metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cyclo-Tetra-μ-oxido-tetra­kis­[(acetyl­acetonato-κ2O,O′)bis­­(ethano­lato-κO)niobium(V)]

aDepartment of Chemistry, University of the Free State, 9300 Bloemfontein, South Africa
*Correspondence e-mail: leandra9herbst@yahoo.com

(Received 7 October 2011; accepted 24 October 2011; online 5 November 2011)

The asymmetric unit of the title tetra­nuclear niobium(V) compound, [Nb4(C2H5O)8(C5H7O2)4O4], contains two NbV atoms, two bridging O atoms, two acetyl­acetonate and four ethano­late ligands. Each NbV atom is six-coordinated by the bridging O atoms, two ethano­late and one chelating acetyl­acetonate ligands. The Nb—O distances vary between 1.817 (2) and 2.201 (2) Å and the O—Nb—O angles vary between 78.88 (8) and 102.78 (9)°, illustrating the significant distortion from ideal ocahedral geometry. The rest of the tetra­nuclear unit is generated through an inversion centre. The C atoms of two of the ethano­late mol­ecules are disordered over two sites [occupancy ratio 0.601 (12):0.399 (12)].

Related literature

For similar structures, see: Ooi & Sotofte (2004[Ooi, B. & Sotofte, I. (2004). Inorg. Chim. Acta, 357, 3780-3785.]); Cotton et al. (1985[Cotton, F. A., Diebold, W. J. & Roth, W. J. (1985). Inorg. Chem. 24, 3509-3516.], 1987[Cotton, F. A., Diebold, W. J. & Roth, W. J. (1987). Inorg. Chem. 26, 3323-3328.]); Steunou et al. (1998[Steunou, N., Bonhomme, C., Sanchez, C., Vaisserman, J. & Hubert-Pfalzgraf, L. G. (1998). Inorg. Chem. 37, 901-906.]). For applications of acetyl­acetone in industry, see: Steyn et al. (1992[Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.], 1997[Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536-537, 197-205.], 2008[Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.]); Otto et al. (1998[Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447-2453.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1-23. Trivandrum, India: Transworld Research Network.]); Brink et al. (2010[Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. pp. 5572-5578.]); Viljoen et al. (2008[Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838-m839.], 2009a[Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514-m1515.],b[Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367-m1368.], 2010[Viljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603-m604.]); Herbst et al. (2010[Herbst, L., Koen, R., Roodt, A. & Visser, H. G. (2010). Acta Cryst. E66, m801-m802.]). For a review article about structure–reactivity relationships, see: Roodt et al. (2011[Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241-280.])

[Scheme 1]

Experimental

Crystal data
  • [Nb4(C2H5O)8(C5H7O2)4O4]

  • Mr = 1192.54

  • Monoclinic, P 21 /c

  • a = 13.907 (5) Å

  • b = 12.662 (5) Å

  • c = 21.354 (5) Å

  • β = 136.982 (13)°

  • V = 2565.4 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 180 K

  • 0.48 × 0.32 × 0.27 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.701, Tmax = 0.778

  • 42149 measured reflections

  • 6191 independent reflections

  • 5355 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.06

  • 6191 reflections

  • 310 parameters

  • 85 restraints

  • H-atom parameters constrained

  • Δρmax = 2.43 e Å−3

  • Δρmin = −1.32 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acetylacetone finds applications in homgenous catalysis and the separations industry (Steyn et al., 1992, 1997; Otto et al., 1998; Roodt & Steyn, 2000; Brink et al., 2010). This study forms part of ongoing research to investigate the intimate mechanism of the reactions of polidentate ligands with transition metals used in the nuclear industry, especially hafnium, zirconium, niobium and tantalum (Viljoen et al., 2008,2009a,2009b, 2010; Steyn et al., 2008; Herbst et al., 2010; Roodt et al., 2011).

In the title tetranuclear Niobium(V) compound, [Nb(CH3CH2O)2(C5H7O2)(µ2-O)]4, the asymmetric unit contains two niobium atoms, separated by a bridging oxygen atom, two acetylacetonato bidentate ligands, four ethanolate ligands and another bridging oxygen atom coordinated to Nb1. The rest of the title compound is generated through an inversion centre (see Figure 1).

Each niobium atom is six coordinated to two bridging oxygen atoms, two ethanolate molecules and a chelating acetylacetonato ligand. The Nb–O distances vary between 1.817 (2) to 2.201 (3) Å and the O–Nb–O angles vary between 78.86 (10) and 102.79 (11) °, illustrating the significant distortion from ideal octahedral geometry. The most significant deviation from the ideal 180 ° of the trans O–Nb–O angles is obtained for O6–Nb1– O3, namely 163.66 (10) °. All the bond distances and angles are similar to relevant niobium(V) structures (Ooi et al., 2004; Cotton et al., 1985, 1987; Steunou et al., 1998).

The four niobium atoms and the four bridging oxygen atoms form a slightly distorted square with Nb–Nb distances of 3.8339 (13) and 3.8229 (9) ° respectively and O–Nb–O angles of 93.526 (14) and 97.123 (13) Å (see Figure 2). The planarity of this square arrangement is indicated by the small distances that the Nb and O atoms are protruding from a plane generated through Nb1, Nb2, O1 and O5; the largest distance from the plane being 0.575 (14) Å, obtained for O1.

Two of the carbon atoms of one of the ethanolate ligands are disordered over two positions (53% to 47%) while the methyl carbon of another ethanolate ligand displays a vibrational disorder of 72%. Two of the ethanolate molecules are disordered over two positions.

Related literature top

For similar structures, see: Ooi & Sotofte (2004); Cotton et al. (1985, 1987); Steunou et al. (1998). For applications of acetylacetone in industry, see: Steyn et al. (1992, 1997, 2008); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010); Viljoen et al. (2008, 2009a,b, 2010); Herbst et al. (2010). For a review article about structure–reactivity relationships, see: Roodt et al. (2011)

Experimental top

The reaction was performed under modified Schlenk conditions under an argon atmosphere. Nb(OEt)5 (1.16 mmol, 0.291 ml) and acetylacetone (1.16 mmol, 0.119 ml) were added together and stirred for 30 min. Absolute methanol (5 ml) was added to the reaction mixture and allowed to stir for another 30 min at room temperature. The colourless solution was left to stand at 252 K for a few days after which white crystals, suitable for X-ray diffraction were obtained.

Refinement top

The methine and methylene H atoms were placed in geometrically idealized positions at C—H = 0.93 and 0.97 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.81 Å from NB2 and the deepest hole is situated 0.67 Å from Nb2.

A larger than usual U(eq) range for the disordered methyl atoms is observed and were refined using the DELU and SIMU instructions.

A few reflections were influenced by the beamstop and therefore omitted to obtain a better refinement.

Structure description top

Acetylacetone finds applications in homgenous catalysis and the separations industry (Steyn et al., 1992, 1997; Otto et al., 1998; Roodt & Steyn, 2000; Brink et al., 2010). This study forms part of ongoing research to investigate the intimate mechanism of the reactions of polidentate ligands with transition metals used in the nuclear industry, especially hafnium, zirconium, niobium and tantalum (Viljoen et al., 2008,2009a,2009b, 2010; Steyn et al., 2008; Herbst et al., 2010; Roodt et al., 2011).

In the title tetranuclear Niobium(V) compound, [Nb(CH3CH2O)2(C5H7O2)(µ2-O)]4, the asymmetric unit contains two niobium atoms, separated by a bridging oxygen atom, two acetylacetonato bidentate ligands, four ethanolate ligands and another bridging oxygen atom coordinated to Nb1. The rest of the title compound is generated through an inversion centre (see Figure 1).

Each niobium atom is six coordinated to two bridging oxygen atoms, two ethanolate molecules and a chelating acetylacetonato ligand. The Nb–O distances vary between 1.817 (2) to 2.201 (3) Å and the O–Nb–O angles vary between 78.86 (10) and 102.79 (11) °, illustrating the significant distortion from ideal octahedral geometry. The most significant deviation from the ideal 180 ° of the trans O–Nb–O angles is obtained for O6–Nb1– O3, namely 163.66 (10) °. All the bond distances and angles are similar to relevant niobium(V) structures (Ooi et al., 2004; Cotton et al., 1985, 1987; Steunou et al., 1998).

The four niobium atoms and the four bridging oxygen atoms form a slightly distorted square with Nb–Nb distances of 3.8339 (13) and 3.8229 (9) ° respectively and O–Nb–O angles of 93.526 (14) and 97.123 (13) Å (see Figure 2). The planarity of this square arrangement is indicated by the small distances that the Nb and O atoms are protruding from a plane generated through Nb1, Nb2, O1 and O5; the largest distance from the plane being 0.575 (14) Å, obtained for O1.

Two of the carbon atoms of one of the ethanolate ligands are disordered over two positions (53% to 47%) while the methyl carbon of another ethanolate ligand displays a vibrational disorder of 72%. Two of the ethanolate molecules are disordered over two positions.

For similar structures, see: Ooi & Sotofte (2004); Cotton et al. (1985, 1987); Steunou et al. (1998). For applications of acetylacetone in industry, see: Steyn et al. (1992, 1997, 2008); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010); Viljoen et al. (2008, 2009a,b, 2010); Herbst et al. (2010). For a review article about structure–reactivity relationships, see: Roodt et al. (2011)

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms ommitted for clarity. Symmetry code: (i) -x + 2, -y + 1, -z + 1.
[Figure 2] Fig. 2. Square Nb–O arrangement in the molecule.
cyclo-Tetra-µ-oxido-tetrakis[(acetylacetonato- κ2O,O')bis(ethanolato-κO)niobium(V)] top
Crystal data top
[Nb4(C2H5O)8(C5H7O2)4O4]F(000) = 1216
Mr = 1192.54Dx = 1.544 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9935 reflections
a = 13.907 (5) Åθ = 2.7–28.3°
b = 12.662 (5) ŵ = 0.94 mm1
c = 21.354 (5) ÅT = 180 K
β = 136.982 (13)°Cuboid, colourless
V = 2565.4 (15) Å30.48 × 0.32 × 0.27 mm
Z = 2
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
6191 independent reflections
Radiation source: fine-focus sealed tube5355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 28°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1818
Tmin = 0.701, Tmax = 0.778k = 1616
42149 measured reflectionsl = 2528
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.031P)2 + 4.1146P]
where P = (Fo2 + 2Fc2)/3
6191 reflections(Δ/σ)max = 0.002
310 parametersΔρmax = 2.43 e Å3
85 restraintsΔρmin = 1.32 e Å3
Crystal data top
[Nb4(C2H5O)8(C5H7O2)4O4]V = 2565.4 (15) Å3
Mr = 1192.54Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.907 (5) ŵ = 0.94 mm1
b = 12.662 (5) ÅT = 180 K
c = 21.354 (5) Å0.48 × 0.32 × 0.27 mm
β = 136.982 (13)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
6191 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5355 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.778Rint = 0.032
42149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03185 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 2.43 e Å3
6191 reflectionsΔρmin = 1.32 e Å3
310 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 40 s/frame. A total of 1709 frames were collected with a frame width of 0.5° covering up to θ = 28.39° with 99.9% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4871 (3)0.5567 (3)0.2203 (2)0.0376 (6)
C20.5266 (3)0.6468 (3)0.2724 (2)0.0440 (7)
H20.48070.70980.24140.053*
C30.6286 (3)0.6484 (2)0.3664 (2)0.0377 (6)
C40.3652 (4)0.5634 (3)0.1170 (2)0.0635 (11)
H4A0.39660.5440.09080.095*
H4B0.32950.63440.09930.095*
H4C0.29180.51610.09520.095*
C50.6564 (5)0.7475 (3)0.4162 (3)0.0597 (10)
H5A0.62750.73760.4450.09*
H5B0.60430.80490.37320.09*
H5C0.75530.76350.4620.09*
C60.4762 (4)0.3502 (4)0.3446 (3)0.0611 (10)
H6A0.46080.2830.35810.073*
H6B0.41480.35290.27910.073*
C70.4382 (5)0.4360 (5)0.3696 (4)0.0893 (17)
H7A0.34150.42840.3360.134*
H7B0.45060.50270.35480.134*
H7C0.49760.43310.43420.134*
C80.7632 (4)0.2881 (3)0.2822 (3)0.0485 (8)
H8A0.81990.34230.28920.058*
H8B0.67020.28950.21910.058*
C101.0999 (3)0.4854 (3)0.3539 (2)0.0402 (7)
C111.1829 (4)0.5716 (3)0.3770 (3)0.0494 (8)
H111.26510.55890.39370.059*
C121.1506 (4)0.6763 (3)0.3769 (2)0.0468 (8)
C131.1348 (4)0.3772 (3)0.3489 (3)0.0571 (9)
H13A1.07840.360.28610.086*
H13B1.1160.32760.37290.086*
H13C1.23280.37390.38440.086*
C141.2474 (5)0.7644 (4)0.4018 (3)0.0672 (12)
H14A1.31410.73740.40390.101*
H14B1.29670.79250.46090.101*
H14C1.19260.81940.35660.101*
C150.9542 (5)0.8296 (3)0.4372 (3)0.0672 (11)
H15A1.05260.810.48790.081*
H15B0.9210.85030.46250.081*
C160.9434 (7)0.9182 (4)0.3908 (4)0.103 (2)
H16A0.84660.93960.34160.155*
H16B0.97770.89890.36650.155*
H16C0.99860.97550.43330.155*
O10.81776 (19)0.51714 (15)0.36184 (13)0.0296 (4)
O20.54526 (19)0.46715 (16)0.25306 (13)0.0342 (4)
O30.7048 (2)0.56870 (15)0.41852 (13)0.0323 (4)
O40.6178 (2)0.35591 (17)0.39197 (14)0.0351 (4)
O50.90700 (18)0.40537 (14)0.51497 (12)0.0290 (4)
O60.7517 (2)0.31023 (15)0.34129 (13)0.0322 (4)
O70.9881 (2)0.49253 (17)0.33447 (14)0.0362 (4)
O81.0433 (2)0.70416 (18)0.35616 (16)0.0434 (5)
O90.8765 (2)0.74043 (15)0.38001 (14)0.0386 (5)
O100.7637 (2)0.62579 (19)0.22326 (14)0.0458 (5)
Nb10.74205 (2)0.422519 (18)0.394088 (15)0.02353 (7)
Nb20.90559 (2)0.611158 (19)0.352545 (16)0.02815 (7)
C17A0.7186 (18)0.6351 (11)0.1421 (9)0.075 (4)0.399 (12)
H17A0.72890.70910.13640.09*0.399 (12)
H17B0.6180.62130.09540.09*0.399 (12)
C18A0.7686 (18)0.5806 (10)0.1159 (9)0.088 (5)0.399 (12)
H18A0.69190.56240.05210.132*0.399 (12)
H18B0.81420.51730.15190.132*0.399 (12)
H18C0.83520.62350.12530.132*0.399 (12)
C17B0.7207 (17)0.5822 (11)0.1469 (7)0.145 (7)0.601 (12)
H17C0.79690.59890.15450.174*0.601 (12)
H17D0.72740.50670.15720.174*0.601 (12)
C18B0.6150 (15)0.5917 (14)0.0646 (7)0.184 (8)0.601 (12)
H18D0.59570.66540.0490.276*0.601 (12)
H18E0.53660.55950.04840.276*0.601 (12)
H18F0.62920.55780.03170.276*0.601 (12)
C9A0.828 (3)0.1850 (12)0.3022 (14)0.068 (4)0.53 (5)
H9A10.92060.18410.36420.102*0.53 (5)
H9A20.83350.17180.26080.102*0.53 (5)
H9A30.77130.13120.29480.102*0.53 (5)
C9B0.885 (4)0.218 (3)0.330 (2)0.076 (7)0.47 (5)
H9B10.96910.25140.38560.114*0.47 (5)
H9B20.89590.20520.29090.114*0.47 (5)
H9B30.87060.15240.34420.114*0.47 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0264 (13)0.0447 (17)0.0305 (14)0.0065 (12)0.0172 (12)0.0082 (12)
C20.0424 (17)0.0394 (16)0.0411 (17)0.0187 (13)0.0276 (15)0.0129 (13)
C30.0385 (15)0.0342 (15)0.0430 (17)0.0098 (12)0.0306 (14)0.0032 (12)
C40.050 (2)0.067 (3)0.0319 (17)0.0135 (19)0.0168 (17)0.0112 (16)
C50.073 (3)0.0414 (19)0.055 (2)0.0217 (18)0.044 (2)0.0049 (16)
C60.0350 (17)0.085 (3)0.065 (2)0.0114 (18)0.0373 (19)0.001 (2)
C70.051 (2)0.138 (5)0.096 (4)0.005 (3)0.059 (3)0.010 (3)
C80.061 (2)0.0451 (18)0.053 (2)0.0026 (15)0.0460 (19)0.0075 (15)
C100.0412 (16)0.0536 (19)0.0353 (15)0.0021 (14)0.0310 (14)0.0027 (13)
C110.0457 (18)0.065 (2)0.053 (2)0.0088 (16)0.0408 (18)0.0069 (17)
C120.0495 (19)0.058 (2)0.0404 (17)0.0157 (16)0.0354 (16)0.0031 (15)
C130.063 (2)0.058 (2)0.069 (3)0.0047 (18)0.054 (2)0.0039 (19)
C140.072 (3)0.077 (3)0.068 (3)0.037 (2)0.056 (2)0.017 (2)
C150.069 (3)0.043 (2)0.061 (2)0.0029 (18)0.038 (2)0.0100 (18)
C160.124 (5)0.041 (2)0.084 (4)0.015 (3)0.057 (4)0.007 (2)
O10.0278 (9)0.0305 (9)0.0309 (10)0.0011 (7)0.0216 (8)0.0001 (8)
O20.0233 (9)0.0367 (11)0.0271 (9)0.0011 (8)0.0134 (8)0.0016 (8)
O30.0328 (10)0.0305 (10)0.0325 (10)0.0072 (8)0.0235 (9)0.0019 (8)
O40.0279 (9)0.0416 (11)0.0370 (11)0.0051 (8)0.0241 (9)0.0019 (9)
O50.0244 (9)0.0302 (9)0.0264 (9)0.0001 (7)0.0167 (8)0.0008 (7)
O60.0343 (10)0.0286 (10)0.0345 (10)0.0007 (8)0.0254 (9)0.0033 (8)
O70.0365 (10)0.0408 (11)0.0386 (11)0.0071 (9)0.0298 (10)0.0068 (9)
O80.0483 (13)0.0421 (12)0.0479 (13)0.0052 (10)0.0378 (12)0.0059 (10)
O90.0347 (10)0.0269 (10)0.0412 (11)0.0046 (8)0.0236 (10)0.0015 (8)
O100.0421 (12)0.0540 (14)0.0261 (10)0.0004 (10)0.0201 (10)0.0054 (9)
Nb10.01917 (11)0.02425 (12)0.02382 (12)0.00004 (8)0.01465 (10)0.00014 (8)
Nb20.02496 (12)0.03010 (13)0.02436 (12)0.00099 (9)0.01643 (11)0.00325 (9)
C17A0.111 (9)0.059 (8)0.047 (6)0.011 (7)0.056 (6)0.018 (6)
C18A0.149 (14)0.080 (9)0.066 (8)0.016 (8)0.088 (10)0.010 (6)
C17B0.209 (12)0.087 (8)0.041 (4)0.084 (8)0.060 (6)0.026 (5)
C18B0.122 (11)0.31 (2)0.062 (5)0.006 (11)0.048 (6)0.063 (9)
C9A0.113 (12)0.048 (6)0.084 (8)0.008 (6)0.085 (9)0.009 (5)
C9B0.107 (14)0.075 (13)0.098 (13)0.051 (10)0.091 (12)0.045 (9)
Geometric parameters (Å, º) top
C1—O21.266 (4)C15—C161.429 (6)
C1—C21.396 (5)C15—H15A0.97
C1—C41.509 (4)C15—H15B0.97
C2—C31.370 (4)C16—H16A0.96
C2—H20.93C16—H16B0.96
C3—O31.286 (3)C16—H16C0.96
C3—C51.501 (4)O1—Nb21.8173 (19)
C4—H4A0.96O1—Nb12.0196 (19)
C4—H4B0.96O2—Nb12.197 (2)
C4—H4C0.96O3—Nb12.089 (2)
C5—H5A0.96O4—Nb11.894 (2)
C5—H5B0.96O5—Nb11.8204 (19)
C5—H5C0.96O5—Nb2i2.0145 (19)
C6—O41.412 (4)O6—Nb11.8793 (19)
C6—C71.468 (6)O7—Nb22.090 (2)
C6—H6A0.97O8—Nb22.201 (2)
C6—H6B0.97O9—Nb21.880 (2)
C7—H7A0.96O10—C17A1.349 (12)
C7—H7B0.96O10—C17B1.377 (11)
C7—H7C0.96O10—Nb21.893 (2)
C8—O61.411 (4)Nb2—O5i2.0145 (19)
C8—C9A1.460 (15)C17A—C18A1.357 (15)
C8—C9B1.476 (16)C17A—H17A0.97
C8—H8A0.97C17A—H17B0.97
C8—H8B0.97C18A—H18A0.96
C10—O71.287 (4)C18A—H18B0.96
C10—C111.390 (5)C18A—H18C0.96
C10—C131.484 (5)C17B—C18B1.219 (12)
C11—C121.398 (5)C17B—H17C0.97
C11—H110.93C17B—H17D0.97
C12—O81.258 (4)C18B—H18D0.96
C12—C141.514 (5)C18B—H18E0.96
C13—H13A0.96C18B—H18F0.96
C13—H13B0.96C9A—H9A10.96
C13—H13C0.96C9A—H9A20.96
C14—H14A0.96C9A—H9A30.96
C14—H14B0.96C9B—H9B10.96
C14—H14C0.96C9B—H9B20.96
C15—O91.415 (4)C9B—H9B30.96
O2—C1—C2124.8 (3)C15—C16—H16B109.5
O2—C1—C4116.1 (3)H16A—C16—H16B109.5
C2—C1—C4119.1 (3)C15—C16—H16C109.5
C3—C2—C1124.3 (3)H16A—C16—H16C109.5
C3—C2—H2117.9H16B—C16—H16C109.5
C1—C2—H2117.9Nb2—O1—Nb1170.20 (11)
O3—C3—C2124.9 (3)C1—O2—Nb1129.84 (19)
O3—C3—C5114.9 (3)C3—O3—Nb1132.58 (19)
C2—C3—C5120.3 (3)C6—O4—Nb1144.2 (2)
C1—C4—H4A109.5Nb1—O5—Nb2i177.29 (11)
C1—C4—H4B109.5C8—O6—Nb1142.3 (2)
H4A—C4—H4B109.5C10—O7—Nb2133.4 (2)
C1—C4—H4C109.5C12—O8—Nb2129.8 (2)
H4A—C4—H4C109.5C15—O9—Nb2139.6 (2)
H4B—C4—H4C109.5C17A—O10—Nb2153.1 (7)
C3—C5—H5A109.5C17B—O10—Nb2140.8 (5)
C3—C5—H5B109.5O5—Nb1—O6101.06 (9)
H5A—C5—H5B109.5O5—Nb1—O499.35 (9)
C3—C5—H5C109.5O6—Nb1—O496.49 (9)
H5A—C5—H5C109.5O5—Nb1—O197.11 (8)
H5B—C5—H5C109.5O6—Nb1—O187.74 (8)
O4—C6—C7112.7 (3)O4—Nb1—O1161.86 (8)
O4—C6—H6A109.1O5—Nb1—O392.12 (8)
C7—C6—H6A109.1O6—Nb1—O3163.72 (8)
O4—C6—H6B109.1O4—Nb1—O390.68 (9)
C7—C6—H6B109.1O1—Nb1—O381.13 (8)
H6A—C6—H6B107.8O5—Nb1—O2171.80 (8)
C6—C7—H7A109.5O6—Nb1—O286.33 (8)
C6—C7—H7B109.5O4—Nb1—O283.19 (9)
H7A—C7—H7B109.5O1—Nb1—O279.48 (8)
C6—C7—H7C109.5O3—Nb1—O280.01 (8)
H7A—C7—H7C109.5O1—Nb2—O9102.78 (9)
H7B—C7—H7C109.5O1—Nb2—O1098.99 (10)
O6—C8—C9A111.3 (7)O9—Nb2—O1097.89 (10)
O6—C8—C9B109.2 (9)O1—Nb2—O5i93.52 (8)
O6—C8—H8A109.4O9—Nb2—O5i90.28 (8)
C9A—C8—H8A109.4O10—Nb2—O5i163.13 (9)
C9B—C8—H8A85.6O1—Nb2—O793.03 (8)
O6—C8—H8B109.4O9—Nb2—O7162.89 (9)
C9A—C8—H8B109.4O10—Nb2—O785.90 (10)
C9B—C8—H8B131.4O5i—Nb2—O782.15 (8)
H8A—C8—H8B108O1—Nb2—O8169.64 (8)
O7—C10—C11123.6 (3)O9—Nb2—O884.44 (9)
O7—C10—C13115.1 (3)O10—Nb2—O887.20 (10)
C11—C10—C13121.4 (3)O5i—Nb2—O878.88 (8)
C10—C11—C12124.2 (3)O7—Nb2—O879.06 (9)
C10—C11—H11117.9O10—C17A—C18A126.0 (13)
C12—C11—H11117.9O10—C17A—H17A105.8
O8—C12—C11124.2 (3)C18A—C17A—H17A105.8
O8—C12—C14115.9 (4)O10—C17A—H17B105.8
C11—C12—C14119.8 (3)C18A—C17A—H17B105.8
C10—C13—H13A109.5H17A—C17A—H17B106.2
C10—C13—H13B109.5C18B—C17B—O10133.5 (13)
H13A—C13—H13B109.5C18B—C17B—H17C103.8
C10—C13—H13C109.5O10—C17B—H17C103.8
H13A—C13—H13C109.5C18B—C17B—H17D103.8
H13B—C13—H13C109.5O10—C17B—H17D103.8
C12—C14—H14A109.5H17C—C17B—H17D105.4
C12—C14—H14B109.5C17B—C18B—H18D109.5
H14A—C14—H14B109.5C17B—C18B—H18E109.5
C12—C14—H14C109.5H18D—C18B—H18E109.5
H14A—C14—H14C109.5C17B—C18B—H18F109.5
H14B—C14—H14C109.5H18D—C18B—H18F109.5
O9—C15—C16113.7 (4)H18E—C18B—H18F109.5
O9—C15—H15A108.8C8—C9A—H9A1109.5
C16—C15—H15A108.8C8—C9A—H9A2109.5
O9—C15—H15B108.8C8—C9A—H9A3109.5
C16—C15—H15B108.8C8—C9B—H9B1109.5
H15A—C15—H15B107.7C8—C9B—H9B2109.5
C15—C16—H16A109.5C8—C9B—H9B3109.5
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Nb4(C2H5O)8(C5H7O2)4O4]
Mr1192.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)13.907 (5), 12.662 (5), 21.354 (5)
β (°) 136.982 (13)
V3)2565.4 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.48 × 0.32 × 0.27
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.701, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
42149, 6191, 5355
Rint0.032
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.06
No. of reflections6191
No. of parameters310
No. of restraints85
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.43, 1.32

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, the New Metals Development Network (NMDN), the South African Nuclear Energy Corporation Limited (Necsa) and the University of the Free State is gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. pp. 5572–5578.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Diebold, W. J. & Roth, W. J. (1985). Inorg. Chem. 24, 3509–3516.  CSD CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Diebold, W. J. & Roth, W. J. (1987). Inorg. Chem. 26, 3323–3328.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHerbst, L., Koen, R., Roodt, A. & Visser, H. G. (2010). Acta Cryst. E66, m801–m802.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOoi, B. & Sotofte, I. (2004). Inorg. Chim. Acta, 357, 3780–3785.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network.  Google Scholar
First citationRoodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241–280.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteunou, N., Bonhomme, C., Sanchez, C., Vaisserman, J. & Hubert-Pfalzgraf, L. G. (1998). Inorg. Chem. 37, 901–906.  Web of Science CSD CrossRef CAS Google Scholar
First citationSteyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.  CSD CrossRef CAS Web of Science Google Scholar
First citationSteyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536–537, 197–205.  CSD CrossRef Web of Science Google Scholar
First citationSteyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838–m839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603–m604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514–m1515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367–m1368.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds