organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2,6-bis­­[(2-hy­dr­oxy-5-methyl­phen­yl)imino­meth­yl]pyridine} monohydrate

aDepartment of Chemistry, Loughborough University, Loughborough LE11 3TU, England
*Correspondence e-mail: m.kose@lboro.ac.uk

(Received 30 September 2011; accepted 28 October 2011; online 5 November 2011)

The title compound, 2C21H19N3O2·H2O, was synthesized by a Schiff base condensation of 2,6-diformyl­pyridine with 2-amino-4-methyl­phenol in ethanol. In the crystal, two mol­ecules of 2,6-bis­[(2-hy­droxy-5-methyl­phen­yl)imino­meth­yl]pyridine dimer­ize via hydrogen bonding to a water mol­ecule, which lies on a twofold axis. There are also intra­molecular phenol–imine hydrogen bonds. The dimers are further linked via ππ (phen­yl–pyridine) [centroid–centroid distance = 3.707 (2) Å] and ππ edge-to-edge [3.392 (2) Å] inter­actions. The dihedral angles between the central ring and the two pendant rings are 11.46 (8) and 2.06 (8)° while the pendant rings make a dihedral angle of 10.14 (8)°.

Related literature

For related structures, see: Gonzalez et al. (2008[Gonzalez, A., Gomez, E., Cortes-Lozada, A., Hernandez, S., Ramirez-Apan, T. & Nieto-Camacho, A. (2008). Chem. Pharm. Bull. 57, 5-15.]); Sun et al. (2006[Sun, X. X., Qi, C. M., Ma, S. L., Huang, H. B., Zhu, W. & Liu, Y. C. (2006). Inorg. Chem. Commun. 9, 911-914.]).

[Scheme 1]

Experimental

Crystal data
  • 2C21H19N3O2·H2O

  • Mr = 708.80

  • Monoclinic, C 2/c

  • a = 23.8510 (13) Å

  • b = 12.9688 (7) Å

  • c = 12.3835 (7) Å

  • β = 114.077 (1)°

  • V = 3497.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.60 × 0.28 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.947, Tmax = 0.991

  • 19364 measured reflections

  • 5005 independent reflections

  • 3919 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.06

  • 5005 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.836 (17) 1.960 (17) 2.7592 (12) 159.6 (15)
O2—H2A⋯N3 0.836 (17) 2.347 (15) 2.7624 (12) 111.3 (12)
O1—H1A⋯N1 0.86 (2) 2.120 (19) 2.6722 (13) 121.7 (16)
O3—H3D⋯N2 0.812 (16) 2.187 (16) 2.9865 (12) 168.0 (16)
O3—H3D⋯N3 0.812 (16) 2.569 (16) 3.0142 (9) 115.9 (14)

Data collection: APEX2 (Bruker, 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecules crystallize as dimers, assembled by hydrogen bonding around a water molecule. The water molecule sits on a twofold axis and makes four strong hydrogen bonds, as donor to the pyridine nitrogen atoms, and as acceptor from the phenol groups (Table 1). There are also weaker hydrogen bond interactions with one of the imine nitrogen atoms of each molecule. Additionally, there are phenol-imine intramolecular hydrogen bonds in each molecule. The azomethine (C8N1 and C14N3) linkage distances are 1.278 (14) and 1.273 (14) Å respectively and within the normal CN values.

The geometry is cis at the C8N1 imine group and trans at C14N3 group. The molecule is close to planar with interplanar angles between the pyridine and phenol groups, 11.46 (8)° and 2.06 (8)° for the rings containing O1 and O2 respectively.

The hydrogen bond geometry at the water molecule is approximately tetrahedral but the angle between the two H-bonded Schiff base molecules is not close to the ideal 90°; the angle between the N2/O3/O2 plane and its equivalent under twofold rotation is 60.52 (4)°. This is possibly a consequence of the intermolecular interactions in the lattice. The Schiff base molecules show two sets of interactions with neighbouring dimeric units. On the more open face (that nearest to the H-bonded phenol of the second molecule), there is a π-π interaction involving the pyridine ring and the phenolimine group H-bonded to central water molecule. The average interplanar distance between this section and its neighbour under symmetry operation 1 - x, -y, -z is 3.354 (1) Å and phenol-pyridine centroid-centroid distance is 3.707 (2) Å. On the other face (partially blocked by the non-bonded phenol of the second molecule), there is a less extensive edge to edge interaction C10 to C11 of a neighbouring dimer under symmetry operation 1 - x, 1 - y, -z is 3.392 (2) Å. These result in columns formed by alternating π-π and edge to edge interactions extending through the lattice.

Related literature top

For related structures, see: Gonzalez et al. (2008); Sun et al. (2006).

Experimental top

A solution of 2,6-diformylpyridine (0.405 g, 3 mmol) in ethanol (15 ml) was added dropwise to an ethanolic solution (30 ml) of 2-amino-4-methylphenol (0.740 g, 6 mmol). A yellow colour appeared and a precipitate was formed in a few minutes. The mixture was stirred for two hours, and then the yellow product was collected by filtration, washed with ethanol-diethylether mixture (1:1) and dried in air. Yield: 0.852 g, 80%, m.p 173–177 C°. Analysis Calc. for C21H19N3O2.0.5(H2O): C, 71.17; H, 5.69; N, 11.86%. Found: C, 71.03; H, 5.65; N, 11.70%.

Refinement top

H atoms bonded to C atoms were inserted at calculated positions with C—H distances of 0.95 and 0.99 Å for non-saturated and saturated C atoms, respectively. They were refined using a riding model with Uiso(H) = 1.2Ueq(C). The H-atoms bonded to O1, O2 and O3 are taken directly from the difference Fourier and were refined with temperature factors riding on the carrier atom.

Structure description top

The molecules crystallize as dimers, assembled by hydrogen bonding around a water molecule. The water molecule sits on a twofold axis and makes four strong hydrogen bonds, as donor to the pyridine nitrogen atoms, and as acceptor from the phenol groups (Table 1). There are also weaker hydrogen bond interactions with one of the imine nitrogen atoms of each molecule. Additionally, there are phenol-imine intramolecular hydrogen bonds in each molecule. The azomethine (C8N1 and C14N3) linkage distances are 1.278 (14) and 1.273 (14) Å respectively and within the normal CN values.

The geometry is cis at the C8N1 imine group and trans at C14N3 group. The molecule is close to planar with interplanar angles between the pyridine and phenol groups, 11.46 (8)° and 2.06 (8)° for the rings containing O1 and O2 respectively.

The hydrogen bond geometry at the water molecule is approximately tetrahedral but the angle between the two H-bonded Schiff base molecules is not close to the ideal 90°; the angle between the N2/O3/O2 plane and its equivalent under twofold rotation is 60.52 (4)°. This is possibly a consequence of the intermolecular interactions in the lattice. The Schiff base molecules show two sets of interactions with neighbouring dimeric units. On the more open face (that nearest to the H-bonded phenol of the second molecule), there is a π-π interaction involving the pyridine ring and the phenolimine group H-bonded to central water molecule. The average interplanar distance between this section and its neighbour under symmetry operation 1 - x, -y, -z is 3.354 (1) Å and phenol-pyridine centroid-centroid distance is 3.707 (2) Å. On the other face (partially blocked by the non-bonded phenol of the second molecule), there is a less extensive edge to edge interaction C10 to C11 of a neighbouring dimer under symmetry operation 1 - x, 1 - y, -z is 3.392 (2) Å. These result in columns formed by alternating π-π and edge to edge interactions extending through the lattice.

For related structures, see: Gonzalez et al. (2008); Sun et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the dimeric compound, thermal ellipsoid 50% probability, hydrogen atoms bonded to carbon atoms are omitted for clarity, hydrogen bonds are shown as dash lines, symmetry operation * 1 - x, y, 1/2 - z.
[Figure 2] Fig. 2. π-π (phenyl-pyridine) and π-π edge to edge interactions in the lattice.
Bis{2,6-bis[(2-hydroxy-5-methylphenyl)iminomethyl]pyridine} monohydrate top
Crystal data top
2C21H19N3O2·H2OF(000) = 1496
Mr = 708.80Dx = 1.346 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5957 reflections
a = 23.8510 (13) Åθ = 2.3–29.8°
b = 12.9688 (7) ŵ = 0.09 mm1
c = 12.3835 (7) ÅT = 150 K
β = 114.077 (1)°Block, yellow
V = 3497.2 (3) Å30.60 × 0.28 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5005 independent reflections
Radiation source: fine-focus sealed tube3919 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 29.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 3333
Tmin = 0.947, Tmax = 0.991k = 1718
19364 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0642P)2 + 1.5272P]
where P = (Fo2 + 2Fc2)/3
5005 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
2C21H19N3O2·H2OV = 3497.2 (3) Å3
Mr = 708.80Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.8510 (13) ŵ = 0.09 mm1
b = 12.9688 (7) ÅT = 150 K
c = 12.3835 (7) Å0.60 × 0.28 × 0.11 mm
β = 114.077 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5005 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3919 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.991Rint = 0.024
19364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
5005 reflectionsΔρmin = 0.23 e Å3
251 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33231 (5)0.57957 (7)0.14787 (9)0.0363 (2)
H1A0.3535 (9)0.5552 (15)0.1120 (17)0.054*
C10.32840 (6)0.50007 (9)0.21682 (10)0.0263 (2)
C20.29313 (6)0.51152 (9)0.28174 (11)0.0295 (3)
H20.27240.57470.27920.035*
C30.28826 (5)0.43063 (9)0.35006 (11)0.0285 (2)
H30.26410.43910.39440.034*
C40.31806 (5)0.33642 (9)0.35549 (10)0.0259 (2)
C50.30934 (6)0.24734 (10)0.42542 (12)0.0344 (3)
H5A0.32200.18320.40000.052*
H5B0.26600.24260.41190.052*
H5C0.33440.25840.50980.052*
C60.35360 (5)0.32612 (9)0.29095 (10)0.0243 (2)
H60.37440.26300.29420.029*
C70.35935 (5)0.40707 (9)0.22099 (9)0.0232 (2)
N10.39157 (5)0.40486 (7)0.14721 (8)0.0250 (2)
C80.42258 (5)0.32597 (9)0.14243 (9)0.0231 (2)
H80.42610.26910.19310.028*
C90.45300 (5)0.32110 (8)0.06030 (9)0.0209 (2)
C100.44553 (5)0.39831 (9)0.02331 (10)0.0250 (2)
H100.42180.45800.02680.030*
C110.47345 (6)0.38588 (9)0.10081 (10)0.0274 (2)
H110.46950.43720.15820.033*
C120.50726 (5)0.29722 (9)0.09334 (10)0.0251 (2)
H120.52650.28660.14610.030*
C130.51268 (5)0.22380 (8)0.00723 (9)0.0205 (2)
N20.48638 (4)0.23536 (7)0.06979 (8)0.02020 (19)
C140.54842 (5)0.12966 (8)0.00076 (9)0.0219 (2)
H140.55820.11250.06570.026*
N30.56667 (4)0.07051 (7)0.08909 (8)0.02191 (19)
C150.60324 (5)0.01660 (8)0.09325 (9)0.0199 (2)
C160.63466 (5)0.03133 (8)0.02040 (9)0.0210 (2)
H160.63190.02000.03620.025*
C170.66968 (5)0.11873 (8)0.02855 (9)0.0218 (2)
C180.70282 (5)0.13137 (9)0.05144 (10)0.0276 (2)
H18A0.68330.08770.12150.041*
H18B0.70080.20360.07580.041*
H18C0.74590.11090.00900.041*
C190.67339 (5)0.19289 (8)0.11334 (10)0.0242 (2)
H190.69690.25360.12000.029*
C200.64359 (5)0.17978 (9)0.18780 (10)0.0240 (2)
H200.64710.23090.24520.029*
C210.60848 (5)0.09168 (8)0.17862 (9)0.0212 (2)
O20.57884 (4)0.08313 (7)0.25167 (7)0.02766 (19)
H2A0.5591 (7)0.0281 (13)0.2415 (13)0.033*
O30.50000.07316 (9)0.25000.0278 (3)
H3D0.4959 (8)0.1100 (13)0.1942 (14)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0520 (6)0.0268 (4)0.0359 (5)0.0110 (4)0.0239 (4)0.0038 (4)
C10.0301 (6)0.0243 (5)0.0224 (5)0.0038 (4)0.0088 (4)0.0028 (4)
C20.0304 (6)0.0275 (6)0.0300 (6)0.0074 (5)0.0119 (5)0.0056 (5)
C30.0263 (5)0.0334 (6)0.0272 (6)0.0027 (5)0.0122 (5)0.0071 (5)
C40.0242 (5)0.0290 (6)0.0251 (5)0.0010 (4)0.0106 (4)0.0033 (4)
C50.0364 (7)0.0364 (7)0.0386 (7)0.0026 (5)0.0236 (6)0.0021 (5)
C60.0242 (5)0.0247 (5)0.0241 (5)0.0043 (4)0.0099 (4)0.0023 (4)
C70.0237 (5)0.0249 (5)0.0205 (5)0.0026 (4)0.0084 (4)0.0036 (4)
N10.0278 (5)0.0258 (5)0.0226 (5)0.0032 (4)0.0115 (4)0.0022 (4)
C80.0235 (5)0.0252 (5)0.0210 (5)0.0021 (4)0.0097 (4)0.0007 (4)
C90.0203 (5)0.0229 (5)0.0193 (5)0.0002 (4)0.0077 (4)0.0021 (4)
C100.0268 (5)0.0223 (5)0.0249 (5)0.0021 (4)0.0098 (4)0.0009 (4)
C110.0315 (6)0.0270 (5)0.0241 (5)0.0007 (4)0.0117 (5)0.0056 (4)
C120.0270 (5)0.0302 (6)0.0199 (5)0.0012 (4)0.0115 (4)0.0021 (4)
C130.0207 (5)0.0242 (5)0.0168 (4)0.0003 (4)0.0079 (4)0.0007 (4)
N20.0205 (4)0.0226 (4)0.0182 (4)0.0003 (3)0.0086 (3)0.0012 (3)
C140.0232 (5)0.0267 (5)0.0185 (5)0.0021 (4)0.0110 (4)0.0009 (4)
N30.0248 (4)0.0221 (4)0.0224 (4)0.0006 (3)0.0133 (4)0.0004 (3)
C150.0224 (5)0.0201 (5)0.0182 (5)0.0001 (4)0.0093 (4)0.0011 (4)
C160.0231 (5)0.0215 (5)0.0203 (5)0.0003 (4)0.0109 (4)0.0008 (4)
C170.0217 (5)0.0225 (5)0.0223 (5)0.0011 (4)0.0102 (4)0.0031 (4)
C180.0295 (6)0.0278 (6)0.0307 (6)0.0032 (5)0.0176 (5)0.0011 (4)
C190.0235 (5)0.0218 (5)0.0268 (5)0.0022 (4)0.0097 (4)0.0000 (4)
C200.0263 (5)0.0232 (5)0.0215 (5)0.0003 (4)0.0086 (4)0.0034 (4)
C210.0230 (5)0.0246 (5)0.0171 (5)0.0023 (4)0.0093 (4)0.0008 (4)
O20.0370 (5)0.0287 (4)0.0239 (4)0.0042 (4)0.0191 (4)0.0038 (3)
O30.0386 (7)0.0270 (6)0.0266 (6)0.0000.0223 (5)0.000
Geometric parameters (Å, º) top
O1—C11.3660 (15)C11—H110.9500
O1—H1A0.86 (2)C12—C131.3957 (15)
C1—C21.3884 (16)C12—H120.9500
C1—C71.4040 (15)C13—N21.3467 (13)
C2—C31.3821 (18)C13—C141.4725 (15)
C2—H20.9500C14—N31.2731 (14)
C3—C41.4012 (16)C14—H140.9500
C3—H30.9500N3—C151.4153 (13)
C4—C61.3885 (15)C15—C161.4013 (14)
C4—C51.5083 (17)C15—C211.4048 (14)
C5—H5A0.9800C16—C171.3870 (15)
C5—H5B0.9800C16—H160.9500
C5—H5C0.9800C17—C191.3998 (15)
C6—C71.4030 (16)C17—C181.5072 (15)
C6—H60.9500C18—H18A0.9800
C7—N11.4139 (14)C18—H18B0.9800
N1—C81.2778 (14)C18—H18C0.9800
C8—C91.4721 (15)C19—C201.3853 (15)
C8—H80.9500C19—H190.9500
C9—N21.3445 (14)C20—C211.3934 (15)
C9—C101.3985 (15)C20—H200.9500
C10—C111.3827 (16)C21—O21.3610 (13)
C10—H100.9500O2—H2A0.836 (17)
C11—C121.3857 (16)O3—H3D0.812 (16)
C1—O1—H1A104.5 (13)C12—C11—H11120.6
O1—C1—C2119.56 (10)C11—C12—C13119.14 (10)
O1—C1—C7120.15 (10)C11—C12—H12120.4
C2—C1—C7120.28 (11)C13—C12—H12120.4
C3—C2—C1119.70 (10)N2—C13—C12122.72 (10)
C3—C2—H2120.2N2—C13—C14118.71 (9)
C1—C2—H2120.2C12—C13—C14118.57 (9)
C2—C3—C4121.56 (11)C9—N2—C13117.41 (9)
C2—C3—H3119.2N3—C14—C13122.07 (9)
C4—C3—H3119.2N3—C14—H14119.0
C6—C4—C3118.25 (11)C13—C14—H14119.0
C6—C4—C5121.09 (10)C14—N3—C15119.91 (9)
C3—C4—C5120.61 (10)C16—C15—C21118.89 (9)
C4—C5—H5A109.5C16—C15—N3124.68 (9)
C4—C5—H5B109.5C21—C15—N3116.42 (9)
H5A—C5—H5B109.5C17—C16—C15121.93 (10)
C4—C5—H5C109.5C17—C16—H16119.0
H5A—C5—H5C109.5C15—C16—H16119.0
H5B—C5—H5C109.5C16—C17—C19117.90 (10)
C4—C6—C7121.31 (10)C16—C17—C18120.18 (10)
C4—C6—H6119.3C19—C17—C18121.92 (10)
C7—C6—H6119.3C17—C18—H18A109.5
C6—C7—C1118.89 (10)C17—C18—H18B109.5
C6—C7—N1126.84 (10)H18A—C18—H18B109.5
C1—C7—N1114.20 (10)C17—C18—H18C109.5
C8—N1—C7121.58 (10)H18A—C18—H18C109.5
N1—C8—C9121.61 (10)H18B—C18—H18C109.5
N1—C8—H8119.2C20—C19—C17121.49 (10)
C9—C8—H8119.2C20—C19—H19119.3
N2—C9—C10123.29 (10)C17—C19—H19119.3
N2—C9—C8114.60 (9)C19—C20—C21120.05 (10)
C10—C9—C8122.07 (10)C19—C20—H20120.0
C11—C10—C9118.58 (10)C21—C20—H20120.0
C11—C10—H10120.7O2—C21—C20118.06 (9)
C9—C10—H10120.7O2—C21—C15122.20 (10)
C10—C11—C12118.84 (10)C20—C21—C15119.72 (9)
C10—C11—H11120.6C21—O2—H2A112.5 (10)
O1—C1—C2—C3178.93 (11)C11—C12—C13—C14179.63 (10)
C7—C1—C2—C30.42 (18)C10—C9—N2—C131.22 (16)
C1—C2—C3—C40.16 (18)C8—C9—N2—C13176.55 (9)
C2—C3—C4—C60.66 (18)C12—C13—N2—C91.05 (15)
C2—C3—C4—C5176.69 (12)C14—C13—N2—C9178.70 (9)
C3—C4—C6—C70.61 (17)N2—C13—C14—N315.80 (16)
C5—C4—C6—C7176.73 (11)C12—C13—C14—N3164.44 (11)
C4—C6—C7—C10.06 (17)C13—C14—N3—C15177.17 (9)
C4—C6—C7—N1176.84 (11)C14—N3—C15—C1616.85 (16)
O1—C1—C7—C6178.88 (10)C14—N3—C15—C21164.27 (10)
C2—C1—C7—C60.47 (17)C21—C15—C16—C171.35 (16)
O1—C1—C7—N11.61 (16)N3—C15—C16—C17179.79 (10)
C2—C1—C7—N1177.74 (10)C15—C16—C17—C190.49 (16)
C6—C7—N1—C83.83 (18)C15—C16—C17—C18179.90 (10)
C1—C7—N1—C8179.15 (10)C16—C17—C19—C200.50 (16)
C7—N1—C8—C9176.17 (10)C18—C17—C19—C20178.90 (10)
N1—C8—C9—N2176.83 (10)C17—C19—C20—C210.60 (17)
N1—C8—C9—C105.37 (17)C19—C20—C21—O2178.48 (10)
N2—C9—C10—C110.45 (17)C19—C20—C21—C150.29 (16)
C8—C9—C10—C11177.16 (10)C16—C15—C21—O2179.34 (10)
C9—C10—C11—C120.52 (17)N3—C15—C21—O21.71 (15)
C10—C11—C12—C130.68 (17)C16—C15—C21—C201.24 (15)
C11—C12—C13—N20.12 (17)N3—C15—C21—C20179.82 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.836 (17)1.960 (17)2.7592 (12)159.6 (15)
O2—H2A···N30.836 (17)2.347 (15)2.7624 (12)111.3 (12)
O1—H1A···N10.86 (2)2.120 (19)2.6722 (13)121.7 (16)
O3—H3D···N20.812 (16)2.187 (16)2.9865 (12)168.0 (16)
O3—H3D···N30.812 (16)2.569 (16)3.0142 (9)115.9 (14)

Experimental details

Crystal data
Chemical formula2C21H19N3O2·H2O
Mr708.80
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)23.8510 (13), 12.9688 (7), 12.3835 (7)
β (°) 114.077 (1)
V3)3497.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.28 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.947, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
19364, 5005, 3919
Rint0.024
(sin θ/λ)max1)0.700
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.06
No. of reflections5005
No. of parameters251
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: APEX2 (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.836 (17)1.960 (17)2.7592 (12)159.6 (15)
O2—H2A···N30.836 (17)2.347 (15)2.7624 (12)111.3 (12)
O1—H1A···N10.86 (2)2.120 (19)2.6722 (13)121.7 (16)
O3—H3D···N20.812 (16)2.187 (16)2.9865 (12)168.0 (16)
O3—H3D···N30.812 (16)2.569 (16)3.0142 (9)115.9 (14)
 

Acknowledgements

We are grateful to the Turkish Government for the award of a postgraduate scholarship (to MK)

References

First citationBruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGonzalez, A., Gomez, E., Cortes-Lozada, A., Hernandez, S., Ramirez-Apan, T. & Nieto-Camacho, A. (2008). Chem. Pharm. Bull. 57, 5–15.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X. X., Qi, C. M., Ma, S. L., Huang, H. B., Zhu, W. & Liu, Y. C. (2006). Inorg. Chem. Commun. 9, 911–914.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds