metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1,10-phenanthroline-κ2N,N′)nickel(II) bis­­(2,4,5-tricarb­­oxy­benzo­ate) monohydrate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 11 November 2011; accepted 16 November 2011; online 23 November 2011)

In the title compound, [Ni(C12H8N2)3](C10H5O8)2·H2O, the NiII cation is coordinated by six N atoms of the three bidentate chelating 1,10-phenanthroline ligands in a slightly distorted octa­hedral coordination geometry. The Ni—N bond lengths range from 2.074 (2) to 2.094 (2) Å. The dihedral angles between the three chelating NCCN groups to each other are 85.71 (3), 73.75 (2) and 85.71 (3)°, respectively. The Ni cation, the phenyl ring of the 1,10-phenanthroline ligand and the lattice water molecule are located on special positions (site symmetry 2). In the crystal, the uncoordinated 2,4,5-tricarb­oxy­benzeno­ate anions join with each other through O—H⋯O hydrogen bonds, forming a two-dimensional hydrogen-bonded layer structure along the bc plane. The layers are further linked via additional O—H⋯O inter­actions between water and carboxyl groups, resulting in a three-dimensional supra­molecular network.

Related literature

For structures of complexes with six-coordinate nickel atoms and background references, see: Li et al. (2003[Li, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem. 42, 3119-3124.]); Fu et al. (2004[Fu, Y.-L., Ren, J.-L. & Ng, S. W. (2004). Acta Cryst. E60, m1716-m1718.]); Fabelo et al. (2008[Fabelo, O., Pason, J., Lloret, F., Julve, M. & Ruiz-Perez, C. (2008). Inorg. Chem. 47, 3568-3576.]); Zhong et al. (2009[Zhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.]); Ni et al. (2010[Ni, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746-m747.]). For background to phenanthroline complexes, see: Wang & Zhong (2011[Wang, S.-J. & Zhong, K.-L. (2011). Acta Cryst. E67, m446.]); Zhu et al. (2006[Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2688-m2689.]); Cui et al. (2010[Cui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.]); Zhong (2011a[Zhong, K.-L. (2011a). Acta Cryst. E67, m1609-m1610.],b[Zhong, K.-L. (2011b). Z. Kristallogr. New Cryst. Struct. 226, 286-288.],c[Zhong, K.-L. (2011c). Acta Cryst. E67, m1215-m1216.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N2)3](C10H5O8)2·H2O

  • Mr = 1123.62

  • Monoclinic, C 2/c

  • a = 24.2009 (11) Å

  • b = 14.1546 (5) Å

  • c = 15.8347 (7) Å

  • β = 116.271 (5)°

  • V = 4864.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 295 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2009[Oxford Diffraction (2009). ABSPACK and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.829, Tmax = 0.868

  • 12270 measured reflections

  • 4977 independent reflections

  • 3050 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.054

  • S = 1.02

  • 4977 reflections

  • 369 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 1.87 2.690 (2) 177
O1—H5⋯O6ii 0.82 1.81 2.624 (2) 173
O7—H7⋯O6 0.82 1.63 2.4450 (19) 178
O1W—H1WA⋯O2iii 0.80 (2) 2.10 (3) 2.866 (3) 158 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). ABSPACK and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,10-Phenanthroline (Phen) and 1,2,4,5-Benzenetetracarboxylate have also been widely employed as polydentate ligands in coordination reactions and in the construction of supermolecular networks (Li et al., 2003; Fu et al., 2004; Fabelo et al., 2008). Recently we have synthesized and reported many metal-Phen complexes such as cadmium complexe (Zhong, 2011a), cobalt complexes (Wang & Zhong, 2011), copper complexes (Zhong 2011b,c), nickel complexes (Zhong et al., 2009; Ni et al., 2010), manganese complex (Zhu et al., 2006), and zinc complex (Cui et al., 2010). The title compound [Ni(C12H8N2)3](C10H5O8)2.H2O, (I) was obtained unintentionally during an attempt to synthesize a mixed-ligand complex of NiII with Phen and 1,2,4,5-benzenetetracarboxylate ligand via a hydrothermal (solvothermal) reaction. The crystal structure of (I), has not hitherto been reported.

X-ray diffraction indicated that the title compound, (I), has the Ni2+ metal ion in a slightly distorted octahedral coordination geometry. The NiII atom is bonded by six N atoms of the three bidentate chelating 1,10-phenanthroline ligands. In the cation of [Ni(phen)3]2+, the Ni—N bond distances range from 2.074 (2) Å to 2.094 (2) Å and the N—Ni—N bite angles [80.02 (7)–79.49 (9)°] (see Table 1), which are similar to the reported literature values (Zhong et al., 2009; Ni et al., 2010). The dihedral angles between the neighbor two chelating NCCN groups is 85.71 (3)°, 73.75 (2)° and 85.71 (3)°, respectively. A twofold rotation axis (symmetry code: -x + 2, y, -z + 3/2) passes through the Ni atom and the phenyl ring of 1,10-phenanthroline. In the crystal structure, the uncoordinated trihydrogen-1,2,4,5-benzenetetracarboxylate anions (C10H5O8-) connected to each other by intermolecular O—H···O H-bonds through carboxylic acid to form a two-dimensional hydrogen-bonded layer structure along bc plane. The adjacent layers are further linked via additional water O–H···O carboxyl hydrogen interactions, forming a three-dimensional supramolecular network structure.

Related literature top

For structures complexes with six-coordinate nickel atoms and background references, see: Li et al. (2003); Fu et al. (2004); Fabelo et al. (2008); Zhong et al. (2009); Ni et al. (2010). For background to phenanthroline complexes, see: Wang & Zhong (2011); Zhu et al. (2006); Cui et al. (2010); Zhong (2011a,b,c).

Experimental top

0.1 mmol NiSO4.7H2O, 0.1 mmol phen, 0.1 mmol 1,2,4,5-Benzenetetracarboxylic acid and 3.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 423 K for 96 h, whereupon orange block-shaped crystals of (I) were obtained.

Refinement top

The H atoms of Phen and trihydrogen-1,2,4,5-benzenetetracarboxylate were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å; O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C); Uiso(H) = 1.5Ueq(O). The H atoms of water were located in difference map and then allowed to ride on their parent atoms, with O—H = 0.81 Å and 1.5Ueq(O).

Structure description top

1,10-Phenanthroline (Phen) and 1,2,4,5-Benzenetetracarboxylate have also been widely employed as polydentate ligands in coordination reactions and in the construction of supermolecular networks (Li et al., 2003; Fu et al., 2004; Fabelo et al., 2008). Recently we have synthesized and reported many metal-Phen complexes such as cadmium complexe (Zhong, 2011a), cobalt complexes (Wang & Zhong, 2011), copper complexes (Zhong 2011b,c), nickel complexes (Zhong et al., 2009; Ni et al., 2010), manganese complex (Zhu et al., 2006), and zinc complex (Cui et al., 2010). The title compound [Ni(C12H8N2)3](C10H5O8)2.H2O, (I) was obtained unintentionally during an attempt to synthesize a mixed-ligand complex of NiII with Phen and 1,2,4,5-benzenetetracarboxylate ligand via a hydrothermal (solvothermal) reaction. The crystal structure of (I), has not hitherto been reported.

X-ray diffraction indicated that the title compound, (I), has the Ni2+ metal ion in a slightly distorted octahedral coordination geometry. The NiII atom is bonded by six N atoms of the three bidentate chelating 1,10-phenanthroline ligands. In the cation of [Ni(phen)3]2+, the Ni—N bond distances range from 2.074 (2) Å to 2.094 (2) Å and the N—Ni—N bite angles [80.02 (7)–79.49 (9)°] (see Table 1), which are similar to the reported literature values (Zhong et al., 2009; Ni et al., 2010). The dihedral angles between the neighbor two chelating NCCN groups is 85.71 (3)°, 73.75 (2)° and 85.71 (3)°, respectively. A twofold rotation axis (symmetry code: -x + 2, y, -z + 3/2) passes through the Ni atom and the phenyl ring of 1,10-phenanthroline. In the crystal structure, the uncoordinated trihydrogen-1,2,4,5-benzenetetracarboxylate anions (C10H5O8-) connected to each other by intermolecular O—H···O H-bonds through carboxylic acid to form a two-dimensional hydrogen-bonded layer structure along bc plane. The adjacent layers are further linked via additional water O–H···O carboxyl hydrogen interactions, forming a three-dimensional supramolecular network structure.

For structures complexes with six-coordinate nickel atoms and background references, see: Li et al. (2003); Fu et al. (2004); Fabelo et al. (2008); Zhong et al. (2009); Ni et al. (2010). For background to phenanthroline complexes, see: Wang & Zhong (2011); Zhu et al. (2006); Cui et al. (2010); Zhong (2011a,b,c).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The unit of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 35% probability level. Unlabeled atoms of [Ni(C12H8N2)3]2+ and C10H5O8- anion are related to the labeled atoms by the symmetry operator -x + 2, y, -z + 3/2 and -x + 3/2, -y + 3/2, -z + 1, respectively.
[Figure 2] Fig. 2. Hydrogen-bonding interaction of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds. All cations [Ni(C12H8N2)3]2+ and water molecules have been omitted for clarity.
[Figure 3] Fig. 3. The packing, viewed down the b axis. Dashed lines indicate hydrogen bonds. All cations [Ni(C12H8N2)3]2+ have been omitted for clarity.
Tris(1,10-phenanthroline-κ2N,N')nickel(II) bis(2,4,5-tricarboxybenzoate) monohydrate top
Crystal data top
[Ni(C12H8N2)3](C10H5O8)2·H2OF(000) = 2312
Mr = 1123.62Dx = 1.534 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4069 reflections
a = 24.2009 (11) Åθ = 2.8–29.2°
b = 14.1546 (5) ŵ = 0.49 mm1
c = 15.8347 (7) ÅT = 295 K
β = 116.271 (5)°Block, orange
V = 4864.0 (4) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
4977 independent reflections
Radiation source: Enhance (Mo) X-ray Source3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 15.9149 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 3029
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2009)
k = 1417
Tmin = 0.829, Tmax = 0.868l = 1419
12270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0092P)2]
where P = (Fo2 + 2Fc2)/3
4977 reflections(Δ/σ)max < 0.001
369 parametersΔρmax = 0.52 e Å3
3 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C12H8N2)3](C10H5O8)2·H2OV = 4864.0 (4) Å3
Mr = 1123.62Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.2009 (11) ŵ = 0.49 mm1
b = 14.1546 (5) ÅT = 295 K
c = 15.8347 (7) Å0.40 × 0.40 × 0.30 mm
β = 116.271 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
4977 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2009)
3050 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.868Rint = 0.037
12270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.52 e Å3
4977 reflectionsΔρmin = 0.42 e Å3
369 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.31042 (3)0.75000.03040 (12)
N11.02407 (7)0.21222 (12)0.67422 (11)0.0312 (5)
N20.91737 (7)0.30145 (13)0.62879 (11)0.0326 (4)
N30.97131 (7)0.42419 (13)0.80545 (10)0.0318 (5)
O10.68321 (7)0.46426 (12)0.52192 (11)0.0511 (4)
H50.71520.49480.54730.077*
O1W0.50000.5789 (3)0.25000.1201 (14)
H1WA0.4734 (13)0.541 (2)0.223 (3)0.169 (19)*
O20.59675 (7)0.46988 (12)0.39080 (11)0.0560 (5)
O30.70784 (6)0.44147 (11)0.35063 (10)0.0452 (4)
O40.74751 (8)0.53534 (11)0.27810 (12)0.0556 (5)
H40.75550.48500.26030.083*
O50.73100 (7)0.86793 (11)0.28224 (11)0.0593 (5)
O60.71141 (6)0.94807 (11)0.38534 (10)0.0459 (4)
O70.64163 (8)0.93250 (12)0.45856 (13)0.0661 (5)
H70.66520.93880.43440.099*
O80.60196 (8)0.81822 (13)0.50512 (13)0.0807 (6)
C11.07715 (9)0.16650 (16)0.69809 (14)0.0398 (6)
H11.10770.17180.75970.048*
C21.08895 (10)0.11114 (17)0.63505 (17)0.0456 (6)
H21.12670.08090.65430.055*
C31.04430 (10)0.10193 (16)0.54458 (17)0.0424 (6)
H31.05170.06580.50160.051*
C40.98738 (9)0.14703 (15)0.51668 (15)0.0344 (6)
C50.93748 (11)0.13995 (16)0.42380 (15)0.0437 (6)
H90.94290.10630.37750.052*
C60.88307 (10)0.18152 (17)0.40309 (14)0.0456 (6)
H80.85080.17350.34330.055*
C70.87341 (10)0.23763 (16)0.47020 (14)0.0347 (6)
C80.81794 (10)0.28303 (17)0.45171 (15)0.0481 (7)
H100.78460.27810.39250.058*
C90.81285 (10)0.33462 (17)0.52063 (17)0.0483 (7)
H110.77590.36410.50930.058*
C100.86370 (10)0.34262 (16)0.60827 (15)0.0416 (6)
H120.85980.37850.65450.050*
C110.92208 (9)0.24801 (15)0.56050 (14)0.0284 (5)
C120.97938 (8)0.20154 (15)0.58436 (13)0.0287 (5)
C130.94314 (9)0.42376 (17)0.86098 (14)0.0423 (6)
H130.93390.36590.87950.051*
C140.92679 (10)0.50594 (19)0.89267 (17)0.0535 (7)
H140.90680.50240.93110.064*
C150.94016 (10)0.59170 (18)0.86711 (16)0.0543 (7)
H150.92960.64700.88820.065*
C160.97025 (9)0.59569 (17)0.80814 (15)0.0383 (6)
C170.98481 (8)0.50971 (16)0.77988 (13)0.0288 (5)
C180.98564 (9)0.68215 (17)0.77834 (14)0.0504 (7)
H180.97600.73920.79780.061*
C190.66694 (8)0.59686 (16)0.41710 (14)0.0303 (5)
C200.64826 (8)0.67726 (16)0.44598 (14)0.0365 (6)
H200.62590.67010.48050.044*
C210.66067 (9)0.76847 (16)0.42678 (14)0.0302 (5)
C220.69433 (8)0.77913 (15)0.37392 (13)0.0273 (5)
C230.71376 (8)0.69725 (17)0.34589 (12)0.0280 (5)
H230.73670.70370.31220.034*
C240.70075 (8)0.60660 (16)0.36553 (13)0.0270 (5)
C250.71945 (9)0.51885 (18)0.33192 (14)0.0325 (6)
C260.64675 (11)0.50354 (17)0.44011 (17)0.0394 (6)
C270.63255 (10)0.84283 (18)0.46660 (17)0.0454 (6)
C280.71315 (9)0.87133 (16)0.34430 (16)0.0351 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0374 (2)0.0251 (3)0.0303 (2)0.0000.01641 (19)0.000
N10.0359 (10)0.0267 (13)0.0322 (10)0.0028 (9)0.0161 (9)0.0017 (9)
N20.0349 (10)0.0291 (12)0.0354 (10)0.0031 (9)0.0171 (9)0.0028 (10)
N30.0416 (10)0.0303 (13)0.0327 (10)0.0019 (9)0.0248 (9)0.0017 (10)
O10.0665 (11)0.0350 (12)0.0542 (10)0.0138 (9)0.0289 (10)0.0063 (10)
O1W0.112 (3)0.062 (3)0.127 (3)0.0000.001 (3)0.000
O20.0499 (10)0.0400 (12)0.0752 (12)0.0150 (9)0.0251 (10)0.0019 (11)
O30.0644 (10)0.0244 (10)0.0554 (10)0.0035 (9)0.0343 (9)0.0033 (9)
O40.0908 (12)0.0336 (11)0.0732 (12)0.0046 (10)0.0643 (10)0.0030 (10)
O50.1064 (13)0.0326 (11)0.0727 (11)0.0077 (10)0.0704 (11)0.0013 (10)
O60.0653 (10)0.0225 (9)0.0604 (10)0.0061 (8)0.0373 (9)0.0044 (9)
O70.0981 (14)0.0290 (12)0.1078 (15)0.0010 (11)0.0788 (12)0.0063 (12)
O80.1316 (15)0.0434 (13)0.1301 (16)0.0002 (12)0.1151 (14)0.0050 (13)
C10.0394 (13)0.0362 (17)0.0406 (13)0.0039 (12)0.0147 (12)0.0007 (13)
C20.0487 (15)0.0356 (17)0.0616 (16)0.0055 (13)0.0327 (14)0.0006 (15)
C30.0641 (16)0.0268 (15)0.0555 (16)0.0045 (13)0.0438 (15)0.0063 (14)
C40.0463 (14)0.0269 (15)0.0367 (13)0.0076 (11)0.0246 (13)0.0005 (12)
C50.0723 (17)0.0308 (16)0.0377 (14)0.0149 (14)0.0331 (15)0.0078 (13)
C60.0570 (15)0.0426 (18)0.0281 (12)0.0147 (14)0.0106 (12)0.0014 (14)
C70.0457 (14)0.0275 (15)0.0303 (13)0.0064 (12)0.0163 (12)0.0056 (12)
C80.0427 (15)0.046 (2)0.0409 (14)0.0040 (13)0.0051 (12)0.0069 (14)
C90.0388 (14)0.0433 (19)0.0552 (15)0.0050 (12)0.0141 (14)0.0066 (15)
C100.0451 (14)0.0346 (17)0.0469 (15)0.0052 (12)0.0220 (13)0.0028 (13)
C110.0390 (13)0.0206 (14)0.0283 (12)0.0020 (10)0.0175 (11)0.0025 (11)
C120.0374 (12)0.0224 (14)0.0297 (12)0.0040 (11)0.0180 (11)0.0014 (11)
C130.0556 (14)0.0351 (17)0.0463 (14)0.0044 (13)0.0318 (13)0.0006 (14)
C140.0743 (17)0.046 (2)0.0668 (17)0.0042 (15)0.0549 (15)0.0026 (17)
C150.0809 (17)0.0329 (17)0.0708 (17)0.0069 (15)0.0533 (16)0.0060 (16)
C160.0501 (14)0.0302 (16)0.0444 (14)0.0013 (12)0.0298 (13)0.0029 (13)
C170.0332 (13)0.0258 (14)0.0302 (13)0.0002 (10)0.0165 (11)0.0007 (12)
C180.0761 (17)0.0225 (14)0.0686 (18)0.0042 (13)0.0465 (14)0.0031 (15)
C190.0350 (12)0.0241 (14)0.0345 (13)0.0021 (11)0.0177 (11)0.0004 (12)
C200.0473 (13)0.0304 (16)0.0461 (13)0.0033 (12)0.0338 (12)0.0007 (14)
C210.0369 (12)0.0248 (15)0.0339 (12)0.0003 (11)0.0201 (11)0.0010 (12)
C220.0313 (12)0.0238 (15)0.0258 (12)0.0019 (10)0.0117 (10)0.0007 (11)
C230.0308 (11)0.0329 (15)0.0235 (11)0.0006 (11)0.0149 (9)0.0003 (12)
C240.0332 (12)0.0230 (14)0.0256 (11)0.0025 (10)0.0136 (10)0.0012 (11)
C250.0355 (13)0.0333 (16)0.0285 (13)0.0013 (12)0.0140 (11)0.0007 (13)
C260.0517 (16)0.0263 (16)0.0506 (16)0.0014 (13)0.0320 (15)0.0006 (15)
C270.0636 (16)0.0265 (16)0.0581 (16)0.0019 (13)0.0380 (14)0.0019 (15)
C280.0419 (13)0.0239 (14)0.0392 (14)0.0008 (11)0.0176 (12)0.0037 (11)
Geometric parameters (Å, º) top
Ni1—N2i2.0740 (15)C6—C71.426 (3)
Ni1—N22.0740 (15)C6—H80.9300
Ni1—N12.0809 (16)C7—C81.398 (3)
Ni1—N1i2.0809 (16)C7—C111.401 (2)
Ni1—N3i2.0943 (17)C8—C91.363 (3)
Ni1—N32.0943 (17)C8—H100.9300
N1—C11.335 (2)C9—C101.393 (3)
N1—C121.362 (2)C9—H110.9300
N2—C101.326 (2)C10—H120.9300
N2—C111.365 (2)C11—C121.426 (2)
N3—C131.330 (2)C13—C141.392 (3)
N3—C171.361 (2)C13—H130.9300
O1—C261.324 (2)C14—C151.363 (3)
O1—H50.8200C14—H140.9300
O1W—H1WA0.80 (2)C15—C161.417 (3)
O2—C261.210 (2)C15—H150.9300
O3—C251.200 (2)C16—C171.395 (3)
O4—C251.324 (2)C16—C181.419 (3)
O4—H40.8200C17—C17i1.433 (3)
O5—C281.237 (2)C18—C18i1.357 (3)
O6—C281.276 (2)C18—H180.9300
O7—C271.304 (3)C19—C201.375 (3)
O7—H70.8200C19—C241.395 (2)
O8—C271.200 (2)C19—C261.508 (3)
C1—C21.394 (3)C20—C211.389 (3)
C1—H10.9300C20—H200.9300
C2—C31.366 (3)C21—C221.411 (2)
C2—H20.9300C21—C271.532 (3)
C3—C41.400 (3)C22—C231.395 (3)
C3—H30.9300C22—C281.523 (3)
C4—C121.402 (2)C23—C241.389 (3)
C4—C51.435 (3)C23—H230.9300
C5—C61.344 (3)C24—C251.498 (3)
C5—H90.9300
N2i—Ni1—N2172.98 (11)C9—C10—H12118.5
N2i—Ni1—N195.24 (6)N2—C11—C7122.64 (18)
N2—Ni1—N180.02 (7)N2—C11—C12117.26 (18)
N2i—Ni1—N1i80.02 (7)C7—C11—C12120.10 (19)
N2—Ni1—N1i95.24 (6)N1—C12—C4123.05 (18)
N1—Ni1—N1i96.17 (9)N1—C12—C11117.05 (18)
N2i—Ni1—N3i94.15 (6)C4—C12—C11119.90 (18)
N2—Ni1—N3i91.25 (6)N3—C13—C14123.0 (2)
N1—Ni1—N3i92.43 (6)N3—C13—H13118.5
N1i—Ni1—N3i170.00 (7)C14—C13—H13118.5
N2i—Ni1—N391.25 (6)C15—C14—C13119.6 (2)
N2—Ni1—N394.15 (6)C15—C14—H14120.2
N1—Ni1—N3170.00 (7)C13—C14—H14120.2
N1i—Ni1—N392.44 (6)C14—C15—C16119.3 (2)
N3i—Ni1—N379.49 (9)C14—C15—H15120.3
C1—N1—C12117.49 (17)C16—C15—H15120.3
C1—N1—Ni1129.83 (14)C17—C16—C15117.0 (2)
C12—N1—Ni1112.40 (13)C17—C16—C18120.33 (19)
C10—N2—C11117.75 (17)C15—C16—C18122.7 (2)
C10—N2—Ni1129.68 (15)N3—C17—C16123.54 (18)
C11—N2—Ni1112.50 (12)N3—C17—C17i117.22 (11)
C13—N3—C17117.48 (19)C16—C17—C17i119.24 (13)
C13—N3—Ni1129.48 (16)C18i—C18—C16120.44 (12)
C17—N3—Ni1113.03 (12)C18i—C18—H18119.8
C26—O1—H5109.5C16—C18—H18119.8
C25—O4—H4109.5C20—C19—C24118.5 (2)
C27—O7—H7109.5C20—C19—C26117.07 (18)
N1—C1—C2123.10 (19)C24—C19—C26124.4 (2)
N1—C1—H1118.5C19—C20—C21124.15 (19)
C2—C1—H1118.5C19—C20—H20117.9
C3—C2—C1119.1 (2)C21—C20—H20117.9
C3—C2—H2120.4C20—C21—C22117.8 (2)
C1—C2—H2120.4C20—C21—C27111.71 (17)
C2—C3—C4119.9 (2)C22—C21—C27130.5 (2)
C2—C3—H3120.1C23—C22—C21117.7 (2)
C4—C3—H3120.1C23—C22—C28115.15 (18)
C3—C4—C12117.33 (19)C21—C22—C28127.2 (2)
C3—C4—C5123.7 (2)C24—C23—C22123.67 (17)
C12—C4—C5118.92 (19)C24—C23—H23118.2
C6—C5—C4120.6 (2)C22—C23—H23118.2
C6—C5—H9119.7C23—C24—C19118.2 (2)
C4—C5—H9119.7C23—C24—C25123.52 (19)
C5—C6—C7121.9 (2)C19—C24—C25118.3 (2)
C5—C6—H8119.1O3—C25—O4124.2 (2)
C7—C6—H8119.1O3—C25—C24121.9 (2)
C8—C7—C11117.5 (2)O4—C25—C24113.8 (2)
C8—C7—C6124.0 (2)O2—C26—O1120.6 (2)
C11—C7—C6118.55 (19)O2—C26—C19121.8 (2)
C9—C8—C7119.8 (2)O1—C26—C19117.2 (2)
C9—C8—H10120.1O8—C27—O7120.0 (2)
C7—C8—H10120.1O8—C27—C21119.7 (2)
C8—C9—C10119.2 (2)O7—C27—C21120.2 (2)
C8—C9—H11120.4O5—C28—O6122.7 (2)
C10—C9—H11120.4O5—C28—C22117.9 (2)
N2—C10—C9123.1 (2)O6—C28—C22119.40 (19)
N2—C10—H12118.5
N2i—Ni1—N1—C13.79 (18)Ni1—N1—C12—C117.6 (2)
N2—Ni1—N1—C1178.55 (18)C3—C4—C12—N10.2 (3)
N1i—Ni1—N1—C184.29 (18)C5—C4—C12—N1179.90 (19)
N3i—Ni1—N1—C190.60 (18)C3—C4—C12—C11179.05 (18)
N3—Ni1—N1—C1126.5 (4)C5—C4—C12—C110.6 (3)
N2i—Ni1—N1—C12177.45 (13)N2—C11—C12—N11.8 (3)
N2—Ni1—N1—C127.79 (13)C7—C11—C12—N1177.96 (19)
N1i—Ni1—N1—C12102.05 (14)N2—C11—C12—C4178.87 (17)
N3i—Ni1—N1—C1283.05 (13)C7—C11—C12—C41.3 (3)
N3—Ni1—N1—C1247.1 (4)C17—N3—C13—C140.6 (3)
N2i—Ni1—N2—C10128.53 (18)Ni1—N3—C13—C14179.91 (17)
N1—Ni1—N2—C10176.55 (19)N3—C13—C14—C150.5 (4)
N1i—Ni1—N2—C1081.19 (18)C13—C14—C15—C160.4 (4)
N3i—Ni1—N2—C1091.19 (18)C14—C15—C16—C170.3 (3)
N3—Ni1—N2—C1011.64 (19)C14—C15—C16—C18179.9 (2)
N2i—Ni1—N2—C1154.87 (13)C13—N3—C17—C160.5 (3)
N1—Ni1—N2—C116.84 (13)Ni1—N3—C17—C16180.00 (16)
N1i—Ni1—N2—C11102.20 (13)C13—N3—C17—C17i179.96 (18)
N3i—Ni1—N2—C1185.41 (14)Ni1—N3—C17—C17i0.5 (3)
N3—Ni1—N2—C11164.96 (13)C15—C16—C17—N30.4 (3)
N2i—Ni1—N3—C1385.57 (16)C18—C16—C17—N3179.79 (19)
N2—Ni1—N3—C1389.94 (16)C15—C16—C17—C17i179.9 (2)
N1—Ni1—N3—C13143.9 (3)C18—C16—C17—C17i0.3 (4)
N1i—Ni1—N3—C135.50 (16)C17—C16—C18—C18i0.4 (4)
N3i—Ni1—N3—C13179.55 (19)C15—C16—C18—C18i179.9 (2)
N2i—Ni1—N3—C1793.81 (14)C24—C19—C20—C210.3 (3)
N2—Ni1—N3—C1790.68 (14)C26—C19—C20—C21177.1 (2)
N1—Ni1—N3—C1736.8 (4)C19—C20—C21—C220.3 (3)
N1i—Ni1—N3—C17173.87 (14)C19—C20—C21—C27178.78 (19)
N3i—Ni1—N3—C170.18 (10)C20—C21—C22—C231.1 (3)
C12—N1—C1—C21.6 (3)C27—C21—C22—C23179.2 (2)
Ni1—N1—C1—C2171.78 (16)C20—C21—C22—C28179.9 (2)
N1—C1—C2—C30.6 (3)C27—C21—C22—C281.7 (3)
C1—C2—C3—C40.7 (3)C21—C22—C23—C241.3 (3)
C2—C3—C4—C120.8 (3)C28—C22—C23—C24179.49 (18)
C2—C3—C4—C5178.8 (2)C22—C23—C24—C190.8 (3)
C3—C4—C5—C6176.8 (2)C22—C23—C24—C25177.38 (18)
C12—C4—C5—C62.8 (3)C20—C19—C24—C230.1 (3)
C4—C5—C6—C73.0 (3)C26—C19—C24—C23177.1 (2)
C5—C6—C7—C8179.3 (2)C20—C19—C24—C25178.30 (19)
C5—C6—C7—C111.0 (3)C26—C19—C24—C251.2 (3)
C11—C7—C8—C90.2 (3)C23—C24—C25—O3179.5 (2)
C6—C7—C8—C9179.5 (2)C19—C24—C25—O32.4 (3)
C7—C8—C9—C101.2 (3)C23—C24—C25—O42.7 (3)
C11—N2—C10—C90.8 (3)C19—C24—C25—O4175.48 (17)
Ni1—N2—C10—C9175.62 (17)C20—C19—C26—O283.8 (3)
C8—C9—C10—N20.6 (3)C24—C19—C26—O293.4 (3)
C10—N2—C11—C71.8 (3)C20—C19—C26—O189.2 (2)
Ni1—N2—C11—C7175.25 (16)C24—C19—C26—O193.6 (2)
C10—N2—C11—C12177.99 (18)C20—C21—C27—O82.9 (3)
Ni1—N2—C11—C125.0 (2)C22—C21—C27—O8175.3 (2)
C8—C7—C11—N21.3 (3)C20—C21—C27—O7177.2 (2)
C6—C7—C11—N2179.00 (18)C22—C21—C27—O74.5 (4)
C8—C7—C11—C12178.51 (18)C23—C22—C28—O515.8 (3)
C6—C7—C11—C121.2 (3)C21—C22—C28—O5165.12 (18)
C1—N1—C12—C41.4 (3)C23—C22—C28—O6162.56 (18)
Ni1—N1—C12—C4173.10 (15)C21—C22—C28—O616.5 (3)
C1—N1—C12—C11177.87 (17)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5ii0.821.872.690 (2)177
O1—H5···O6iii0.821.812.624 (2)173
O7—H7···O60.821.632.4450 (19)178
O1W—H1WA···O2iv0.80 (2)2.10 (3)2.866 (3)158 (4)
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+3/2, z+1; (iv) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N2)3](C10H5O8)2·H2O
Mr1123.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)24.2009 (11), 14.1546 (5), 15.8347 (7)
β (°) 116.271 (5)
V3)4864.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini ultra
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2009)
Tmin, Tmax0.829, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
12270, 4977, 3050
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.054, 1.02
No. of reflections4977
No. of parameters369
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.42

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.872.690 (2)176.7
O1—H5···O6ii0.821.812.624 (2)173.1
O7—H7···O60.821.632.4450 (19)178.3
O1W—H1WA···O2iii0.80 (2)2.10 (3)2.866 (3)158 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+3/2, z+1; (iii) x+1, y, z+1/2.
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010–17).

References

First citationCui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFabelo, O., Pason, J., Lloret, F., Julve, M. & Ruiz-Perez, C. (2008). Inorg. Chem. 47, 3568–3576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, Y.-L., Ren, J.-L. & Ng, S. W. (2004). Acta Cryst. E60, m1716–m1718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem. 42, 3119–3124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNi, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746–m747.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). ABSPACK and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-J. & Zhong, K.-L. (2011). Acta Cryst. E67, m446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2011a). Acta Cryst. E67, m1609–m1610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2011b). Z. Kristallogr. New Cryst. Struct. 226, 286–288.  CAS Google Scholar
First citationZhong, K.-L. (2011c). Acta Cryst. E67, m1215–m1216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2688–m2689.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds