metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis{1-[4-(pyridin-4-yl)phen­yl]ethanone-κN}mercury(II)

aShandong Nonmetallic Material Institute, Jinan 250031, People's Republic of China
*Correspondence e-mail: speed369@163.com

(Received 7 October 2011; accepted 22 November 2011; online 30 November 2011)

In the title compound, [HgBr2(C13H11NO)2], the HgII atom adopts a four-coordinated HgN2Br2 geometry, formed by two pyridine N atoms from two ligands and two bromide anions. The complex is located on a twofold axis. The coordination geometry is close to forming a see-saw (SS-4) polyhedron, the symmetry-related organic ligands being almost perpendicular; the dihedral angles between the two pyridine rings and between the two benzene rings are 85.5 (4) and 87.7 (4)°, respectively. Within the organic ligand, the pyridine ring is nearly coplanar with the benzene ring [dihedral angle = 13.1 (8)°]. In the crystal, the mol­ecular complexes are connected through weak inter­molecular C—H⋯Br contacts.

Related literature

For applications of coordination complexes bearing asymmetric ligands, see: Allendorf et al. (2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330-1352.]); Evans & Lin (2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]); He et al. (2006[He, Z., Wang, Z.-M., Gao, S. & Yan, C.-H. (2006). Inorg. Chem. 45, 6694-6705.]); Hou et al. (2010[Hou, G.-G., Ma, J.-P., Wang, L., Wang, P., Dong, Y.-B. & Huang, R.-Q. (2010). CrystEngComm, 12, 4287-4303.]). For examples of ligands based on a pyridyl ring, see: Fujita et al. (2005[Fujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005). Acc. Chem. Res. 38, 369-378.]); Song et al. (2010[Song, Z.-G., Geng, C.-H., Ma, J.-P. & Dong, Y.-B. (2010). Inorg. Chem. Commun. 13, 809-813.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C13H11NO)2]

  • Mr = 754.87

  • Monoclinic, C 2/c

  • a = 16.656 (6) Å

  • b = 5.296 (2) Å

  • c = 29.442 (11) Å

  • β = 102.453 (6)°

  • V = 2535.8 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.25 mm−1

  • T = 298 K

  • 0.15 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.338, Tmax = 0.338

  • 6208 measured reflections

  • 2358 independent reflections

  • 1339 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 0.99

  • 2358 reflections

  • 151 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Br1i 0.93 3.01 3.579 (13) 121
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Research on supramolecular compounds from asymmetric organic ligands has become popular because of their potential applications in areas such as magnetic (He et al., 2006), luminescent property (Allendorf et al., 2009; Hou et al., 2010) and nonlinear optical materials (Evans & Lin, 2002). Among available strategies, the geometry of organic ligands is one of the most important factors in determining the structure of the framework. Pyridyl derivatives have been widely used in supramolecular chemistry and many coordination polymers with versatile structures and potential properties have been reported (Fujita et al., 2005; Song et al., 2010). We report herein a molecular complex, HgL2Br2, generated from an asymmetric organic ligand, 1-(4-(pyridin-4-yl)phenyl)ethanone (L) and HgBr2.

In the title compound, each HgII center adopts a distorted HgN2Br2 tetrahedral coordination geometry, formed by two pyridine N atoms from two ligands and two bromide anions. The N1—Hg1—N1i and Br1—Hg1—Br1i angles are 100.3 (4)° and 147.81 (9)°, respectively [Symmetry code: (i) -x + 2, y, -z + 1.5]. Within the organic ligand, the pyridine ring is nearly coplanar with the benzene ring [dihedral angle: 13.1 (8)°]. In this compound, two ligands L are bridged by one HgII center to form a molecular complex with a see-saw SS-4 polyhedron geometry (Fig. 1). The dihedral angles between two pyridyl planes and between two benzene planes are 85.5 (4) and 87.7 (4)°, respectively, close to 90°. So, a feature characteristic of the complex structure is the almost orthogonal arrangement for the two symmetry-related organic ligands.

In the solid state, these molecular complexes associate into a network through weak intermolecular C—H···Br hydrogen bonds, characterized by H···Br, C···Br separations and C—H···Br angle of 3.011 (2), 3.579 (13)Å and 121.0 (7)°, respectively.

Related literature top

For applications of coordination complexes bearing asymmetric ligands, see: Allendorf et al. (2009); Evans & Lin (2002); He et al. (2006); Hou et al. (2010). For examples of ligands based on a pyridyl ring, see: Fujita et al. (2005); Song et al. (2010).

Experimental top

A solution of HgBr2 (4.7 mg, 0.013 mmol) in CH3OH (2 ml) was layered onto a solution of L (5.0 mg, 0.025 mmol) in CH2Cl2 (2 ml). The system was left for about three weeks at room temperature, and colourless crystals were obtained. Yield, 54%.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. All H atoms were placed in idealized positions and treated as riding to their parent atoms, with C—H = 0.93 (aromatic CH) or 0.96 Å (methyl CH3), and Uiso(H) = 1.2 Ueq(carrier C atom), with exception of the methyl H atoms, for which Uiso(H) = 1.5 Ueq(C13). Restraints for anisotropic displacements parameters of C2, C4, C7, C12 and C13 were applied.

Structure description top

Research on supramolecular compounds from asymmetric organic ligands has become popular because of their potential applications in areas such as magnetic (He et al., 2006), luminescent property (Allendorf et al., 2009; Hou et al., 2010) and nonlinear optical materials (Evans & Lin, 2002). Among available strategies, the geometry of organic ligands is one of the most important factors in determining the structure of the framework. Pyridyl derivatives have been widely used in supramolecular chemistry and many coordination polymers with versatile structures and potential properties have been reported (Fujita et al., 2005; Song et al., 2010). We report herein a molecular complex, HgL2Br2, generated from an asymmetric organic ligand, 1-(4-(pyridin-4-yl)phenyl)ethanone (L) and HgBr2.

In the title compound, each HgII center adopts a distorted HgN2Br2 tetrahedral coordination geometry, formed by two pyridine N atoms from two ligands and two bromide anions. The N1—Hg1—N1i and Br1—Hg1—Br1i angles are 100.3 (4)° and 147.81 (9)°, respectively [Symmetry code: (i) -x + 2, y, -z + 1.5]. Within the organic ligand, the pyridine ring is nearly coplanar with the benzene ring [dihedral angle: 13.1 (8)°]. In this compound, two ligands L are bridged by one HgII center to form a molecular complex with a see-saw SS-4 polyhedron geometry (Fig. 1). The dihedral angles between two pyridyl planes and between two benzene planes are 85.5 (4) and 87.7 (4)°, respectively, close to 90°. So, a feature characteristic of the complex structure is the almost orthogonal arrangement for the two symmetry-related organic ligands.

In the solid state, these molecular complexes associate into a network through weak intermolecular C—H···Br hydrogen bonds, characterized by H···Br, C···Br separations and C—H···Br angle of 3.011 (2), 3.579 (13)Å and 121.0 (7)°, respectively.

For applications of coordination complexes bearing asymmetric ligands, see: Allendorf et al. (2009); Evans & Lin (2002); He et al. (2006); Hou et al. (2010). For examples of ligands based on a pyridyl ring, see: Fujita et al. (2005); Song et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The HgII coordination environment of the title compound, with displacement ellipsoids at the 20% probability level. Unlabeled atoms are generated by symmetry operation -x + 2, y, -z + 1.5.
Dibromidobis{1-[4-(pyridin-4-yl)phenyl]ethanone-κN}mercury(II) top
Crystal data top
[HgBr2(C13H11NO)2]F(000) = 1432
Mr = 754.87Dx = 1.977 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1208 reflections
a = 16.656 (6) Åθ = 2.5–18.6°
b = 5.296 (2) ŵ = 9.25 mm1
c = 29.442 (11) ÅT = 298 K
β = 102.453 (6)°Block, colourless
V = 2535.8 (16) Å30.15 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2358 independent reflections
Radiation source: fine-focus sealed tube1339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1720
Tmin = 0.338, Tmax = 0.338k = 66
6208 measured reflectionsl = 3530
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
2358 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 1.03 e Å3
25 restraintsΔρmin = 0.41 e Å3
0 constraints
Crystal data top
[HgBr2(C13H11NO)2]V = 2535.8 (16) Å3
Mr = 754.87Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.656 (6) ŵ = 9.25 mm1
b = 5.296 (2) ÅT = 298 K
c = 29.442 (11) Å0.15 × 0.15 × 0.15 mm
β = 102.453 (6)°
Data collection top
Bruker SMART APEX
diffractometer
2358 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1339 reflections with I > 2σ(I)
Tmin = 0.338, Tmax = 0.338Rint = 0.047
6208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05225 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.99Δρmax = 1.03 e Å3
2358 reflectionsΔρmin = 0.41 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.09304 (9)1.3414 (3)0.69925 (5)0.1331 (5)
C10.9296 (7)0.848 (2)0.6587 (5)0.114 (4)
H10.97460.91480.64880.137*
C20.8806 (8)0.675 (2)0.6305 (5)0.115 (4)
H20.89330.63330.60210.138*
C30.8158 (5)0.5649 (18)0.6421 (3)0.069 (2)
C40.8052 (8)0.640 (3)0.6837 (5)0.118 (4)
H40.76340.56560.69550.142*
C50.8535 (8)0.823 (3)0.7101 (4)0.120 (4)
H50.83980.87590.73760.145*
C60.7626 (6)0.3795 (17)0.6137 (3)0.073 (2)
C70.7812 (8)0.257 (2)0.5769 (5)0.123 (4)
H70.83080.29370.56880.147*
C80.7310 (8)0.081 (3)0.5511 (5)0.130 (5)
H80.74700.00320.52620.156*
C90.6581 (6)0.0203 (17)0.5617 (3)0.079 (3)
C100.6395 (8)0.137 (2)0.5987 (5)0.112 (4)
H100.59070.09560.60750.134*
C110.6896 (8)0.313 (2)0.6235 (5)0.118 (4)
H110.67320.39100.64830.142*
C120.6030 (7)0.170 (2)0.5337 (4)0.103 (3)
C130.5286 (8)0.260 (2)0.5499 (5)0.122 (4)
H13A0.49700.37030.52690.183*
H13B0.49560.11820.55460.183*
H13C0.54550.35080.57860.183*
Hg11.00001.21208 (11)0.75000.0886 (3)
N10.9161 (5)0.9236 (15)0.6984 (3)0.080 (2)
O10.6156 (6)0.2498 (18)0.4976 (4)0.147 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1385 (11)0.1556 (13)0.1188 (11)0.0357 (9)0.0583 (8)0.0154 (9)
C10.106 (9)0.126 (10)0.128 (11)0.044 (7)0.062 (8)0.044 (8)
C20.120 (7)0.128 (7)0.113 (7)0.019 (6)0.059 (6)0.028 (6)
C30.070 (6)0.082 (6)0.058 (6)0.002 (5)0.021 (5)0.011 (5)
C40.112 (7)0.150 (8)0.102 (7)0.031 (6)0.042 (6)0.003 (6)
C50.108 (9)0.175 (12)0.085 (8)0.053 (9)0.035 (7)0.031 (8)
C60.079 (6)0.067 (6)0.071 (6)0.005 (5)0.012 (5)0.003 (5)
C70.100 (7)0.146 (8)0.130 (8)0.023 (6)0.040 (6)0.036 (7)
C80.100 (9)0.166 (12)0.133 (11)0.033 (9)0.044 (8)0.052 (10)
C90.086 (7)0.077 (6)0.070 (7)0.000 (5)0.008 (5)0.006 (5)
C100.109 (9)0.123 (9)0.115 (10)0.035 (8)0.049 (8)0.006 (8)
C110.119 (10)0.131 (10)0.113 (10)0.045 (8)0.042 (8)0.048 (8)
C120.116 (9)0.101 (8)0.087 (8)0.008 (7)0.008 (7)0.004 (7)
C130.130 (10)0.121 (9)0.111 (9)0.050 (8)0.019 (7)0.006 (7)
Hg10.0841 (4)0.1019 (5)0.0846 (5)0.0000.0283 (3)0.000
N10.071 (5)0.096 (6)0.074 (6)0.001 (4)0.016 (4)0.007 (5)
O10.153 (8)0.178 (9)0.110 (7)0.043 (6)0.031 (6)0.048 (6)
Geometric parameters (Å, º) top
Br1—Hg12.4701 (14)C8—C91.357 (14)
C1—N11.301 (13)C8—H80.9300
C1—C21.381 (16)C9—C101.346 (14)
C1—H10.9300C9—C121.487 (14)
C2—C31.335 (13)C10—C111.355 (16)
C2—H20.9300C10—H100.9300
C3—C41.336 (14)C11—H110.9300
C3—C61.459 (12)C12—O11.203 (14)
C4—C51.388 (16)C12—C131.498 (17)
C4—H40.9300C13—H13A0.9600
C5—N11.282 (13)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—C111.356 (14)Hg1—N12.383 (8)
C6—C71.356 (15)Hg1—N1i2.383 (8)
C7—C81.364 (16)Hg1—Br1i2.4701 (14)
C7—H70.9300
N1—C1—C2123.4 (10)C8—C9—C12120.8 (11)
N1—C1—H1118.3C9—C10—C11122.0 (11)
C2—C1—H1118.3C9—C10—H10119.0
C3—C2—C1122.8 (11)C11—C10—H10119.0
C3—C2—H2118.6C10—C11—C6122.7 (11)
C1—C2—H2118.6C10—C11—H11118.6
C2—C3—C4112.3 (10)C6—C11—H11118.6
C2—C3—C6124.9 (9)O1—C12—C9121.4 (12)
C4—C3—C6122.7 (9)O1—C12—C13118.9 (11)
C3—C4—C5123.2 (11)C9—C12—C13119.6 (11)
C3—C4—H4118.4C12—C13—H13A109.5
C5—C4—H4118.4C12—C13—H13B109.5
N1—C5—C4123.0 (11)H13A—C13—H13B109.5
N1—C5—H5118.5C12—C13—H13C109.5
C4—C5—H5118.5H13A—C13—H13C109.5
C11—C6—C7114.5 (10)H13B—C13—H13C109.5
C11—C6—C3121.0 (9)N1—Hg1—N1i100.3 (4)
C7—C6—C3124.4 (10)N1—Hg1—Br198.7 (2)
C6—C7—C8123.6 (12)N1i—Hg1—Br1101.8 (2)
C6—C7—H7118.2N1—Hg1—Br1i101.8 (2)
C8—C7—H7118.2N1i—Hg1—Br1i98.7 (2)
C9—C8—C7120.4 (12)Br1—Hg1—Br1i147.81 (9)
C9—C8—H8119.8C5—N1—C1115.1 (9)
C7—C8—H8119.8C5—N1—Hg1119.5 (7)
C10—C9—C8116.7 (10)C1—N1—Hg1125.3 (7)
C10—C9—C12122.5 (11)
N1—C1—C2—C32 (2)C9—C10—C11—C62 (2)
C1—C2—C3—C40.6 (19)C7—C6—C11—C100 (2)
C1—C2—C3—C6179.5 (12)C3—C6—C11—C10178.3 (12)
C2—C3—C4—C54 (2)C10—C9—C12—O1170.9 (13)
C6—C3—C4—C5177.4 (12)C8—C9—C12—O110.3 (18)
C3—C4—C5—N15 (2)C10—C9—C12—C137.3 (16)
C2—C3—C6—C11167.2 (12)C8—C9—C12—C13171.5 (12)
C4—C3—C6—C1114.0 (16)C4—C5—N1—C13 (2)
C2—C3—C6—C714.3 (16)C4—C5—N1—Hg1175.1 (11)
C4—C3—C6—C7164.5 (12)C2—C1—N1—C51 (2)
C11—C6—C7—C81 (2)C2—C1—N1—Hg1178.0 (10)
C3—C6—C7—C8179.1 (12)N1i—Hg1—N1—C581.6 (9)
C6—C7—C8—C90 (2)Br1—Hg1—N1—C5174.7 (9)
C7—C8—C9—C101 (2)Br1i—Hg1—N1—C519.6 (9)
C7—C8—C9—C12179.9 (12)N1i—Hg1—N1—C195.9 (10)
C8—C9—C10—C112 (2)Br1—Hg1—N1—C17.9 (10)
C12—C9—C10—C11179.1 (12)Br1i—Hg1—N1—C1162.9 (9)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Br1ii0.933.013.579 (13)121
Symmetry code: (ii) x1/2, y3/2, z.

Experimental details

Crystal data
Chemical formula[HgBr2(C13H11NO)2]
Mr754.87
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.656 (6), 5.296 (2), 29.442 (11)
β (°) 102.453 (6)
V3)2535.8 (16)
Z4
Radiation typeMo Kα
µ (mm1)9.25
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.338, 0.338
No. of measured, independent and
observed [I > 2σ(I)] reflections
6208, 2358, 1339
Rint0.047
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 0.99
No. of reflections2358
No. of parameters151
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.41

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Br1i0.933.013.579 (13)121
Symmetry code: (i) x1/2, y3/2, z.
 

References

First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005). Acc. Chem. Res. 38, 369–378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHe, Z., Wang, Z.-M., Gao, S. & Yan, C.-H. (2006). Inorg. Chem. 45, 6694–6705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHou, G.-G., Ma, J.-P., Wang, L., Wang, P., Dong, Y.-B. & Huang, R.-Q. (2010). CrystEngComm, 12, 4287–4303.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Z.-G., Geng, C.-H., Ma, J.-P. & Dong, Y.-B. (2010). Inorg. Chem. Commun. 13, 809–813.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds