0 (4)H9A—C9—H9C109.5
C22—N2—C23110.8 (4)H9B—C9—H9C109.5
C24—N2—C23108.6 (4)C13—C12—C11119.0 (6)
C22—N2—Sn2104.1 (3)C13—C12—H12120.5
C24—N2—Sn2117.3 (3)C11—C12—H12120.5
C23—N2—Sn2104.8 (3)N1—C8—H8A109.5
C1—C6—C5121.8 (5)N1—C8—H8B109.5
C1—C6—H6119.1H8A—C8—H8B109.5
C5—C6—H6119.1N1—C8—H8C109.5
C20—C21—C16120.5 (5)H8A—C8—H8C109.5
C20—C21—H21119.7H8B—C8—H8C109.5
C16—C21—H21119.7Cl53—C50—Cl51110.9 (4)
N2—C24—H24A109.5Cl53—C50—Cl52112.4 (5)
N2—C24—H24B109.5Cl51—C50—Cl52110.2 (4)
H24A—C24—H24B109.5Cl53—C50—D50107.7
N2—C24—H24C109.5Cl51—C50—D50107.7
H24A—C24—H24C109.5Cl52—C50—D50107.7
H24B—C24—H24C109.5Cl63—C60—Cl62110.9 (4)
C6—C1—C2119.2 (5)Cl63—C60—Cl61110.8 (4)
C6—C1—Sn1116.7 (4)Cl62—C60—Cl61109.5 (4)
C2—C1—Sn1124.1 (4)Cl63—C60—D60108.6
C30—C25—C26118.4 (5)Cl62—C60—D60108.6
C30—C25—Sn2119.4 (4)Cl61—C60—D60108.6
C26—C25—Sn2122.1 (4)Cl74—C70A—Cl76136 (3)
C15—C10—C11118.7 (5)Cl74—C70A—Cl7597 (3)
C15—C10—Sn1121.1 (4)Cl76—C70A—Cl75121 (2)
C11—C10—Sn1120.1 (4)Cl74—C70A—D70A98.1
C21—C16—C17120.0 (5)Cl76—C70A—D70A98.1
C21—C16—Sn2122.4 (4)Cl75—C70A—D70A98.1
C17—C16—Sn2117.6 (4)C70A—Cl75—Cl7432.0 (13)
C1—C2—C3118.4 (5)C70A—Cl74—Cl7551 (2)
C1—C2—C7122.9 (5)Cl71—C70—Cl7398.6 (11)
C3—C2—C7118.6 (5)Cl71—C70—Cl72117.9 (10)
C29—C30—C25121.0 (5)Cl73—C70—Cl72104.5 (8)
C29—C30—H30119.5Cl71—C70—D70111.6
C25—C30—H30119.5Cl73—C70—D70111.6
C4—C3—C2121.2 (5)Cl72—C70—D70111.6
C4—C3—H3119.4Cl81—C80—Cl82104.2 (16)
C2—C3—H3119.4Cl81—C80—Cl83130 (2)
C28—C27—C26120.3 (6)Cl82—C80—Cl83101.9 (18)
C28—C27—H27119.9Cl81—C80—D80106.1
C26—C27—H27119.9Cl82—C80—D80106.1
C6—C5—C4119.1 (5)Cl83—C80—D80106.1
C6—C5—H5120.5Cl85—C80A—Cl86117.5 (15)
C4—C5—H5120.5Cl85—C80A—Cl8491.9 (16)
C30—C29—C28120.0 (6)Cl86—C80A—Cl84105.2 (14)
C30—C29—H29120.0Cl85—C80A—D80A113.3
C28—C29—H29120.0Cl86—C80A—D80A113.3
N2—C22—C17111.9 (4)Cl84—C80A—D80A113.3
N2—C22—H22A109.2Cl93—C90—Cl91117.6 (10)
C17—C22—H22A109.2Cl93—C90—Cl92114.9 (10)
N2—C22—H22B109.2Cl91—C90—Cl92101.5 (9)
C17—C22—H22B109.2Cl93—C90—D90107.4
H22A—C22—H22B107.9Cl91—C90—D90107.4
C27—C26—C25120.4 (6)Cl92—C90—D90107.4
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl20.932.213.079 (4)156.0
N1—H1···Cl20.912.303.106 (5)147.6

Experimental details

Crystal data
Chemical formula[Sn4(C6H5)4Cl2O2(OH)2(C9H13N)2(C9H12N)2]Cl2·10CDCl3
Mr2733.56
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)11.9279 (5), 15.4080 (12), 15.9651 (14)
α, β, γ (°)83.752 (7), 68.178 (4), 76.339 (5)
V3)2646.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.28 × 0.26 × 0.21
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.758, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
51386, 12052, 9459
Rint0.065
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.146, 1.08
No. of reflections12052
No. of parameters598
No. of restraints12
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0647P)2 + 12.7718P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.95, 1.15

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl20.932.213.079 (4)156.0
N1—H1···Cl20.912.303.106 (5)147.6
 

Acknowledgements

The authors would like to thank the Ministry of Education, Youth and Sports of the Czech Republic (project MSM 0021627501) and the Czech Science Foundation (project P207/10/P092) for the financial support of this work.

References

First citationBeckmann, J., Jurkschat, K., Rabe, S., Schurmann, M. & Dakternieks, D. (2001). Z. Anorg. Allg. Chem. 627, 458–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationCox, M. J. & Tiekink, E. R. T. (1994). Z. Kristallogr. 209, 622–624.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. (1998). COLLECT, Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJambor, R., Růžička, A., Brus, J., Císařová, I. & Holeček, J. (2001). Inorg. Chem. Commun. 4, 257–260.  Web of Science CSD CrossRef CAS Google Scholar
First citationKresinski, R. A., Staples, R. J. & Fackler, J. P. (1994). Acta Cryst. C50, 40–41.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, E. M., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2004). Acta Cryst. E60, m489–m491.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNovák, P., Císařová, I., Kolářová, L., Růžička, A. & Holeček, J. (2007). J. Organomet. Chem. 692, 4287–4296.  Google Scholar
First citationNovák, P., Padělková, Z., Císařová, I., Kolářová, L., Růžička, A. & Holeček, J. (2006). Appl. Organomet. Chem. 20, 226–232.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPadělková, Z., Weidlich, T., Císařová, I. & Růžička, A. (2009). Appl. Organomet. Chem. 23, 253–257.  Google Scholar
First citationPadělková, Z., Weidlich, T., Kolářová, L., Eisner, A., Císařová, I., Zevaco, T. A. & Růžička, A. (2007). J. Organomet. Chem. 692, 5633–5645.  Google Scholar
First citationPuff, H., Bung, I., Friedrichs, E. & Jansen, A. (1983). J. Organomet. Chem. 254, 23–32.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠvec, P., Černošková, E., Padělková, Z., Růžička, A. & Holeček, J. (2010). J. Organomet. Chem. 695, 2475–2485.  Google Scholar
First citationŠvec, P., Padělková, Z., Růžička, A., Weidlich, T., Dušek, L. & Plasseraud, L. (2011). J. Organomet. Chem. 696, 676–686.  Google Scholar
First citationThoonen, S. H. L., van Hoek, H., de Wolf, E., Lutz, M., Spek, A. L., Deelman, B.-J. & van Koten, G. (2006). J. Organomet. Chem. 691, 1544–1553.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (1991). Acta Cryst. C47, 661–662.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVarga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m48–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745–750.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, Q.-J., Yin, H.-D., Wen, L.-Y. & Wang, D.-Q. (2009). Acta Cryst. E65, m1494.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds