organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4R,6S,7S,8S,8aS)-6-Ethyl-7,8-dihy­dr­oxy-4-methyl-1,2,3,5,6,7,8,8a-octa­hydro­indolizin-4-ium iodide

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, bInstitute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak Technical University, Namestie slobody 17, SK-812 31 Bratislava, Slovak Republic 81231, and cInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237
*Correspondence e-mail: viktor.vrabel@stuba.sk

(Received 18 November 2011; accepted 28 November 2011; online 30 November 2011)

The title compound, C11H22NO2+·I, is a chiral mol­ecule with five stereogenic centres. The absolute configuration was assigned from the synthesis and confirmed by the structure determination. The central six-membered ring of the indolizine system adopts a chair conformation, with two atoms displaced by −0.690 (2) and 0.550 (2) Å from the plane of the other four atoms. The conformation of the pyrrolidine ring is close to that of an envelope, with the flap atom displaced by 0.563 (2) Å from the plane of the remaining four atoms. In the crystal, there are two O—H⋯I hydrogen bonds.

Related literature

For the biological activity of indolizine derivatives, see: Gubin et al. (1992[Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.]); Gupta et al. (2003[Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.]); Malonne et al. (1998[Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241-243.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]); Ruprecht et al. (1989[Ruprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149-157.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1362.]). For the preparation, see: Šafář et al. (2010[Šafář, P., Žužiová, J., Tóthová, E., Marchalín, Š., Prónayová, N., Švorc, Ľ., Vrábel, V., Comesse, S. & Daich, A. (2010). Tetrahedron Asymmetry, 21, 623-630.]). For related structures, see: Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]); Pedersen (1967[Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415-1424.]).

[Scheme 1]

Experimental

Crystal data
  • C11H22NO2+·I

  • Mr = 327.20

  • Monoclinic, P 21

  • a = 8.18603 (14) Å

  • b = 10.82977 (14) Å

  • c = 8.19874 (13) Å

  • β = 110.3688 (19)°

  • V = 681.39 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.520, Tmax = 0.638

  • 18648 measured reflections

  • 3330 independent reflections

  • 3176 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.049

  • S = 0.91

  • 3330 reflections

  • 141 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.69 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1359 Friedel pairs

  • Flack parameter: −0.026 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯I1i 0.82 2.80 3.6187 (18) 173
O2—H2⋯I1ii 0.82 2.67 3.4798 (16) 172
Symmetry codes: (i) x+1, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), and antitumor (Pearson & Guo, 2001) activities. They have also shown to be calcium entry blockers (Gupta et al., 2003). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992) and HIV infections (Ruprecht et al., 1989). Based on these facts and in continuation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound. The molecular structure of the compound and the atom labeling scheme are shown in Fig. 1. The absolute configuration was established by synthesis and confirmed by the structure determination. The expected stereochemistry of atoms N1, C5, C6, C7 and C8 was confirmed as R,S,S,S and S, respectively (Fig.1). The central six-membered N-heterocyclic ring is not planar and adopts a chair conformation (Cremer & Pople, 1975). A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms C6, C7, N1 and C9 are coplanar within 0.022 (2) Å, while atoms C8 and C5 are displaced from this plane on opposite sides, with out-of-plane displacements of -0.690 (2) and 0.550 (2) Å, respectively. The pyrrolidine ring attached to the indolizine ring system has envelope conformation, with atom N1 on the flap. The maximum deviation from planarity for N1 is -0.563 (2) Å. The two aromatic rings are almost perpendicular to each other. The dihedral angle between the plane of the four atoms C2, C3, C4 and C5 of pyrrolidine ring and the plane of the four atoms C6, C7, N1 and C9 forming the base of the chair conformation is 89.6 (1)°. Intermolecular O1–H1···I1 and O2–H2···I1 hydrogen bonds link the molecules into extended chains running along the b axis (Table 1. and Figure 2.).

Related literature top

For the biological activity of indolizine derivatives, see: Gubin et al. (1992); Gupta et al. (2003); Malonne et al. (1998); Medda et al. (2003); Nardelli (1983); Pearson & Guo (2001); Ruprecht et al. (1989). For puckering analysis, see: Cremer & Pople (1975). For the preparation, see: Šafář et al. (2010). For related structures, see: Clark & Reid (1995); Pedersen (1967).

Experimental top

The title compound was prepared according to a standard protocol described in literature (Šafář et al., 2010).

Refinement top

All H atoms were positioned with idealized geometry using a riding model with C—H distances in the range 0.93 - 0.98 Å and O—H distance 0.82 Å. The Uiso(H) values were set at 1.5Ueq(C-methyl,O) and 1.2Ueq(other C atoms)

Structure description top

Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), and antitumor (Pearson & Guo, 2001) activities. They have also shown to be calcium entry blockers (Gupta et al., 2003). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992) and HIV infections (Ruprecht et al., 1989). Based on these facts and in continuation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound. The molecular structure of the compound and the atom labeling scheme are shown in Fig. 1. The absolute configuration was established by synthesis and confirmed by the structure determination. The expected stereochemistry of atoms N1, C5, C6, C7 and C8 was confirmed as R,S,S,S and S, respectively (Fig.1). The central six-membered N-heterocyclic ring is not planar and adopts a chair conformation (Cremer & Pople, 1975). A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms C6, C7, N1 and C9 are coplanar within 0.022 (2) Å, while atoms C8 and C5 are displaced from this plane on opposite sides, with out-of-plane displacements of -0.690 (2) and 0.550 (2) Å, respectively. The pyrrolidine ring attached to the indolizine ring system has envelope conformation, with atom N1 on the flap. The maximum deviation from planarity for N1 is -0.563 (2) Å. The two aromatic rings are almost perpendicular to each other. The dihedral angle between the plane of the four atoms C2, C3, C4 and C5 of pyrrolidine ring and the plane of the four atoms C6, C7, N1 and C9 forming the base of the chair conformation is 89.6 (1)°. Intermolecular O1–H1···I1 and O2–H2···I1 hydrogen bonds link the molecules into extended chains running along the b axis (Table 1. and Figure 2.).

For the biological activity of indolizine derivatives, see: Gubin et al. (1992); Gupta et al. (2003); Malonne et al. (1998); Medda et al. (2003); Nardelli (1983); Pearson & Guo (2001); Ruprecht et al. (1989). For puckering analysis, see: Cremer & Pople (1975). For the preparation, see: Šafář et al. (2010). For related structures, see: Clark & Reid (1995); Pedersen (1967).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).
[Figure 2] Fig. 2. Packing view of the title compound. Molecular chains along b are generated by O–H···I hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
(4R,6S,7S,8S,8aS)-6-Ethyl-7,8-dihydroxy- 4-methyl-1,2,3,5,6,7,8,8a-octahydroindolizin-4-ium iodide top
Crystal data top
C11H22NO2+·IF(000) = 328
Mr = 327.20Dx = 1.595 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3330 reflections
a = 8.18603 (14) Åθ = 3.6–29.4°
b = 10.82977 (14) ŵ = 2.34 mm1
c = 8.19874 (13) ÅT = 298 K
β = 110.3688 (19)°Prism, colourless
V = 681.39 (2) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3330 independent reflections
Radiation source: fine-focus sealed tube3176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.434 pixels mm-1θmax = 29.4°, θmin = 3.6°
ω and φ scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1414
Tmin = 0.520, Tmax = 0.638l = 1110
18648 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.2787P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.64 e Å3
3330 reflectionsΔρmin = 0.69 e Å3
141 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.044 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1359 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.026 (17)
Crystal data top
C11H22NO2+·IV = 681.39 (2) Å3
Mr = 327.20Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.18603 (14) ŵ = 2.34 mm1
b = 10.82977 (14) ÅT = 298 K
c = 8.19874 (13) Å0.30 × 0.25 × 0.20 mm
β = 110.3688 (19)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3330 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3176 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.638Rint = 0.020
18648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.049Δρmax = 0.64 e Å3
S = 0.91Δρmin = 0.69 e Å3
3330 reflectionsAbsolute structure: Flack (1983), 1359 Friedel pairs
141 parametersAbsolute structure parameter: 0.026 (17)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.5506 (4)0.1519 (3)0.1098 (4)0.0581 (7)
H2A0.45070.20560.05990.070*
H2B0.60550.13850.02370.070*
C30.4953 (5)0.0317 (3)0.1635 (5)0.0735 (9)
H3A0.54870.03650.12380.088*
H3B0.36970.02290.11340.088*
C40.5545 (4)0.0321 (3)0.3627 (4)0.0538 (6)
H4A0.45900.00990.40120.065*
H4B0.64950.02560.41220.065*
C50.6143 (3)0.1645 (2)0.4157 (3)0.0376 (4)
H50.51150.21330.40920.045*
C60.7478 (3)0.1787 (2)0.5989 (3)0.0358 (4)
H60.70880.12940.67870.043*
C70.9331 (3)0.13766 (19)0.6181 (3)0.0336 (4)
H71.01330.16410.73210.040*
C80.9902 (3)0.19544 (19)0.4777 (3)0.0340 (4)
H80.99140.28540.49130.041*
C90.8601 (3)0.1627 (2)0.2992 (3)0.0395 (5)
H9A0.89940.19780.21030.047*
H9B0.85620.07370.28530.047*
C100.6736 (4)0.3470 (2)0.2554 (4)0.0565 (7)
H10A0.70830.37030.15920.085*
H10B0.75170.38340.36030.085*
H10C0.55720.37570.23520.085*
C111.1720 (3)0.1536 (3)0.4865 (3)0.0477 (6)
H11A1.16880.06620.45980.057*
H11B1.20440.19770.39940.057*
C121.3095 (3)0.1765 (3)0.6658 (4)0.0586 (7)
H12A1.42330.16150.66110.088*
H12B1.28940.12200.74920.088*
H12C1.30200.26060.69980.088*
N10.6791 (2)0.20968 (18)0.2730 (2)0.0373 (4)
O10.7466 (2)0.30534 (17)0.6448 (3)0.0537 (5)
H10.82650.31850.73670.080*
O20.9442 (2)0.00727 (14)0.6053 (2)0.0444 (4)
H20.94050.02490.69450.067*
I10.11548 (2)0.38255 (2)0.028309 (17)0.05615 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0441 (13)0.079 (2)0.0373 (12)0.0013 (13)0.0032 (10)0.0131 (12)
C30.0651 (18)0.070 (2)0.072 (2)0.0226 (16)0.0065 (16)0.0302 (17)
C40.0494 (13)0.0441 (13)0.0663 (17)0.0150 (11)0.0180 (12)0.0109 (12)
C50.0291 (9)0.0385 (10)0.0444 (12)0.0017 (8)0.0118 (8)0.0050 (9)
C60.0329 (9)0.0395 (11)0.0371 (10)0.0043 (8)0.0150 (8)0.0039 (9)
C70.0351 (10)0.0352 (10)0.0304 (10)0.0048 (8)0.0112 (8)0.0018 (8)
C80.0288 (9)0.0361 (10)0.0351 (10)0.0007 (8)0.0088 (8)0.0050 (8)
C90.0354 (10)0.0501 (12)0.0321 (10)0.0021 (9)0.0107 (8)0.0033 (9)
C100.0488 (13)0.0441 (14)0.0606 (15)0.0033 (9)0.0011 (11)0.0162 (10)
C110.0309 (10)0.0685 (17)0.0435 (13)0.0013 (10)0.0127 (10)0.0097 (11)
C120.0313 (11)0.082 (2)0.0570 (16)0.0028 (12)0.0086 (11)0.0059 (15)
N10.0317 (8)0.0411 (9)0.0318 (9)0.0007 (7)0.0017 (7)0.0010 (7)
O10.0487 (10)0.0491 (10)0.0534 (10)0.0136 (8)0.0054 (8)0.0195 (8)
O20.0575 (10)0.0344 (8)0.0492 (10)0.0114 (7)0.0286 (8)0.0114 (7)
I10.06754 (11)0.06164 (10)0.04070 (9)0.00802 (11)0.02063 (6)0.01043 (10)
Geometric parameters (Å, º) top
C2—C31.494 (5)C8—C91.522 (3)
C2—N11.520 (3)C8—C111.533 (3)
C2—H2A0.9700C8—H80.9800
C2—H2B0.9700C9—N11.510 (3)
C3—C41.533 (5)C9—H9A0.9700
C3—H3A0.9700C9—H9B0.9700
C3—H3B0.9700C10—N11.493 (3)
C4—C51.528 (3)C10—H10A0.9600
C4—H4A0.9700C10—H10B0.9600
C4—H4B0.9700C10—H10C0.9600
C5—N11.523 (3)C11—C121.529 (4)
C5—C61.527 (3)C11—H11A0.9700
C5—H50.9800C11—H11B0.9700
C6—O11.423 (3)C12—H12A0.9600
C6—C71.535 (3)C12—H12B0.9600
C6—H60.9800C12—H12C0.9600
C7—O21.421 (3)O1—H10.8200
C7—C81.519 (3)O2—H20.8200
C7—H70.9800
C3—C2—N1106.7 (2)C7—C8—C11113.04 (18)
C3—C2—H2A110.4C9—C8—C11108.61 (19)
N1—C2—H2A110.4C7—C8—H8108.5
C3—C2—H2B110.4C9—C8—H8108.5
N1—C2—H2B110.4C11—C8—H8108.5
H2A—C2—H2B108.6N1—C9—C8112.42 (18)
C2—C3—C4107.2 (2)N1—C9—H9A109.1
C2—C3—H3A110.3C8—C9—H9A109.1
C4—C3—H3A110.3N1—C9—H9B109.1
C2—C3—H3B110.3C8—C9—H9B109.1
C4—C3—H3B110.3H9A—C9—H9B107.9
H3A—C3—H3B108.5N1—C10—H10A109.5
C5—C4—C3104.9 (2)N1—C10—H10B109.5
C5—C4—H4A110.8H10A—C10—H10B109.5
C3—C4—H4A110.8N1—C10—H10C109.5
C5—C4—H4B110.8H10A—C10—H10C109.5
C3—C4—H4B110.8H10B—C10—H10C109.5
H4A—C4—H4B108.8C12—C11—C8112.0 (2)
N1—C5—C6113.69 (17)C12—C11—H11A109.2
N1—C5—C4104.21 (19)C8—C11—H11A109.2
C6—C5—C4115.0 (2)C12—C11—H11B109.2
N1—C5—H5107.9C8—C11—H11B109.2
C6—C5—H5107.9H11A—C11—H11B107.9
C4—C5—H5107.9C11—C12—H12A109.5
O1—C6—C5106.78 (18)C11—C12—H12B109.5
O1—C6—C7110.46 (18)H12A—C12—H12B109.5
C5—C6—C7114.51 (17)C11—C12—H12C109.5
O1—C6—H6108.3H12A—C12—H12C109.5
C5—C6—H6108.3H12B—C12—H12C109.5
C7—C6—H6108.3C10—N1—C9110.1 (2)
O2—C7—C8108.01 (17)C10—N1—C2109.6 (2)
O2—C7—C6111.47 (18)C9—N1—C2109.31 (19)
C8—C7—C6110.88 (17)C10—N1—C5112.8 (2)
O2—C7—H7108.8C9—N1—C5111.69 (16)
C8—C7—H7108.8C2—N1—C5103.01 (19)
C6—C7—H7108.8C6—O1—H1109.5
C7—C8—C9109.65 (17)C7—O2—H2109.5
N1—C2—C3—C413.6 (3)C7—C8—C9—N160.6 (2)
C2—C3—C4—C510.0 (3)C11—C8—C9—N1175.43 (19)
C3—C4—C5—N129.6 (3)C7—C8—C11—C1254.9 (3)
C3—C4—C5—C6154.8 (2)C9—C8—C11—C12176.8 (2)
N1—C5—C6—O177.7 (2)C8—C9—N1—C1071.0 (2)
C4—C5—C6—O1162.2 (2)C8—C9—N1—C2168.5 (2)
N1—C5—C6—C744.9 (3)C8—C9—N1—C555.1 (2)
C4—C5—C6—C775.2 (3)C3—C2—N1—C10152.2 (3)
O1—C6—C7—O2168.90 (18)C3—C2—N1—C987.0 (3)
C5—C6—C7—O270.5 (2)C3—C2—N1—C531.8 (3)
O1—C6—C7—C870.7 (2)C6—C5—N1—C1078.1 (2)
C5—C6—C7—C849.9 (2)C4—C5—N1—C10155.86 (19)
O2—C7—C8—C966.0 (2)C6—C5—N1—C946.5 (2)
C6—C7—C8—C956.5 (2)C4—C5—N1—C979.5 (2)
O2—C7—C8—C1155.4 (2)C6—C5—N1—C2163.7 (2)
C6—C7—C8—C11177.79 (19)C4—C5—N1—C237.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I1i0.822.803.6187 (18)173
O2—H2···I1ii0.822.673.4798 (16)172
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H22NO2+·I
Mr327.20
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)8.18603 (14), 10.82977 (14), 8.19874 (13)
β (°) 110.3688 (19)
V3)681.39 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.520, 0.638
No. of measured, independent and
observed [I > 2σ(I)] reflections
18648, 3330, 3176
Rint0.020
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 0.91
No. of reflections3330
No. of parameters141
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.69
Absolute structureFlack (1983), 1359 Friedel pairs
Absolute structure parameter0.026 (17)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I1i0.822.803.6187 (18)173.2
O2—H2···I1ii0.822.673.4798 (16)172.2
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1.
 

Acknowledgements

The authors thank the Grant Agency of Slovak Republic (grant Nos. 1/0429/11, 1/0679/11) and the Slovak Research and Development Agency (under contract No. APVV-0204–10) for financial support of this research program.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1362.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–243.  CAS Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationPedersen, B. F. (1967). Acta Chem. Scand. 21, 1415–1424.  CrossRef CAS Web of Science Google Scholar
First citationRuprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149–157.  CAS PubMed Web of Science Google Scholar
First citationŠafář, P., Žužiová, J., Tóthová, E., Marchalín, Š., Prónayová, N., Švorc, Ľ., Vrábel, V., Comesse, S. & Daich, A. (2010). Tetrahedron Asymmetry, 21, 623–630.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds