metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(di­methyl sulfoxide-κO)bis­(saccharinato-κN)cobalt(II)

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: vanzylw@ukzn.ac.za

(Received 18 October 2011; accepted 28 October 2011; online 5 November 2011)

The title complex, [Co(C7H4NO3S)2(C2H6OS)2(H2O)2], contains a Co2+ cation in an octa­hedral coordination environment. The metal atom is surrounded by two different neutral ligands, namely dimethyl­sulfoxide (DMSO) and water, each coordinating through the O atom. The anionic saccharinate (sac; 1,1,3-trioxo-2,3-dihydro-1λ6,2-benzothia­zol-2-ide) ligand coordinates through the N atom. Each of the three similar ligand pairs is in a trans configuration with respect to each other. The Co atom lies on a crystallographic center of symmetry and the octa­hedral geometry is not significantly distorted. A short O—H⋯O hydrogen bond is present between a water H atom and the ketone O atom; two longer hydrogen bonds (intra- and inter­molecular) are also present between a water H and a sulfonic O atom, forming a supramolecular assembly through head-to-tail aggregation between adjacent complexes.

Related literature

For a general review article on the coordination chemistry of saccharinate ligands, see: Baran & Yilmaz (2006[Baran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980-1999.]). For cobalt(II) saccharinate complexes, see: Deng et al. (2008[Deng, R. M. K., Dillon, K. B., Goeta, A. E. & Sekwale, M. S. (2008). Inorg. Chim. Acta, 361, 1542-1546.]) and for cobalt(II) complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011[Batsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225-231.]). For the preparation of cobalt(II) and other divalent metal precursor complexes, see: Haider et al. (1985[Haider, S. Z., Malik, K. M. A., Ahmed, K. J., Kauffman, G. B. & Karbassi, M. (1985). Inorg. Synth. 23, 47-51.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4NO3S)2(C2H6OS)2(H2O)2]

  • Mr = 615.56

  • Monoclinic, P 21 /c

  • a = 10.2304 (3) Å

  • b = 15.1418 (6) Å

  • c = 7.8615 (3) Å

  • β = 98.068 (2)°

  • V = 1205.75 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 173 K

  • 0.27 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.753, Tmax = 0.897

  • 5888 measured reflections

  • 3000 independent reflections

  • 2301 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.06

  • 3000 reflections

  • 171 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.98 1.73 2.646 (2) 155 (3)
O5—H5B⋯O1 0.98 2.09 2.803 (2) 128 (2)
O5—H5B⋯O1ii 0.98 2.06 2.904 (2) 143 (2)
C8—H8B⋯O5iii 0.98 2.54 3.277 (2) 132
C8—H8B⋯O4iv 0.98 2.51 3.383 (2) 148
C9—H9A⋯O3i 0.98 2.58 3.363 (2) 137
C9—H9B⋯O4iv 0.98 2.58 3.432 (2) 146
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one 1,1-dioxide; Hsac) is a widely used artificial sweetening agent. The imino hydrogen is acidic and can be readily deprotonated. The coordination chemistry of this anion is versatile due to the different coordination sites to metallic centers it can accommodate, i.e., one N, one O (carbonylic) and two O (sulfonic) atoms. These donor atoms of the anion can thus readily generate either N– or O-monodentate or bidentate (N, O) coordination. Saccharin is normally used as the sodium or calcium salt which dramatically improves water solubility. Most metal complexes contain the deprotonated form of saccharin, and this saccharinate anion (sac) is commercially available as the sodium salt, used in the present study. The reaction of sodium saccharinate with the first row divalent transition metal ions results in coordination complexes with general formula [M(sac)2(H2O)4].2H2O, (M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn), which all show a clear preference to bind through the deprotonated anionic N-atom (Baran and Yilmaz, 2006). These octahedral complexes contain two N-bonded sac ligands in trans positions, and complexes of the type [M(sac)2(H2O)4].2H2O are thus commonly used as precursors in the synthesis of mixed-ligand saccharinate complexes. The aqua ligands in these metal complexes are labile and readily displaced by direct reaction of neutral ligands. The addition of the ligands to the solutions of the complexes usually results in the substitution of all four aqua ligands, thereby forming stable new mixed-ligand complexes. In cases where the incoming neutral ligand is relatively bulky, as in the present study, it causes steric hindrance and only two of the four aqua ligands become displaced in order for the Co center to remain octahedral. Although there are a number of Co(II) saccharinate complexes previously reported (Batsanov et al., 2011, and refs. therein), the present study reports the first example of a structurally characterized Co(II) complex that contains both saccharinate and dmso ligands.

Related literature top

For a general review article on the coordination chemistry of saccharinate ligands, see: Baran & Yilmaz (2006). For cobalt(II) saccharinate complexes, see: Deng et al. (2008) and for cobalt(II) complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011). For the preparation of cobalt(II) and other divalent metal precursor complexes, see: Haider et al. (1985).

Experimental top

[Co(sac)2(H2O)4].2H2O was prepared as per literature method (Haider et al., 1985). The red crystals of [Co(sac)2(H2O)4].2H2O (0.932 g; 1.80 mmol) was placed in a 100 ml beaker and dissolved in excess amount of dimethyl sulfoxide (dmso) (20 ml). The reaction mixture was gently heated on a heating plate with stirring to reduce the volume of dmso to ~7 ml. The beaker was removed from the heat source and allowed to stand for 10 days during which time large light red blocky crystals of the title compound were obtained. Yield (1.00 g, 93.0%). Mp: 393 K; 120 ° C. IR-ATR (cm-1): 3486.98, 3005.41 n(OH); 1618 n(C=O); 1584, 1460 n(C=C); 1256 n(O=S=O); 1141, 949 n(S=O). No NMR data were recorded due to the paramagnetic nature of the Co(II) complex. Single crystals were obtained by slow evaporation of dmso solvent.

Refinement top

All hydrogen atoms could be found in the difference electron density maps. All, except H5A and H5B on O5, were placed in idealised positions refining in riding models with Uiso set at 1.2 or 1.5 times those of their parent atoms. The water hydrogen atoms H5A and H5B were located in the difference electron density maps and refined with independent isotropic temperature factors and simple bond length constraints of d(O-H) = 0.980 (2) Å.

Structure description top

Saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one 1,1-dioxide; Hsac) is a widely used artificial sweetening agent. The imino hydrogen is acidic and can be readily deprotonated. The coordination chemistry of this anion is versatile due to the different coordination sites to metallic centers it can accommodate, i.e., one N, one O (carbonylic) and two O (sulfonic) atoms. These donor atoms of the anion can thus readily generate either N– or O-monodentate or bidentate (N, O) coordination. Saccharin is normally used as the sodium or calcium salt which dramatically improves water solubility. Most metal complexes contain the deprotonated form of saccharin, and this saccharinate anion (sac) is commercially available as the sodium salt, used in the present study. The reaction of sodium saccharinate with the first row divalent transition metal ions results in coordination complexes with general formula [M(sac)2(H2O)4].2H2O, (M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn), which all show a clear preference to bind through the deprotonated anionic N-atom (Baran and Yilmaz, 2006). These octahedral complexes contain two N-bonded sac ligands in trans positions, and complexes of the type [M(sac)2(H2O)4].2H2O are thus commonly used as precursors in the synthesis of mixed-ligand saccharinate complexes. The aqua ligands in these metal complexes are labile and readily displaced by direct reaction of neutral ligands. The addition of the ligands to the solutions of the complexes usually results in the substitution of all four aqua ligands, thereby forming stable new mixed-ligand complexes. In cases where the incoming neutral ligand is relatively bulky, as in the present study, it causes steric hindrance and only two of the four aqua ligands become displaced in order for the Co center to remain octahedral. Although there are a number of Co(II) saccharinate complexes previously reported (Batsanov et al., 2011, and refs. therein), the present study reports the first example of a structurally characterized Co(II) complex that contains both saccharinate and dmso ligands.

For a general review article on the coordination chemistry of saccharinate ligands, see: Baran & Yilmaz (2006). For cobalt(II) saccharinate complexes, see: Deng et al. (2008) and for cobalt(II) complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011). For the preparation of cobalt(II) and other divalent metal precursor complexes, see: Haider et al. (1985).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP molecular structure of the title complex, shown with 50% probability ellipsoids.
Diaquabis(dimethyl sulfoxide-κO)bis(1,1,3-trioxo-2,3- dihydro-1λ6,2-benzothiazol-2-ido-κN)cobalt(II) top
Crystal data top
[Co(C7H4NO3S)2(C2H6OS)2(H2O)2]F(000) = 634
Mr = 615.56Dx = 1.695 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5888 reflections
a = 10.2304 (3) Åθ = 2.4–28.3°
b = 15.1418 (6) ŵ = 1.12 mm1
c = 7.8615 (3) ÅT = 173 K
β = 98.068 (2)°Block, light red
V = 1205.75 (8) Å30.27 × 0.15 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3000 independent reflections
Radiation source: fine-focus sealed tube2301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
1.2° φ scans and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.753, Tmax = 0.897k = 2020
5888 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0497P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3000 reflectionsΔρmax = 0.71 e Å3
171 parametersΔρmin = 0.49 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (11)
Crystal data top
[Co(C7H4NO3S)2(C2H6OS)2(H2O)2]V = 1205.75 (8) Å3
Mr = 615.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.2304 (3) ŵ = 1.12 mm1
b = 15.1418 (6) ÅT = 173 K
c = 7.8615 (3) Å0.27 × 0.15 × 0.10 mm
β = 98.068 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2301 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.897Rint = 0.018
5888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0302 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.71 e Å3
3000 reflectionsΔρmin = 0.49 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.00000.01579 (11)
S10.27267 (4)0.50687 (3)0.28359 (5)0.01976 (12)
S20.51966 (4)0.68690 (3)0.19988 (6)0.02130 (13)
O10.37735 (12)0.46878 (9)0.40314 (15)0.0278 (3)
O20.24179 (13)0.59763 (9)0.31675 (17)0.0305 (3)
O30.18849 (12)0.43540 (8)0.16410 (15)0.0251 (3)
O40.51937 (12)0.63688 (8)0.03114 (15)0.0222 (3)
O50.60377 (12)0.47674 (8)0.24012 (16)0.0218 (3)
H5A0.6902 (13)0.5053 (17)0.246 (4)0.087 (11)*
H5B0.570 (3)0.4869 (16)0.3492 (18)0.062 (8)*
N10.30080 (14)0.49352 (9)0.08660 (19)0.0193 (3)
C10.13015 (16)0.44084 (11)0.2695 (2)0.0192 (4)
C20.05764 (17)0.41415 (12)0.3962 (2)0.0240 (4)
H20.08200.43070.51290.029*
C30.05215 (19)0.36209 (12)0.3448 (3)0.0296 (4)
H30.10560.34330.42750.036*
C40.08537 (19)0.33692 (14)0.1742 (3)0.0324 (5)
H40.16110.30100.14280.039*
C50.01053 (17)0.36300 (12)0.0487 (2)0.0259 (4)
H50.03340.34520.06760.031*
C60.09874 (16)0.41590 (11)0.0990 (2)0.0196 (4)
C70.19847 (16)0.44925 (11)0.0076 (2)0.0192 (4)
C80.39348 (18)0.76726 (13)0.1549 (2)0.0296 (4)
H8A0.40550.79920.04980.044*
H8B0.39810.80890.25090.044*
H8C0.30720.73800.13910.044*
C90.65935 (19)0.75778 (13)0.2148 (3)0.0348 (5)
H9A0.74020.72230.23310.052*
H9B0.65810.79850.31140.052*
H9C0.65670.79150.10800.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01863 (18)0.01480 (18)0.01393 (18)0.00075 (12)0.00224 (13)0.00099 (12)
S10.0190 (2)0.0247 (2)0.0160 (2)0.00384 (16)0.00399 (17)0.00383 (16)
S20.0269 (2)0.0180 (2)0.0189 (2)0.00124 (17)0.00312 (17)0.00226 (17)
O10.0216 (7)0.0433 (8)0.0182 (7)0.0027 (6)0.0013 (5)0.0020 (6)
O20.0354 (8)0.0253 (7)0.0324 (8)0.0053 (6)0.0103 (6)0.0102 (6)
O30.0246 (6)0.0333 (7)0.0172 (6)0.0048 (5)0.0023 (5)0.0029 (5)
O40.0319 (7)0.0156 (6)0.0195 (6)0.0010 (5)0.0049 (5)0.0023 (5)
O50.0237 (7)0.0248 (6)0.0169 (6)0.0007 (5)0.0034 (5)0.0001 (5)
N10.0181 (7)0.0241 (8)0.0162 (7)0.0029 (6)0.0042 (6)0.0019 (6)
C10.0188 (8)0.0185 (8)0.0202 (9)0.0005 (7)0.0026 (7)0.0017 (7)
C20.0255 (9)0.0261 (9)0.0216 (9)0.0020 (8)0.0077 (8)0.0009 (8)
C30.0288 (10)0.0325 (11)0.0301 (11)0.0060 (8)0.0129 (8)0.0005 (8)
C40.0263 (10)0.0361 (11)0.0351 (11)0.0113 (9)0.0057 (8)0.0021 (9)
C50.0231 (9)0.0301 (11)0.0237 (9)0.0043 (7)0.0005 (8)0.0050 (8)
C60.0180 (8)0.0205 (9)0.0200 (9)0.0017 (7)0.0019 (7)0.0004 (7)
C70.0189 (8)0.0209 (9)0.0176 (9)0.0022 (7)0.0022 (7)0.0011 (7)
C80.0351 (11)0.0248 (10)0.0291 (11)0.0070 (8)0.0049 (9)0.0041 (8)
C90.0332 (11)0.0313 (11)0.0399 (12)0.0098 (9)0.0058 (9)0.0143 (9)
Geometric parameters (Å, º) top
Co1—O5i2.0620 (12)C1—C21.383 (2)
Co1—O52.0620 (12)C1—C61.386 (2)
Co1—O4i2.0932 (12)C2—C31.385 (3)
Co1—O42.0932 (12)C2—H20.9500
Co1—N1i2.2396 (14)C3—C41.390 (3)
Co1—N12.2396 (14)C3—H30.9500
S1—O21.4420 (14)C4—C51.389 (3)
S1—O11.4423 (13)C4—H40.9500
S1—N11.6270 (15)C5—C61.387 (2)
S1—C11.7586 (17)C5—H50.9500
S2—O41.5272 (12)C6—C71.496 (2)
S2—C81.7731 (18)C8—H8A0.9800
S2—C91.7779 (18)C8—H8B0.9800
O3—C71.2383 (19)C8—H8C0.9800
O5—H5A0.980 (2)C9—H9A0.9800
O5—H5B0.980 (2)C9—H9B0.9800
N1—C71.370 (2)C9—H9C0.9800
O5i—Co1—O4i91.94 (5)C1—C2—C3116.79 (17)
O5—Co1—O4i88.06 (5)C1—C2—H2121.6
O5i—Co1—O488.06 (5)C3—C2—H2121.6
O5—Co1—O491.94 (5)C2—C3—C4121.08 (18)
O5i—Co1—N1i95.03 (5)C2—C3—H3119.5
O5—Co1—N1i84.97 (5)C4—C3—H3119.5
O4i—Co1—N1i94.77 (5)C5—C4—C3121.56 (18)
O4—Co1—N1i85.23 (5)C5—C4—H4119.2
O5i—Co1—N184.97 (5)C3—C4—H4119.2
O5—Co1—N195.03 (5)C6—C5—C4117.63 (17)
O4i—Co1—N185.23 (5)C6—C5—H5121.2
O4—Co1—N194.77 (5)C4—C5—H5121.2
O2—S1—O1115.14 (8)C1—C6—C5120.11 (16)
O2—S1—N1111.29 (8)C1—C6—C7111.46 (14)
O1—S1—N1110.87 (8)C5—C6—C7128.36 (16)
O2—S1—C1110.64 (8)O3—C7—N1124.77 (15)
O1—S1—C1110.29 (8)O3—C7—C6122.14 (15)
N1—S1—C197.19 (8)N1—C7—C6113.08 (14)
O4—S2—C8104.73 (8)S2—C8—H8A109.5
O4—S2—C9105.08 (8)S2—C8—H8B109.5
C8—S2—C998.91 (10)H8A—C8—H8B109.5
S2—O4—Co1125.54 (7)S2—C8—H8C109.5
Co1—O5—H5A108.2 (18)H8A—C8—H8C109.5
Co1—O5—H5B125.2 (16)H8B—C8—H8C109.5
H5A—O5—H5B108 (2)S2—C9—H9A109.5
C7—N1—S1110.58 (11)S2—C9—H9B109.5
C7—N1—Co1121.08 (11)H9A—C9—H9B109.5
S1—N1—Co1125.03 (8)S2—C9—H9C109.5
C2—C1—C6122.81 (16)H9A—C9—H9C109.5
C2—C1—S1130.12 (14)H9B—C9—H9C109.5
C6—C1—S1107.07 (12)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.981.732.646 (2)155 (3)
O5—H5B···O10.982.092.803 (2)128 (2)
O5—H5B···O1ii0.982.062.904 (2)143 (2)
C8—H8B···O5iii0.982.543.277 (2)132
C8—H8B···O4iv0.982.513.383 (2)148
C9—H9A···O3i0.982.583.363 (2)137
C9—H9B···O4iv0.982.583.432 (2)146
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C7H4NO3S)2(C2H6OS)2(H2O)2]
Mr615.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.2304 (3), 15.1418 (6), 7.8615 (3)
β (°) 98.068 (2)
V3)1205.75 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.27 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.753, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
5888, 3000, 2301
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.06
No. of reflections3000
No. of parameters171
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.49

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.981.732.646 (2)155 (3)
O5—H5B···O10.982.092.803 (2)127.9 (19)
O5—H5B···O1ii0.982.062.904 (2)143 (2)
C8—H8B···O5iii0.982.543.277 (2)132.00
C8—H8B···O4iv0.982.513.383 (2)148.00
C9—H9A···O3i0.982.583.363 (2)137.00
C9—H9B···O4iv0.982.583.432 (2)146.00
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

WEvZ gratefully acknowledges financial support from the University of KwaZulu-Natal. FSWP thanks the National Research Foundation (NRF) for an Innovative Grant.

References

First citationBaran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980–1999.  Web of Science CrossRef CAS Google Scholar
First citationBatsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, R. M. K., Dillon, K. B., Goeta, A. E. & Sekwale, M. S. (2008). Inorg. Chim. Acta, 361, 1542–1546.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaider, S. Z., Malik, K. M. A., Ahmed, K. J., Kauffman, G. B. & Karbassi, M. (1985). Inorg. Synth. 23, 47–51.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds