organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-([1,1′-Biphen­yl]-4-yl)-2-(1,3,3-tri­methylindolin-2-yl­­idene)ethanone

aFacultad de Ciencias Químicas, Universidad de Colima, km 9 Carr. Colima-Coquimatlán s/n, Coquimatlán, Colima 28400, Mexico, bInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D.F. 04510, Mexico, and cInstituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D.F. 04510, Mexico
*Correspondence e-mail: oscar_vazquez@ucol.mx

(Received 3 August 2011; accepted 27 October 2011; online 9 November 2011)

The title compound, C25H23NO, consists of a biphenyl-4-carbonyl unit attached to an exocyclic double bond group at position 2 of an indole unit, which presents methyl groups as substituents at positions 1 and 3. The mol­ecular conformation is s-cis with an E configuration, supported by weak intra­molecular C—H⋯O contacts involving the methyl groups and the carbonyl function. The rings of the biphenyl group are twisted by 37.13 (5)°. In the crystal, C—H⋯O and C—H⋯π inter­actions link the molecules.

Related literature

For background to the Fisher base (2,3-dihydro-1H-1,3,3-trimethyl-2-methyl­ene­indole), see: Minkin (2004[Minkin, V. I. (2004). Chem. Rev. 104, 2751-2776.]); Przhiyalgovskaya et al. (1987[Przhiyalgovskaya, N. M., Kon'kov, L. I., Tarshits, D. L., Salmina, S. V., Segizova, N. T. & Suvorov, N. N. (1987). Chem. Heterocycl. Compd, 23, 751-754.]). For applications of derivatives of the Fisher base in materials and organic synthesis, see: Corns et al. (2009[Corns, S. N., Partington, S. M. & Towns, A. D. (2009). Color Technol. 125, 249-261.]); Shimkin et al. (2006[Shimkin, A. A., Shirinian, V. Z., Nikalin, D. M., Krayushkin, M. M., Pivina, T. S., Troitsky, N. A., Vorontsova, L. G. & Starikova, Z. A. (2006). Eur. J. Org. Chem. pp. 2087-2092.]); Song et al. (2005[Song, H., Chen, K. & Tian, H. (2005). Dyes Pigments, 67, 1-7.]); Tarshits et al. (2005[Tarshits, D. L., Tarasov, S. Y. & Buyanov, V. N. (2005). Russ. Chem. Bull. 54, 2586-2589.]); Cui & Kim (2004[Cui, J. & Kim, S.-H. (2004). Chin. Sci. Bull. 49, 797-802.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23NO

  • Mr = 353.44

  • Monoclinic, P 21 /c

  • a = 12.3274 (13) Å

  • b = 15.7586 (16) Å

  • c = 10.3848 (11) Å

  • β = 104.719 (2)°

  • V = 1951.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.36 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 15883 measured reflections

  • 3584 independent reflections

  • 2585 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 0.97

  • 3584 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C21–C26, C12–C17 and C4–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯O1 0.96 2.36 3.112 (2) 135
C20—H20B⋯O1 0.96 2.31 3.078 (2) 137
C24—H24⋯O1i 0.93 2.54 3.465 (2) 171
C7—H7⋯Cg1ii 0.93 2.74 3.5436 (16) 145
C20—H20CCg2iii 0.96 2.81 3.7562 (17) 167
C26—H26⋯Cg3iii 0.93 2.89 3.7700 (17) 158
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z-1; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compound 2,3-dihydro-1H-1,3,3-trimethyl-2-methyleneindole, well known as the Fischer base, has been widely used in organic synthesis as precursor of different types of chemical switches (Minkin, 2004; Przhiyalgovskaya et al., 1987). Products with different skills to work as switches have been used in optoelectronics (Shimkin et al., 2006), as organic electroluminescent materials (Cui & Kim, 2004) and dyes (Song et al., 2005). Moreover, the enaminoketone derivatives of the Fischer base, like the title compound, are important intermediates for the synthesis of spiropyrans and spirooxazines (Corns et al., 2009), as well as for the preparation of acetylenic products via enaminoketone fragmentation (Tarshits et al., 2005).

The structure of the title compound [alternative name: (E)-2,3-dihydro-2-(biphenylacylidene)-1,3,3-trimethyl-1H-indol], C25H23NO, has monoclinic (P21/c) symmetry. The crystal structure exhibits C—H···O intramolecular contacts in a bifurcated fashion with C19 and C20 as the donor atoms and the O atom of carbonyl group O1 as the acceptor (Table 1, Fig. 1). Moreover, despite the molecule presents high conjugation degree, the molecule is not planar; the benzene group (C12···C17) is rotated with respect to indole group (N1···C9) with the dihedral angle of 33.19 (5)°, while the biphenyl rings presents rotation showed by the dihedral angle of 37.13 (5)°.

The intermolecular assembly presents an antiparallel arrangement in a head-to-tail stacking mode especially favored by edge-to-face weak C—H···π interaction between 2.739 to 2.891 Å (see Table 2). Moreover, the weak C—H···O interaction formed by C24–H24C···O1 propagates in the ac plane (Fig. 2).

Related literature top

For backgroung to the Fisher base (2,3-dihydro-1H-1,3,3-trimethyl-2-methyleneindole), see: Minkin (2004); Przhiyalgovskaya et al. (1987). For applications of derivatives of the Fisher base in materials and organic synthesis, see: Corns et al. (2009); Shimkin et al. (2006); Song et al. (2005); Tarshits et al. (2005); Cui & Kim (2004).

Experimental top

A mixture of 4-biphenylcarboxylic acid (9.59 g, 48.38 mmol) and thionyl chloride (1.5 eq., 8.63 g, 72.57 mmol) in 24 ml of dry benzene was refluxed for 1.5 h, afterward the solvent and the excess of thionyl chloride was evaporated under vacuum. For complete removal of the thionyl chloride, 24 ml of petroleum ether was added to the residue and then eliminated under vacuum. The 4-biphenyl-carbonyl chloride thus obtained was dissolved in 60 ml of dry benzene, then added to a mixture of the Fischer base 1,3,3-trimethyl-2-methyleneindoline (1 eq., 8.38 g, 48.38 mmol) and triethylamine (1.2 eq., 5.81 g, 58.04 mmol) in 60 ml of dry benzene. The reaction mixture was maintained at 40 °C for 2 h, after that it was allowed to stand overnight at room temperature. The final reaction mixture was first washed with water and the organic phase was separated and removed under vacuum. The resulting solid was washed successively with isopropyl alcohol. The crude product was purified using a column chromatography with chloroform as a mobile phase. Suitable crystals for X-ray diffraction were obtained from toluene by slow evaporation.

Refinement top

The positional parameters of H atoms were calculated geometrically (C—H = 0.93 Å for aromatic CH and 0.96 Å for methyl CH3). The displacement parameters for H atoms were fixed as Uiso(H) = 1.2Ueq(carrier atom) or Uiso(H) = 1.5Ueq(carrier atom).

Structure description top

The compound 2,3-dihydro-1H-1,3,3-trimethyl-2-methyleneindole, well known as the Fischer base, has been widely used in organic synthesis as precursor of different types of chemical switches (Minkin, 2004; Przhiyalgovskaya et al., 1987). Products with different skills to work as switches have been used in optoelectronics (Shimkin et al., 2006), as organic electroluminescent materials (Cui & Kim, 2004) and dyes (Song et al., 2005). Moreover, the enaminoketone derivatives of the Fischer base, like the title compound, are important intermediates for the synthesis of spiropyrans and spirooxazines (Corns et al., 2009), as well as for the preparation of acetylenic products via enaminoketone fragmentation (Tarshits et al., 2005).

The structure of the title compound [alternative name: (E)-2,3-dihydro-2-(biphenylacylidene)-1,3,3-trimethyl-1H-indol], C25H23NO, has monoclinic (P21/c) symmetry. The crystal structure exhibits C—H···O intramolecular contacts in a bifurcated fashion with C19 and C20 as the donor atoms and the O atom of carbonyl group O1 as the acceptor (Table 1, Fig. 1). Moreover, despite the molecule presents high conjugation degree, the molecule is not planar; the benzene group (C12···C17) is rotated with respect to indole group (N1···C9) with the dihedral angle of 33.19 (5)°, while the biphenyl rings presents rotation showed by the dihedral angle of 37.13 (5)°.

The intermolecular assembly presents an antiparallel arrangement in a head-to-tail stacking mode especially favored by edge-to-face weak C—H···π interaction between 2.739 to 2.891 Å (see Table 2). Moreover, the weak C—H···O interaction formed by C24–H24C···O1 propagates in the ac plane (Fig. 2).

For backgroung to the Fisher base (2,3-dihydro-1H-1,3,3-trimethyl-2-methyleneindole), see: Minkin (2004); Przhiyalgovskaya et al. (1987). For applications of derivatives of the Fisher base in materials and organic synthesis, see: Corns et al. (2009); Shimkin et al. (2006); Song et al. (2005); Tarshits et al. (2005); Cui & Kim (2004).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids for non-H atom are drawn at the 30% of probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis, showing the molecules intermolecularly connected by weak O—H···O interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
(E)-1-([1,1'-Biphenyl]-4-yl)-2-(1,3,3-trimethylindolin-2-ylidene)ethanone top
Crystal data top
C25H23NOF(000) = 752
Mr = 353.44Dx = 1.203 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7167 reflections
a = 12.3274 (13) Åθ = 2.1–25.3°
b = 15.7586 (16) ŵ = 0.07 mm1
c = 10.3848 (11) ÅT = 298 K
β = 104.719 (2)°Prism, yellow
V = 1951.2 (4) Å30.36 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2585 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
Detector resolution: 0.83 pixels mm-1h = 1414
ω scansk = 1819
15883 measured reflectionsl = 1212
3584 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
3584 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
0 constraints
Crystal data top
C25H23NOV = 1951.2 (4) Å3
Mr = 353.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3274 (13) ŵ = 0.07 mm1
b = 15.7586 (16) ÅT = 298 K
c = 10.3848 (11) Å0.36 × 0.28 × 0.26 mm
β = 104.719 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2585 reflections with I > 2σ(I)
15883 measured reflectionsRint = 0.033
3584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.97Δρmax = 0.18 e Å3
3584 reflectionsΔρmin = 0.18 e Å3
247 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11145 (9)0.15214 (6)0.45956 (10)0.0720 (3)
N10.10316 (9)0.01690 (6)0.12145 (10)0.0495 (3)
C20.04032 (10)0.06729 (8)0.22033 (12)0.0443 (3)
C30.09068 (10)0.15640 (7)0.20258 (12)0.0429 (3)
C40.26386 (11)0.20310 (9)0.01194 (13)0.0520 (3)
H40.26200.25910.04050.062*
C50.34517 (11)0.17673 (10)0.09918 (14)0.0577 (4)
H50.39780.21530.14580.069*
C60.34813 (11)0.09381 (10)0.14058 (14)0.0579 (4)
H60.40320.07700.21530.069*
C70.27119 (12)0.03476 (9)0.07375 (13)0.0555 (4)
H70.27360.02140.10170.067*
C80.19038 (10)0.06262 (8)0.03644 (12)0.0447 (3)
C90.18599 (10)0.14580 (8)0.07967 (12)0.0424 (3)
C100.04982 (11)0.03623 (8)0.31302 (13)0.0527 (4)
H100.06590.02070.30340.063*
C110.12365 (11)0.07890 (9)0.42363 (13)0.0523 (4)
C120.22233 (11)0.02928 (8)0.50225 (13)0.0472 (3)
C130.26762 (11)0.04889 (9)0.63521 (13)0.0530 (4)
H130.23600.09240.67410.064*
C140.35843 (11)0.00524 (9)0.71096 (13)0.0528 (4)
H140.38540.01850.80070.063*
C150.41041 (10)0.05831 (8)0.65561 (12)0.0447 (3)
C160.36776 (10)0.07546 (8)0.52088 (13)0.0490 (3)
H160.40280.11600.48020.059*
C170.27469 (11)0.03366 (8)0.44639 (13)0.0504 (3)
H170.24650.04780.35720.060*
C180.08214 (14)0.07245 (9)0.10425 (17)0.0717 (5)
H18A0.00690.07970.09600.107*
H18B0.13410.09310.02530.107*
H18C0.09160.10360.18010.107*
C190.00644 (11)0.22263 (9)0.17900 (15)0.0586 (4)
H19A0.02310.20480.10630.088*
H19B0.05370.22820.25800.088*
H19C0.04350.27630.15790.088*
C200.13763 (13)0.18132 (10)0.32054 (13)0.0621 (4)
H20A0.17360.23570.30360.093*
H20B0.07750.18430.40000.093*
H20C0.19120.13960.33190.093*
C210.50510 (10)0.10866 (8)0.73665 (13)0.0483 (3)
C220.59153 (11)0.13759 (9)0.68482 (15)0.0555 (4)
H220.59250.12340.59820.067*
C230.67627 (12)0.18739 (9)0.76088 (17)0.0687 (5)
H230.73390.20610.72510.082*
C240.67611 (15)0.20941 (10)0.88879 (19)0.0773 (5)
H240.73260.24370.93910.093*
C250.59186 (15)0.18033 (11)0.94158 (17)0.0782 (5)
H250.59190.19441.02860.094*
C260.50713 (12)0.13039 (10)0.86699 (15)0.0640 (4)
H260.45070.11100.90430.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0676 (7)0.0569 (7)0.0752 (7)0.0108 (5)0.0118 (6)0.0149 (5)
N10.0500 (6)0.0393 (6)0.0520 (6)0.0035 (5)0.0001 (5)0.0079 (5)
C20.0436 (7)0.0426 (7)0.0450 (7)0.0015 (6)0.0081 (6)0.0031 (6)
C30.0419 (7)0.0388 (7)0.0466 (7)0.0005 (5)0.0089 (6)0.0039 (6)
C40.0483 (8)0.0471 (8)0.0605 (9)0.0028 (6)0.0138 (7)0.0052 (6)
C50.0444 (8)0.0685 (10)0.0574 (9)0.0055 (7)0.0075 (7)0.0158 (8)
C60.0464 (8)0.0744 (11)0.0476 (8)0.0038 (7)0.0024 (6)0.0030 (7)
C70.0546 (8)0.0565 (8)0.0512 (8)0.0033 (7)0.0058 (7)0.0082 (7)
C80.0421 (7)0.0478 (8)0.0433 (7)0.0000 (6)0.0092 (6)0.0010 (6)
C90.0403 (7)0.0438 (7)0.0436 (7)0.0009 (5)0.0116 (6)0.0013 (6)
C100.0513 (8)0.0421 (7)0.0575 (9)0.0042 (6)0.0004 (7)0.0033 (6)
C110.0502 (8)0.0483 (8)0.0536 (8)0.0014 (6)0.0044 (7)0.0017 (7)
C120.0445 (7)0.0486 (8)0.0454 (7)0.0028 (6)0.0058 (6)0.0012 (6)
C130.0490 (8)0.0539 (8)0.0535 (8)0.0030 (6)0.0080 (7)0.0059 (6)
C140.0498 (8)0.0616 (9)0.0428 (7)0.0012 (7)0.0040 (6)0.0036 (7)
C150.0385 (7)0.0461 (7)0.0476 (7)0.0050 (6)0.0074 (6)0.0036 (6)
C160.0455 (7)0.0496 (8)0.0512 (8)0.0011 (6)0.0111 (6)0.0014 (6)
C170.0503 (8)0.0555 (8)0.0419 (7)0.0009 (6)0.0052 (6)0.0018 (6)
C180.0715 (10)0.0470 (9)0.0850 (11)0.0077 (7)0.0012 (9)0.0164 (8)
C190.0524 (8)0.0474 (8)0.0721 (10)0.0047 (6)0.0088 (7)0.0017 (7)
C200.0611 (9)0.0707 (10)0.0547 (9)0.0088 (8)0.0151 (7)0.0113 (7)
C210.0423 (7)0.0448 (7)0.0542 (8)0.0062 (6)0.0059 (6)0.0023 (6)
C220.0464 (8)0.0543 (8)0.0618 (9)0.0025 (6)0.0061 (7)0.0063 (7)
C230.0493 (9)0.0616 (10)0.0860 (12)0.0067 (7)0.0001 (8)0.0153 (9)
C240.0683 (11)0.0556 (10)0.0896 (13)0.0104 (8)0.0137 (10)0.0073 (9)
C250.0781 (12)0.0776 (11)0.0711 (11)0.0085 (10)0.0042 (9)0.0251 (9)
C260.0575 (9)0.0707 (10)0.0617 (10)0.0040 (7)0.0114 (8)0.0175 (8)
Geometric parameters (Å, º) top
O1—C111.2340 (16)C14—H140.9300
N1—C21.3714 (15)C15—C161.3904 (18)
N1—C81.4043 (15)C15—C211.4836 (17)
N1—C181.4509 (17)C16—C171.3775 (17)
C2—C101.3628 (17)C16—H160.9300
C2—C31.5276 (17)C17—H170.9300
C3—C91.5085 (17)C18—H18A0.9600
C3—C201.5329 (18)C18—H18B0.9600
C3—C191.5352 (18)C18—H18C0.9600
C4—C91.3742 (17)C19—H19A0.9600
C4—C51.3861 (19)C19—H19B0.9600
C4—H40.9300C19—H19C0.9600
C5—C61.373 (2)C20—H20A0.9600
C5—H50.9300C20—H20B0.9600
C6—C71.3830 (19)C20—H20C0.9600
C6—H60.9300C21—C221.3871 (19)
C7—C81.3840 (17)C21—C261.3902 (19)
C7—H70.9300C22—C231.3826 (19)
C8—C91.3821 (18)C22—H220.9300
C10—C111.4383 (17)C23—C241.373 (2)
C10—H100.9300C23—H230.9300
C11—C121.5010 (18)C24—C251.371 (2)
C12—C131.3864 (17)C24—H240.9300
C12—C171.3883 (18)C25—C261.378 (2)
C13—C141.3775 (18)C25—H250.9300
C13—H130.9300C26—H260.9300
C14—C151.3897 (19)
C2—N1—C8111.73 (10)C14—C15—C16117.39 (12)
C2—N1—C18124.71 (11)C14—C15—C21121.99 (12)
C8—N1—C18123.55 (11)C16—C15—C21120.58 (12)
C10—C2—N1121.67 (12)C17—C16—C15121.35 (13)
C10—C2—C3130.46 (11)C17—C16—H16119.3
N1—C2—C3107.87 (10)C15—C16—H16119.3
C9—C3—C2101.86 (9)C16—C17—C12121.08 (12)
C9—C3—C20109.48 (10)C16—C17—H17119.5
C2—C3—C20111.31 (11)C12—C17—H17119.5
C9—C3—C19110.69 (11)N1—C18—H18A109.5
C2—C3—C19111.94 (11)N1—C18—H18B109.5
C20—C3—C19111.18 (11)H18A—C18—H18B109.5
C9—C4—C5119.50 (13)N1—C18—H18C109.5
C9—C4—H4120.2H18A—C18—H18C109.5
C5—C4—H4120.2H18B—C18—H18C109.5
C6—C5—C4120.13 (13)C3—C19—H19A109.5
C6—C5—H5119.9C3—C19—H19B109.5
C4—C5—H5119.9H19A—C19—H19B109.5
C5—C6—C7121.52 (13)C3—C19—H19C109.5
C5—C6—H6119.2H19A—C19—H19C109.5
C7—C6—H6119.2H19B—C19—H19C109.5
C6—C7—C8117.34 (13)C3—C20—H20A109.5
C6—C7—H7121.3C3—C20—H20B109.5
C8—C7—H7121.3H20A—C20—H20B109.5
C9—C8—C7122.01 (12)C3—C20—H20C109.5
C9—C8—N1108.77 (10)H20A—C20—H20C109.5
C7—C8—N1129.22 (12)H20B—C20—H20C109.5
C4—C9—C8119.49 (12)C22—C21—C26118.11 (13)
C4—C9—C3130.76 (12)C22—C21—C15121.79 (12)
C8—C9—C3109.74 (10)C26—C21—C15120.07 (13)
C2—C10—C11129.28 (13)C23—C22—C21120.55 (14)
C2—C10—H10115.4C23—C22—H22119.7
C11—C10—H10115.4C21—C22—H22119.7
O1—C11—C10125.30 (12)C24—C23—C22120.63 (16)
O1—C11—C12117.83 (12)C24—C23—H23119.7
C10—C11—C12116.86 (12)C22—C23—H23119.7
C13—C12—C17117.59 (12)C25—C24—C23119.32 (15)
C13—C12—C11119.42 (12)C25—C24—H24120.3
C17—C12—C11122.92 (12)C23—C24—H24120.3
C14—C13—C12121.37 (13)C24—C25—C26120.61 (16)
C14—C13—H13119.3C24—C25—H25119.7
C12—C13—H13119.3C26—C25—H25119.7
C13—C14—C15121.13 (12)C25—C26—C21120.77 (15)
C13—C14—H14119.4C25—C26—H26119.6
C15—C14—H14119.4C21—C26—H26119.6
C8—N1—C2—C10179.03 (12)N1—C2—C10—C11179.06 (13)
C18—N1—C2—C100.1 (2)C3—C2—C10—C111.0 (2)
C8—N1—C2—C30.94 (14)C2—C10—C11—O16.0 (2)
C18—N1—C2—C3179.94 (13)C2—C10—C11—C12174.96 (14)
C10—C2—C3—C9178.67 (14)O1—C11—C12—C1326.4 (2)
N1—C2—C3—C91.30 (13)C10—C11—C12—C13152.73 (13)
C10—C2—C3—C2064.73 (18)O1—C11—C12—C17150.53 (14)
N1—C2—C3—C20115.30 (12)C10—C11—C12—C1730.35 (19)
C10—C2—C3—C1960.39 (18)C17—C12—C13—C142.6 (2)
N1—C2—C3—C19119.58 (12)C11—C12—C13—C14179.74 (12)
C9—C4—C5—C60.4 (2)C12—C13—C14—C152.2 (2)
C4—C5—C6—C70.0 (2)C13—C14—C15—C160.5 (2)
C5—C6—C7—C80.3 (2)C13—C14—C15—C21177.26 (12)
C6—C7—C8—C90.35 (19)C14—C15—C16—C172.71 (19)
C6—C7—C8—N1179.92 (13)C21—C15—C16—C17175.13 (12)
C2—N1—C8—C90.12 (15)C15—C16—C17—C122.2 (2)
C18—N1—C8—C9179.25 (13)C13—C12—C17—C160.5 (2)
C2—N1—C8—C7179.88 (12)C11—C12—C17—C16177.46 (12)
C18—N1—C8—C71.0 (2)C14—C15—C21—C22146.14 (14)
C5—C4—C9—C80.41 (19)C16—C15—C21—C2236.12 (18)
C5—C4—C9—C3179.14 (12)C14—C15—C21—C2635.92 (18)
C7—C8—C9—C40.03 (19)C16—C15—C21—C26141.81 (14)
N1—C8—C9—C4179.75 (11)C26—C21—C22—C230.7 (2)
C7—C8—C9—C3179.01 (12)C15—C21—C22—C23177.27 (12)
N1—C8—C9—C30.77 (14)C21—C22—C23—C240.3 (2)
C2—C3—C9—C4179.92 (13)C22—C23—C24—C251.1 (2)
C20—C3—C9—C462.16 (18)C23—C24—C25—C260.9 (3)
C19—C3—C9—C460.75 (18)C24—C25—C26—C210.2 (2)
C2—C3—C9—C81.25 (13)C22—C21—C26—C250.9 (2)
C20—C3—C9—C8116.67 (12)C15—C21—C26—C25177.07 (14)
C19—C3—C9—C8120.42 (12)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C21–C26, C12–C17 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19B···O10.962.363.112 (2)135
C20—H20B···O10.962.313.078 (2)137
C24—H24···O1i0.932.543.465 (2)171
C7—H7···Cg1ii0.932.743.5436 (16)145
C20—H20C···Cg2iii0.962.813.7562 (17)167
C26—H26···Cg3iii0.932.893.7700 (17)158
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H23NO
Mr353.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.3274 (13), 15.7586 (16), 10.3848 (11)
β (°) 104.719 (2)
V3)1951.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.36 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15883, 3584, 2585
Rint0.033
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 0.97
No. of reflections3584
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2002), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C21–C26, C12–C17 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19B···O10.962.3603.112 (2)134.84
C20—H20B···O10.962.3093.078 (2)136.50
C24—H24···O1i0.932.5443.465 (2)170.6
C7—H7···Cg1ii0.932.743.5436 (16)145
C20—H20C···Cg2iii0.962.813.7562 (17)167
C26—H26···Cg3iii0.932.893.7700 (17)158
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z1; (iii) x, y, z+1.
 

Footnotes

Additional author for correspondence, e-mail: armandop@ucol.mx.

Acknowledgements

We are grateful for funding from CONACyT (project No. 52115-Y).

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCorns, S. N., Partington, S. M. & Towns, A. D. (2009). Color Technol. 125, 249–261.  CAS Google Scholar
First citationCui, J. & Kim, S.-H. (2004). Chin. Sci. Bull. 49, 797–802.  Web of Science CrossRef CAS Google Scholar
First citationMinkin, V. I. (2004). Chem. Rev. 104, 2751–2776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrzhiyalgovskaya, N. M., Kon'kov, L. I., Tarshits, D. L., Salmina, S. V., Segizova, N. T. & Suvorov, N. N. (1987). Chem. Heterocycl. Compd, 23, 751–754.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimkin, A. A., Shirinian, V. Z., Nikalin, D. M., Krayushkin, M. M., Pivina, T. S., Troitsky, N. A., Vorontsova, L. G. & Starikova, Z. A. (2006). Eur. J. Org. Chem. pp. 2087–2092.  Web of Science CSD CrossRef Google Scholar
First citationSong, H., Chen, K. & Tian, H. (2005). Dyes Pigments, 67, 1–7.  CrossRef CAS Google Scholar
First citationTarshits, D. L., Tarasov, S. Y. & Buyanov, V. N. (2005). Russ. Chem. Bull. 54, 2586–2589.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds