metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{(R,SFc,SFc)-2′′-Bromo-2-[1-(di­methyl­amino)­ethyl-κN]-1,1′′-biferrocene}trihydridoboron

aCapital Medical University, Beijing, No. 10 Xitoutiao, You An Men Beijing 100069, People's Republic of China, bInstitute of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria, and cInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 17 November 2011; accepted 18 November 2011; online 23 November 2011)

The title structure, [Fe2(C5H5)2(C14H19BBrN)], contains a chiral and asymmetrically 2,2′′-disubstituted biferrocene designed as precursor for enanti­oselective non-C2-symmetric biferrocenyldiphosphine catalysts. The mean bond lengths in the biferrocene unit are Fe—C = 2.048 (10) Å and C—C = 1.427 (8) Å within the cyclo­penta­dienyl rings. The B—N bond lengths of the BH3 protected amine is 1.631 (3) Å. The inter­planar angle between the two connected cyclo­penta­dienyl rings is 54.29 (8)° and the corresponding Fe—CgCg—Fe torsion angle is −52.5°. The conformation of the mol­ecule is stabilized by an intra­molecular C—H⋯Br inter­action.

Related literature

For general information on ferrocene-based diphosphines and their applications in asymmetric catalysis, see: Togni (1996[Togni, A. (1996). Angew. Chem., Int. Ed. Engl. 35, 1475-1477.]); Blaser et al. (2007[Blaser, H.-U., Pugin, B., Spindler, F. & Thommen, M. (2007). Acc. Chem. Res. 40, 1240-1250.]); Dai & Hou (2010[Dai, L.-X. & Hou, X.-L. (2010). Chiral Ferrocenes in Asymmetric Catalysis. Weinheim: Wiley-VCH.]). For the synthesis, coordination behavior and use in asymmetric catalysis of ligands based on biferrocenes, see: Sawamura et al. (1991[Sawamura, M., Yamauchi, A., Takegawa, T. & Ito, Y. (1991). J. Chem. Soc. Chem. Commun. pp. 874-875.]); Nettekoven et al. (2000[Nettekoven, U., Widhalm, M., Kamer, P. C. J., van Leeuwen, P. W. N. M., Mereiter, K., Lutz, M. & Spek, A. L. (2000). Organometallics, 19, 2299-2309.]); Xiao et al. (2002[Xiao, L., Weissensteiner, W., Mereiter, K. & Widhalm, M. (2002). J. Org. Chem. 67, 2206-2214.]); Espino et al. (2009[Espino, G., Xiao, L., Puchberger, M., Mereiter, K., Spindler, F., Manzano, B. R., Jalon, F. A. & Weissensteiner, W. (2009). Dalton Trans. pp. 2751-2763.]); Kuwano (2010[Kuwano, R. (2010). Biferrocene Ligands. In Chiral Ferrocenes in Asymmetric Catalysis, edited by L.-X. Dai & X.-L. Hou, pp. 283-305. Weinheim: Wiley-VCH.]). For synthetic aspects of the title compound, see: Wang et al. (2011[Wang, Y., Gross, M., Zirakzadeh, A., Mereiter, K. & Weissensteiner, W. (2011). Organometallics. Submitted. ]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C5H5)2(C14H19BBrN)]

  • Mr = 533.90

  • Orthorhombic, P 21 21 21

  • a = 8.8791 (2) Å

  • b = 9.2210 (2) Å

  • c = 27.1292 (6) Å

  • V = 2221.18 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 100 K

  • 0.33 × 0.27 × 0.21 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.54, Tmax = 0.75

  • 34891 measured reflections

  • 6489 independent reflections

  • 6288 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.054

  • S = 1.07

  • 6489 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2807 Friedel pairs

  • Flack parameter: 0.002 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯Br1 1.00 2.79 3.7154 (17) 154

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chiral non-racemic ferrocenyldiphosphines are widely used as ligands for highly enantioselective transition metal catalysts (Togni, 1996; Blaser et al., 2007; Dai & Hou, 2010). Most of these ferrocenyldiphosphines are based on a planar chiral 1,2-disubstituted monoferrocene backbone. On the contrary, comparatively few chiral biferrocene derivatives are in use because they tend to be restricted to C2-symmetric entities like the BIFEP and TRAP biferrocene diphosphine ligands obtained by homocoupling of iodoferrocene derivatives, which curtails their modularity (Sawamura et al., 1991; Nettekoven et al., 2000; Xiao et al., 2002; Espino et al., 2009; Kuwano, 2010). Within a research program to open new synthetic pathways for asymmetrically substituted chiral non-racemic biferrocene diphosphines (Wang et al., 2011) the title compound, (I), was obtained as an intermediate and studied by X-ray crystallography in order to fix its absolute configuration. A view of the asymmetric unit of (I) (Fig. 1) reveals that the compound has a planar-chiral S,S-configuration for the biferrocene fragment. Fe—C and ring C—C bond lengths show usual values (Fe—C = 2.015 (2) to 2.062 (2) Å, mean value 2.048 (10) Å; C—C = 1.417 (3) to 1.444 (3) Å, mean value 1.427 (8) Å) and both ferrocene groups have approximately staggered pairs of rings. The interplanar angle between the cyclopentadienyl rings C1 trough C5 (ring 1) and C11 through C15 (ring 3) is 54.29 (8)° and the torsion angle Fe1—Cg1—Cg3—Fe2 = -52.5° (Cg1 and 3 are the corresponding ring centroids). The dimethylamino and the BH3 group are exo-oriented displaying torsion angles of Fe1—C2—C21—N1 = 177.44 (12)° and C2—C21—N1—B1 = 176.91 (15)°. The bond lengths C12—Br1 = 1.8913 (19) Å and N1—B1 = 1.631 (1) Å adopt normal values, similar to a diastereomer of (I) (Wang et al., 2011). The conformation of the molecule is stabilized by the intramolecular C21—H21···Br1 interaction with C···Br = 3.716 (2) Å. The arrangement and cohesion of the molecules in the crystal lattice (Fig. 2) is essentially based on unremarkable van-der-Waals interactions.

Related literature top

For general information on ferrocene-based diphosphines and their applications in asymmetric catalysis, see: Togni (1996); Blaser et al. (2007); Dai & Hou (2010). For the synthesis, coordination behavior and use in asymmetric catalysis of ligands based on biferrocenes, see: Sawamura et al. (1991); Nettekoven et al. (2000); Xiao et al. (2002); Espino et al. (2009); Kuwano (2010). For synthetic aspects of the title compound, see: Wang et al. (2011).

Experimental top

To a stirred solution of (R,SFc,SFc)-2''-bromo-2-[1-N,N-(dimethylamino)ethyl]-1,1''-biferrocene (100 mg, 0.19 mmol; Wang et al., 2011) in THF (3 ml) was added BH3.THF (1 M, 0.7 ml, 0.7 mmol) at 0 °C. Stirring was continued for 1 h at r.t. before the reaction mixture was quenched at 0 °C by dropwise addition of water. The organics were extracted with dichloromethane, the combined solutions were washed with water and dried with MgSO4. The solvents were removed and the residue was purified by chromatography (aluminium oxide, eluent CH2Cl2). Crystals suitable for X-ray diffraction were obtained from ethyl acetate by slow evaporation at r.t..

1HNMR (400 MHz, CDCl3) δ 1.09–2.00 (br s, 3H, H1), 1.81 (s, 3H, H23), 1.84 (d, J = 6.9 Hz, 3H, H22), 2.13 (s, 3H, H24), 3.94 (dd, J1= 2.6 Hz, J2 = 1.6 Hz, 1H, H15), 4.05 (q, J = 6.9 Hz,1H, H21), 4.09 (dd, J1 = J2 = 2.6 Hz, 1H,H14), 4.36 (s, 5H, H16–H20), 4.36–4.38 (m, 1H, H3), 4.39 (s, 5H, H6–H10), 4.43(dd, J1 = J2 = 2.5 Hz, 1H, H4), 4.50 (dd, J1= 2.5 Hz, J2 = 1.5 Hz, 1H, H5), 4.64 (dd, J1= 2.6 Hz, J2 = 1.6 Hz, 1H, H13).

13C{1H} NMR (100.6 MHz, CDCl3):δ 17.8 (C22), 44.6 (C24), 52.5 (C23), 63.2 (C21), 66.5 (C14), 67.6(C4), 67.8 (C3), 69.3 (C5), 70.9 (5 C, C6–C10), 71.6 (5 C, C16–C20), 72.2 (C13),72.3 (C15).

Refinement top

All H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.95 – 1.00 Å, B—H = 0.98 Å. Uĩso(H) = 1.2Ueq(C) for CH groups. Uĩso(H) = 1.5Ueq(C,B) for CH3 and BH3 groups, which were refined with a torsional parameter.

Structure description top

Chiral non-racemic ferrocenyldiphosphines are widely used as ligands for highly enantioselective transition metal catalysts (Togni, 1996; Blaser et al., 2007; Dai & Hou, 2010). Most of these ferrocenyldiphosphines are based on a planar chiral 1,2-disubstituted monoferrocene backbone. On the contrary, comparatively few chiral biferrocene derivatives are in use because they tend to be restricted to C2-symmetric entities like the BIFEP and TRAP biferrocene diphosphine ligands obtained by homocoupling of iodoferrocene derivatives, which curtails their modularity (Sawamura et al., 1991; Nettekoven et al., 2000; Xiao et al., 2002; Espino et al., 2009; Kuwano, 2010). Within a research program to open new synthetic pathways for asymmetrically substituted chiral non-racemic biferrocene diphosphines (Wang et al., 2011) the title compound, (I), was obtained as an intermediate and studied by X-ray crystallography in order to fix its absolute configuration. A view of the asymmetric unit of (I) (Fig. 1) reveals that the compound has a planar-chiral S,S-configuration for the biferrocene fragment. Fe—C and ring C—C bond lengths show usual values (Fe—C = 2.015 (2) to 2.062 (2) Å, mean value 2.048 (10) Å; C—C = 1.417 (3) to 1.444 (3) Å, mean value 1.427 (8) Å) and both ferrocene groups have approximately staggered pairs of rings. The interplanar angle between the cyclopentadienyl rings C1 trough C5 (ring 1) and C11 through C15 (ring 3) is 54.29 (8)° and the torsion angle Fe1—Cg1—Cg3—Fe2 = -52.5° (Cg1 and 3 are the corresponding ring centroids). The dimethylamino and the BH3 group are exo-oriented displaying torsion angles of Fe1—C2—C21—N1 = 177.44 (12)° and C2—C21—N1—B1 = 176.91 (15)°. The bond lengths C12—Br1 = 1.8913 (19) Å and N1—B1 = 1.631 (1) Å adopt normal values, similar to a diastereomer of (I) (Wang et al., 2011). The conformation of the molecule is stabilized by the intramolecular C21—H21···Br1 interaction with C···Br = 3.716 (2) Å. The arrangement and cohesion of the molecules in the crystal lattice (Fig. 2) is essentially based on unremarkable van-der-Waals interactions.

For general information on ferrocene-based diphosphines and their applications in asymmetric catalysis, see: Togni (1996); Blaser et al. (2007); Dai & Hou (2010). For the synthesis, coordination behavior and use in asymmetric catalysis of ligands based on biferrocenes, see: Sawamura et al. (1991); Nettekoven et al. (2000); Xiao et al. (2002); Espino et al. (2009); Kuwano (2010). For synthetic aspects of the title compound, see: Wang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the crystallographic b-axis.
{(R,SFc,SFc)-2''-Bromo-2-[1-(dimethylamino)ethyl- κN]-1,1''-biferrocene}trihydridoboron top
Crystal data top
[Fe2(C5H5)2(C14H19BBrN)]F(000) = 1088
Mr = 533.90Dx = 1.597 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9916 reflections
a = 8.8791 (2) Åθ = 2.3–30.1°
b = 9.2210 (2) ŵ = 3.12 mm1
c = 27.1292 (6) ÅT = 100 K
V = 2221.18 (9) Å3Prism, yellow
Z = 40.33 × 0.27 × 0.21 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6489 independent reflections
Radiation source: fine-focus sealed tube6288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 30.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1211
Tmin = 0.54, Tmax = 0.75k = 1212
34891 measured reflectionsl = 3838
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0234P)2 + 1.1731P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6489 reflectionsΔρmax = 0.69 e Å3
266 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 2807 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (5)
Crystal data top
[Fe2(C5H5)2(C14H19BBrN)]V = 2221.18 (9) Å3
Mr = 533.90Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8791 (2) ŵ = 3.12 mm1
b = 9.2210 (2) ÅT = 100 K
c = 27.1292 (6) Å0.33 × 0.27 × 0.21 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6489 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6288 reflections with I > 2σ(I)
Tmin = 0.54, Tmax = 0.75Rint = 0.034
34891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.69 e Å3
S = 1.07Δρmin = 0.31 e Å3
6489 reflectionsAbsolute structure: Flack (1983), 2807 Friedel pairs
266 parametersAbsolute structure parameter: 0.002 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47251 (2)0.185812 (19)0.380922 (6)0.01470 (4)
Fe10.30161 (3)0.53063 (3)0.298698 (9)0.01275 (6)
Fe20.08967 (3)0.22678 (3)0.408373 (10)0.01436 (6)
N10.57286 (19)0.66124 (17)0.43320 (6)0.0148 (3)
B10.7399 (3)0.6249 (3)0.45489 (8)0.0203 (4)
H1A0.74460.65260.48970.030*
H1B0.81570.67950.43630.030*
H1C0.75980.52080.45170.030*
C10.2564 (2)0.5202 (2)0.37276 (6)0.0123 (3)
C20.3899 (2)0.60595 (19)0.36404 (6)0.0120 (3)
C30.3469 (2)0.7240 (2)0.33252 (7)0.0162 (4)
H30.41230.79750.32050.019*
C40.1907 (3)0.7127 (2)0.32241 (7)0.0199 (4)
H40.13370.77740.30260.024*
C50.1340 (2)0.5881 (2)0.34696 (7)0.0176 (4)
H50.03260.55540.34640.021*
C60.2974 (2)0.3255 (2)0.27028 (7)0.0178 (3)
H60.26610.24060.28730.021*
C70.4464 (2)0.3820 (2)0.26885 (6)0.0159 (4)
H70.53200.34140.28470.019*
C80.4446 (2)0.5103 (2)0.23954 (7)0.0180 (4)
H80.52880.57040.23250.022*
C90.2947 (3)0.5326 (2)0.22272 (7)0.0227 (4)
H90.26120.61000.20240.027*
C100.2035 (3)0.4183 (2)0.24179 (7)0.0224 (4)
H100.09850.40630.23640.027*
C110.2337 (2)0.4012 (2)0.40848 (7)0.0125 (3)
C120.3112 (2)0.2670 (2)0.41713 (6)0.0134 (3)
C130.2534 (2)0.1987 (2)0.46023 (7)0.0180 (4)
H130.28610.10930.47390.022*
C140.1379 (2)0.2896 (2)0.47874 (7)0.0198 (4)
H140.07890.27130.50730.024*
C150.1248 (2)0.4126 (2)0.44759 (7)0.0180 (4)
H150.05540.49000.45190.022*
C160.0151 (2)0.2224 (2)0.34155 (7)0.0210 (4)
H160.00220.28750.31500.025*
C170.0622 (2)0.0887 (2)0.35010 (7)0.0202 (4)
H170.14030.04950.33020.024*
C180.0020 (3)0.0248 (2)0.39343 (7)0.0233 (4)
H180.03260.06470.40760.028*
C190.1121 (3)0.1181 (2)0.41198 (9)0.0255 (4)
H190.17090.10150.44070.031*
C200.1235 (2)0.2405 (2)0.38022 (8)0.0229 (4)
H200.19070.31980.38400.028*
C210.5465 (2)0.58227 (18)0.38436 (6)0.0122 (3)
H210.55620.47620.39130.015*
C220.6685 (2)0.6203 (2)0.34687 (7)0.0192 (4)
H22A0.65810.55780.31780.029*
H22B0.76790.60550.36170.029*
H22C0.65780.72200.33700.029*
C230.4604 (3)0.6085 (2)0.46983 (7)0.0190 (4)
H23A0.47720.65700.50150.029*
H23B0.47140.50350.47410.029*
H23C0.35860.63030.45800.029*
C240.5543 (3)0.8216 (2)0.42826 (8)0.0235 (4)
H24A0.45090.84350.41810.035*
H24B0.62480.85830.40340.035*
H24C0.57500.86810.46000.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01301 (8)0.01403 (7)0.01707 (8)0.00257 (7)0.00186 (7)0.00236 (6)
Fe10.01316 (13)0.01367 (12)0.01141 (11)0.00278 (10)0.00227 (10)0.00025 (9)
Fe20.01111 (13)0.01697 (12)0.01499 (12)0.00394 (10)0.00234 (10)0.00310 (9)
N10.0172 (8)0.0131 (7)0.0141 (7)0.0022 (6)0.0019 (6)0.0017 (5)
B10.0170 (11)0.0248 (11)0.0191 (10)0.0028 (9)0.0051 (8)0.0003 (8)
C10.0099 (8)0.0141 (8)0.0129 (7)0.0009 (6)0.0002 (6)0.0022 (6)
C20.0117 (9)0.0119 (7)0.0124 (7)0.0018 (6)0.0002 (6)0.0024 (6)
C30.0192 (10)0.0123 (8)0.0171 (8)0.0023 (7)0.0013 (7)0.0010 (7)
C40.0207 (10)0.0171 (9)0.0219 (9)0.0077 (8)0.0032 (8)0.0009 (7)
C50.0114 (9)0.0200 (9)0.0215 (9)0.0053 (7)0.0011 (7)0.0026 (7)
C60.0195 (9)0.0180 (8)0.0159 (8)0.0017 (8)0.0012 (7)0.0030 (7)
C70.0195 (11)0.0152 (8)0.0130 (7)0.0032 (7)0.0008 (6)0.0008 (6)
C80.0216 (11)0.0180 (9)0.0143 (8)0.0009 (7)0.0022 (7)0.0013 (6)
C90.0277 (11)0.0277 (10)0.0129 (8)0.0057 (9)0.0038 (8)0.0020 (7)
C100.0208 (10)0.0297 (11)0.0167 (8)0.0007 (9)0.0060 (8)0.0058 (8)
C110.0096 (8)0.0156 (8)0.0124 (7)0.0027 (6)0.0005 (6)0.0028 (6)
C120.0120 (9)0.0168 (8)0.0115 (7)0.0035 (7)0.0001 (6)0.0012 (6)
C130.0187 (10)0.0215 (9)0.0137 (7)0.0048 (8)0.0007 (6)0.0024 (7)
C140.0167 (9)0.0278 (11)0.0149 (8)0.0087 (8)0.0040 (7)0.0027 (7)
C150.0155 (10)0.0231 (9)0.0153 (8)0.0042 (7)0.0035 (7)0.0060 (7)
C160.0174 (10)0.0248 (9)0.0207 (8)0.0060 (8)0.0014 (7)0.0052 (7)
C170.0190 (11)0.0208 (9)0.0209 (9)0.0056 (7)0.0016 (7)0.0084 (7)
C180.0265 (12)0.0200 (9)0.0235 (9)0.0089 (8)0.0011 (8)0.0031 (7)
C190.0180 (11)0.0299 (11)0.0285 (10)0.0116 (9)0.0031 (8)0.0057 (9)
C200.0124 (9)0.0283 (10)0.0281 (10)0.0036 (7)0.0025 (8)0.0095 (9)
C210.0111 (8)0.0127 (7)0.0128 (7)0.0003 (6)0.0011 (6)0.0022 (6)
C220.0147 (10)0.0272 (10)0.0158 (8)0.0035 (8)0.0026 (7)0.0005 (7)
C230.0201 (10)0.0230 (9)0.0140 (8)0.0023 (8)0.0036 (7)0.0044 (7)
C240.0306 (12)0.0117 (8)0.0283 (10)0.0005 (8)0.0067 (8)0.0028 (7)
Geometric parameters (Å, º) top
Br1—C121.8913 (19)C6—C101.423 (3)
Fe1—C62.043 (2)C6—H60.9500
Fe1—C32.046 (2)C7—C81.426 (3)
Fe1—C72.046 (2)C7—H70.9500
Fe1—C42.050 (2)C8—C91.421 (3)
Fe1—C12.051 (2)C8—H80.9500
Fe1—C52.052 (2)C9—C101.426 (3)
Fe1—C102.053 (2)C9—H90.9500
Fe1—C82.055 (2)C10—H100.9500
Fe1—C22.059 (2)C11—C121.435 (3)
Fe1—C92.062 (2)C11—C151.440 (3)
Fe2—C122.015 (2)C12—C131.424 (2)
Fe2—C162.038 (2)C13—C141.417 (3)
Fe2—C132.040 (2)C13—H130.9500
Fe2—C142.041 (2)C14—C151.419 (3)
Fe2—C152.041 (2)C14—H140.9500
Fe2—C172.044 (2)C15—H150.9500
Fe2—C202.045 (2)C16—C171.430 (3)
Fe2—C112.055 (2)C16—C201.433 (3)
Fe2—C192.056 (2)C16—H160.9500
Fe2—C182.059 (2)C17—C181.419 (3)
N1—C231.490 (3)C17—H170.9500
N1—C241.494 (3)C18—C191.421 (3)
N1—C211.530 (2)C18—H180.9500
N1—B11.631 (3)C19—C201.424 (3)
B1—H1A0.9800C19—H190.9500
B1—H1B0.9800C20—H200.9500
B1—H1C0.9800C21—C221.527 (3)
C1—C51.437 (3)C21—H211.0000
C1—C21.444 (3)C22—H22A0.9800
C1—C111.477 (3)C22—H22B0.9800
C2—C31.436 (2)C22—H22C0.9800
C2—C211.512 (3)C23—H23A0.9800
C3—C41.418 (3)C23—H23B0.9800
C3—H30.9500C23—H23C0.9800
C4—C51.420 (3)C24—H24A0.9800
C4—H40.9500C24—H24B0.9800
C5—H50.9500C24—H24C0.9800
C6—C71.422 (3)
C6—Fe1—C3168.54 (8)C3—C4—H4125.8
C6—Fe1—C740.70 (8)C5—C4—H4125.8
C3—Fe1—C7129.63 (8)Fe1—C4—H4126.4
C6—Fe1—C4150.24 (9)C4—C5—C1108.25 (18)
C3—Fe1—C440.51 (8)C4—C5—Fe169.66 (12)
C7—Fe1—C4167.05 (8)C1—C5—Fe169.48 (11)
C6—Fe1—C1108.81 (7)C4—C5—H5125.9
C3—Fe1—C168.91 (7)C1—C5—H5125.9
C7—Fe1—C1118.62 (7)Fe1—C5—H5126.6
C4—Fe1—C168.73 (8)C7—C6—C10108.03 (18)
C6—Fe1—C5117.84 (8)C7—C6—Fe169.75 (11)
C3—Fe1—C568.35 (8)C10—C6—Fe170.03 (12)
C7—Fe1—C5151.80 (8)C7—C6—H6126.0
C4—Fe1—C540.51 (8)C10—C6—H6126.0
C1—Fe1—C540.99 (8)Fe1—C6—H6125.8
C6—Fe1—C1040.67 (8)C6—C7—C8107.99 (17)
C3—Fe1—C10149.38 (8)C6—C7—Fe169.55 (11)
C7—Fe1—C1068.35 (9)C8—C7—Fe169.99 (11)
C4—Fe1—C10116.45 (9)C6—C7—H7126.0
C1—Fe1—C10129.05 (8)C8—C7—H7126.0
C5—Fe1—C10107.62 (9)Fe1—C7—H7126.0
C6—Fe1—C868.41 (8)C9—C8—C7108.04 (18)
C3—Fe1—C8107.95 (8)C9—C8—Fe170.08 (11)
C7—Fe1—C840.69 (7)C7—C8—Fe169.32 (11)
C4—Fe1—C8128.05 (8)C9—C8—H8126.0
C1—Fe1—C8151.85 (8)C7—C8—H8126.0
C5—Fe1—C8165.93 (8)Fe1—C8—H8126.2
C10—Fe1—C868.20 (9)C8—C9—C10107.95 (18)
C6—Fe1—C2130.10 (7)C8—C9—Fe169.53 (11)
C3—Fe1—C240.96 (7)C10—C9—Fe169.37 (11)
C7—Fe1—C2109.12 (7)C8—C9—H9126.0
C4—Fe1—C268.67 (8)C10—C9—H9126.0
C1—Fe1—C241.14 (7)Fe1—C9—H9126.6
C5—Fe1—C268.86 (8)C6—C10—C9108.0 (2)
C10—Fe1—C2168.28 (8)C6—C10—Fe169.30 (11)
C8—Fe1—C2117.91 (8)C9—C10—Fe170.07 (12)
C6—Fe1—C968.32 (8)C6—C10—H10126.0
C3—Fe1—C9116.51 (8)C9—C10—H10126.0
C7—Fe1—C968.23 (8)Fe1—C10—H10126.2
C4—Fe1—C9106.98 (8)C12—C11—C15105.34 (16)
C1—Fe1—C9166.83 (9)C12—C11—C1133.01 (16)
C5—Fe1—C9127.89 (9)C15—C11—C1121.38 (17)
C10—Fe1—C940.56 (9)C12—C11—Fe267.89 (10)
C8—Fe1—C940.39 (9)C15—C11—Fe268.91 (11)
C2—Fe1—C9150.32 (9)C1—C11—Fe2131.69 (13)
C12—Fe2—C16123.64 (8)C13—C12—C11110.07 (17)
C12—Fe2—C1341.10 (7)C13—C12—Br1121.62 (15)
C16—Fe2—C13159.46 (8)C11—C12—Br1128.27 (13)
C12—Fe2—C1468.45 (8)C13—C12—Fe270.36 (11)
C16—Fe2—C14159.00 (9)C11—C12—Fe270.83 (11)
C13—Fe2—C1440.64 (8)Br1—C12—Fe2127.24 (9)
C12—Fe2—C1568.59 (8)C14—C13—C12106.86 (18)
C16—Fe2—C15123.37 (9)C14—C13—Fe269.71 (11)
C13—Fe2—C1568.79 (9)C12—C13—Fe268.54 (11)
C14—Fe2—C1540.69 (8)C14—C13—H13126.6
C12—Fe2—C17108.80 (8)C12—C13—H13126.6
C16—Fe2—C1741.00 (9)Fe2—C13—H13126.7
C13—Fe2—C17122.65 (9)C13—C14—C15108.74 (17)
C14—Fe2—C17157.73 (9)C13—C14—Fe269.64 (11)
C15—Fe2—C17160.77 (8)C15—C14—Fe269.68 (11)
C12—Fe2—C20159.37 (8)C13—C14—H14125.6
C16—Fe2—C2041.10 (9)C15—C14—H14125.6
C13—Fe2—C20157.70 (8)Fe2—C14—H14126.6
C14—Fe2—C20121.74 (9)C14—C15—C11108.99 (18)
C15—Fe2—C20106.51 (8)C14—C15—Fe269.63 (11)
C17—Fe2—C2068.84 (9)C11—C15—Fe269.93 (10)
C12—Fe2—C1141.28 (7)C14—C15—H15125.5
C16—Fe2—C11107.51 (8)C11—C15—H15125.5
C13—Fe2—C1169.80 (8)Fe2—C15—H15126.5
C14—Fe2—C1169.25 (8)C17—C16—C20107.67 (18)
C15—Fe2—C1141.15 (7)C17—C16—Fe269.74 (11)
C17—Fe2—C11124.25 (8)C20—C16—Fe269.69 (11)
C20—Fe2—C11121.89 (8)C17—C16—H16126.2
C12—Fe2—C19159.19 (9)C20—C16—H16126.2
C16—Fe2—C1968.58 (9)Fe2—C16—H16126.0
C13—Fe2—C19121.78 (9)C18—C17—C16108.16 (19)
C14—Fe2—C19106.07 (9)C18—C17—Fe270.32 (11)
C15—Fe2—C19121.18 (9)C16—C17—Fe269.27 (11)
C17—Fe2—C1968.22 (9)C18—C17—H17125.9
C20—Fe2—C1940.63 (9)C16—C17—H17125.9
C11—Fe2—C19157.55 (9)Fe2—C17—H17126.1
C12—Fe2—C18123.97 (9)C17—C18—C19108.1 (2)
C16—Fe2—C1868.54 (9)C17—C18—Fe269.21 (11)
C13—Fe2—C18106.89 (9)C19—C18—Fe269.67 (12)
C14—Fe2—C18121.37 (8)C17—C18—H18126.0
C15—Fe2—C18156.91 (8)C19—C18—H18126.0
C17—Fe2—C1840.47 (8)Fe2—C18—H18126.7
C20—Fe2—C1868.42 (9)C18—C19—C20108.41 (19)
C11—Fe2—C18160.67 (8)C18—C19—Fe269.92 (12)
C19—Fe2—C1840.41 (9)C20—C19—Fe269.27 (12)
C23—N1—C24107.98 (16)C18—C19—H19125.8
C23—N1—C21108.64 (14)C20—C19—H19125.8
C24—N1—C21112.12 (14)Fe2—C19—H19126.6
C23—N1—B1107.57 (15)C19—C20—C16107.67 (19)
C24—N1—B1109.64 (16)C19—C20—Fe270.10 (13)
C21—N1—B1110.73 (15)C16—C20—Fe269.21 (11)
N1—B1—H1A109.5C19—C20—H20126.2
N1—B1—H1B109.5C16—C20—H20126.2
H1A—B1—H1B109.5Fe2—C20—H20126.1
N1—B1—H1C109.5C2—C21—C22112.12 (15)
H1A—B1—H1C109.5C2—C21—N1112.82 (14)
H1B—B1—H1C109.5C22—C21—N1111.04 (15)
C5—C1—C2107.56 (16)C2—C21—H21106.8
C5—C1—C11122.70 (17)C22—C21—H21106.8
C2—C1—C11128.77 (16)N1—C21—H21106.8
C5—C1—Fe169.53 (11)C21—C22—H22A109.5
C2—C1—Fe169.71 (10)C21—C22—H22B109.5
C11—C1—Fe1134.76 (13)H22A—C22—H22B109.5
C3—C2—C1107.17 (16)C21—C22—H22C109.5
C3—C2—C21124.81 (17)H22A—C22—H22C109.5
C1—C2—C21128.00 (15)H22B—C22—H22C109.5
C3—C2—Fe169.03 (10)N1—C23—H23A109.5
C1—C2—Fe169.15 (10)N1—C23—H23B109.5
C21—C2—Fe1127.99 (12)H23A—C23—H23B109.5
C4—C3—C2108.60 (18)N1—C23—H23C109.5
C4—C3—Fe169.90 (11)H23A—C23—H23C109.5
C2—C3—Fe170.01 (10)H23B—C23—H23C109.5
C4—C3—H3125.7N1—C24—H24A109.5
C2—C3—H3125.7N1—C24—H24B109.5
Fe1—C3—H3126.0H24A—C24—H24B109.5
C3—C4—C5108.41 (17)N1—C24—H24C109.5
C3—C4—Fe169.59 (11)H24A—C24—H24C109.5
C5—C4—Fe169.82 (11)H24B—C24—H24C109.5
C5—C1—C2—C30.7 (2)Fe2—C11—C12—C1359.61 (13)
C11—C1—C2—C3169.48 (17)C15—C11—C12—Br1178.14 (14)
C5—C1—C2—C21177.98 (17)C1—C11—C12—Br14.3 (3)
C11—C1—C2—C219.2 (3)Fe2—C11—C12—Br1122.80 (15)
Fe1—C1—C2—C21122.56 (18)C15—C11—C12—Fe259.06 (12)
C5—C1—C2—Fe159.46 (12)C1—C11—C12—Fe2127.1 (2)
C11—C1—C2—Fe1131.75 (19)C11—C12—C13—C140.5 (2)
C1—C2—C3—C40.6 (2)Br1—C12—C13—C14178.23 (13)
C21—C2—C3—C4178.11 (16)Fe2—C12—C13—C1459.44 (13)
Fe1—C2—C3—C459.45 (13)C11—C12—C13—Fe259.90 (13)
C1—C2—C3—Fe158.84 (12)Br1—C12—C13—Fe2122.33 (13)
C21—C2—C3—Fe1122.43 (17)C12—C13—C14—C150.2 (2)
C2—C3—C4—C50.3 (2)Fe2—C13—C14—C1558.87 (14)
Fe1—C3—C4—C559.22 (14)C12—C13—C14—Fe258.69 (13)
C2—C3—C4—Fe159.52 (13)C13—C14—C15—C110.2 (2)
C3—C4—C5—C10.1 (2)Fe2—C14—C15—C1159.02 (13)
Fe1—C4—C5—C158.94 (13)C13—C14—C15—Fe258.84 (14)
C3—C4—C5—Fe159.08 (14)C12—C11—C15—C140.4 (2)
C2—C1—C5—C40.5 (2)C1—C11—C15—C14174.31 (16)
C11—C1—C5—C4170.14 (16)Fe2—C11—C15—C1458.83 (14)
Fe1—C1—C5—C459.06 (13)C12—C11—C15—Fe258.39 (12)
C2—C1—C5—Fe159.57 (12)C1—C11—C15—Fe2126.86 (17)
C11—C1—C5—Fe1130.80 (17)C20—C16—C17—C180.2 (2)
C10—C6—C7—C80.2 (2)Fe2—C16—C17—C1859.79 (14)
Fe1—C6—C7—C859.66 (13)C20—C16—C17—Fe259.61 (13)
C10—C6—C7—Fe159.81 (14)C16—C17—C18—C190.1 (2)
C6—C7—C8—C90.2 (2)Fe2—C17—C18—C1959.00 (15)
Fe1—C7—C8—C959.61 (14)C16—C17—C18—Fe259.13 (14)
C6—C7—C8—Fe159.38 (13)C17—C18—C19—C200.0 (2)
C7—C8—C9—C100.2 (2)Fe2—C18—C19—C2058.75 (14)
Fe1—C8—C9—C1058.92 (14)C17—C18—C19—Fe258.72 (14)
C7—C8—C9—Fe159.13 (13)C18—C19—C20—C160.1 (2)
C7—C6—C10—C90.0 (2)Fe2—C19—C20—C1659.23 (14)
Fe1—C6—C10—C959.62 (14)C18—C19—C20—Fe259.15 (15)
C7—C6—C10—Fe159.64 (13)C17—C16—C20—C190.2 (2)
C8—C9—C10—C60.1 (2)Fe2—C16—C20—C1959.80 (14)
Fe1—C9—C10—C659.14 (13)C17—C16—C20—Fe259.63 (14)
C8—C9—C10—Fe159.02 (14)C3—C2—C21—C2238.2 (2)
C5—C1—C11—C12137.0 (2)C1—C2—C21—C22143.31 (18)
C2—C1—C11—C1255.7 (3)Fe1—C2—C21—C2251.2 (2)
Fe1—C1—C11—C1244.1 (3)C3—C2—C21—N188.0 (2)
C5—C1—C11—C1549.9 (3)C1—C2—C21—N190.4 (2)
C2—C1—C11—C15117.3 (2)Fe1—C2—C21—N1177.44 (12)
Fe1—C1—C11—C15142.88 (17)C23—N1—C21—C258.98 (19)
C5—C1—C11—Fe238.9 (3)C24—N1—C21—C260.3 (2)
C2—C1—C11—Fe2153.86 (15)B1—N1—C21—C2176.91 (15)
Fe1—C1—C11—Fe254.1 (3)C23—N1—C21—C22174.18 (16)
C15—C11—C12—C130.6 (2)C24—N1—C21—C2266.6 (2)
C1—C11—C12—C13173.31 (19)B1—N1—C21—C2256.26 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···Br11.002.793.7154 (17)154

Experimental details

Crystal data
Chemical formula[Fe2(C5H5)2(C14H19BBrN)]
Mr533.90
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.8791 (2), 9.2210 (2), 27.1292 (6)
V3)2221.18 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.33 × 0.27 × 0.21
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.54, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
34891, 6489, 6288
Rint0.034
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.07
No. of reflections6489
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.31
Absolute structureFlack (1983), 2807 Friedel pairs
Absolute structure parameter0.002 (5)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···Br11.002.793.7154 (17)153.6
 

Acknowledgements

Generous support by the Beijing Nova Program (2009 B37) and the Educational Council Foundation of Beijing (KM201010025012, PHR201008395 and PHR201007114) is gratefully acknowledged. This work was also kindly supported by SOLVIAS AG (Basel).

References

First citationBlaser, H.-U., Pugin, B., Spindler, F. & Thommen, M. (2007). Acc. Chem. Res. 40, 1240–1250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, L.-X. & Hou, X.-L. (2010). Chiral Ferrocenes in Asymmetric Catalysis. Weinheim: Wiley-VCH.  Google Scholar
First citationEspino, G., Xiao, L., Puchberger, M., Mereiter, K., Spindler, F., Manzano, B. R., Jalon, F. A. & Weissensteiner, W. (2009). Dalton Trans. pp. 2751–2763.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKuwano, R. (2010). Biferrocene Ligands. In Chiral Ferrocenes in Asymmetric Catalysis, edited by L.-X. Dai & X.-L. Hou, pp. 283–305. Weinheim: Wiley-VCH.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNettekoven, U., Widhalm, M., Kamer, P. C. J., van Leeuwen, P. W. N. M., Mereiter, K., Lutz, M. & Spek, A. L. (2000). Organometallics, 19, 2299–2309.  Web of Science CSD CrossRef CAS Google Scholar
First citationSawamura, M., Yamauchi, A., Takegawa, T. & Ito, Y. (1991). J. Chem. Soc. Chem. Commun. pp. 874–875.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. (1996). Angew. Chem., Int. Ed. Engl. 35, 1475–1477.  Google Scholar
First citationWang, Y., Gross, M., Zirakzadeh, A., Mereiter, K. & Weissensteiner, W. (2011). Organometallics. Submitted.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, L., Weissensteiner, W., Mereiter, K. & Widhalm, M. (2002). J. Org. Chem. 67, 2206–2214.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds