metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ2-acetato-tetra­aquadi-μ3-oxido-octaoxido­tetrauranium(VI) methanol disolvate tetrahydrate

aDepartment of Chemistry, Memorial University of Newfoundland, St. Johns, NL, A1B 3X7, Canada, and bDepartment of Chemistry and Centre for Chemical Analysis, Research and Training (C-CART), X-Ray Diffraction Laboratory, Memorial University of Newfoundland, St. Johns, NL, A1B 3X7, Canada
*Correspondence e-mail: louise.dawe@mun.ca

(Received 3 November 2011; accepted 24 November 2011; online 30 November 2011)

The centrosymmetric title tetra­mer, [U4(C2H3O2)4O10(H2O)4]·2CH4O, has a near planar core [maximum deviation from the least squares plane of 0.294 (6) Å]. It consists of two hexa­gonal–bipyramidally coordinated UVI atoms connected via μ2-O (acetate) and μ3-O (oxide) bridges in the equatorial plane to two penta­gonal–bipyramidally coordinated UVI atoms. The equatorial plane of each UVI atom is completed by a bound water mol­ecule, while the axial positions are occupied by uranyl (UO2)2+ O atoms. Multiple O—H⋯O hydrogen bonds are present, including a lattice methanol mol­ecule bound to one of the penta­gonal bipyramidal uranyl O atoms, as well as two different C11(6) chains orginating from a donor water mol­ecule, via a uranyl oxygen acceptor and an acetate acceptor on different, adjacent tetra­mers. Finally, the unit cell contains four UVI tetra­mers, all connected by hydrogen bonding, forming a supra­molecular R44(24) ring.

Related literature

For structurally similar tetra­meric complexes with UVI, M4[(UO2)4(μ3-O)2L4] (M = NH4+, K+, Cs+; L = phthalate), see: Charushnikova et al. (2005[Charushnikova, I. A., Krot, N. N., Polyakova, I. N. & Makarenkov, V. I. (2005). Radiochem. 47, 241-246.]), and with Bi, [Bi2(μ3-O)(OCH(CF3)2)2(μ-OCH(CF3)2)2(Solv)]2 (Solv = C7H8, Et2O, thf), see: Andrews et al. (2008[Andrews, P. C., Junk, P. C., Nuzhnaya, I. & Spiccia, L. (2008). Dalton Trans. pp. 2557-2568.]). For a planar, mixed valent UV2UVI2 alkoxide, see: Zozulin et al. (1982[Zozulin, A. J., Moody, D. C. & Ryan, R. R. (1982). Inorg. Chem. 21, 3083-3086.]). For a p-benzyl­calix[7]arene complex containing a hexa­nuclear UVI cluster with a planar tetra­meric core, see: Thuéry et al. (1999[Thuéry, P., Nierlich, M., Souley, B., Asfari, Z. & Vicens, J. (1999). J. Chem. Soc. Dalton Trans. pp. 2589-2594.]), and for dinuclear uranyl-containing salen [N,N′-ethyl­enebis(salicyl­imine)] complexes, see: Amato et al. (2007[Amato, M. E., Ballisteri, M. E., Pappalardo, A., Sciotto, D., Tomaselli, G. A. & Toscano, R. M. (2007). Tetrahedron, 63, 9751-9757.]). For bond-valence-sum calculations, see: Wills (2010[Wills, A. S. (2010). VaList. Program available from www.CCP14.ac.uk.]).

[Scheme 1]

Experimental

Crystal data
  • [U4(C2H3O2)4O10(H2O)4]·2CH4O

  • Mr = 1484.44

  • Monoclinic, P 21 /c

  • a = 8.334 (3) Å

  • b = 10.649 (3) Å

  • c = 16.763 (5) Å

  • β = 107.632 (4)°

  • V = 1417.8 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 22.87 mm−1

  • T = 163 K

  • 0.10 × 0.07 × 0.05 mm

Data collection
  • Rigaku Saturn70 CCD diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.638, Tmax = 0.880

  • 15149 measured reflections

  • 3255 independent reflections

  • 3136 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.09

  • 3255 reflections

  • 188 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.71 e Å−3

  • Δρmin = −2.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O9 0.84 2.31 3.009 (10) 141
O8—H8A⋯O7i 0.87 (6) 2.07 (6) 2.859 (8) 151 (7)
O8—H8B⋯O12ii 0.88 (7) 1.78 (6) 2.645 (8) 170 (9)
O11—H11A⋯O10iii 0.87 (7) 1.88 (7) 2.736 (7) 166 (8)
O11—H11B⋯O2iv 0.88 (7) 1.83 (7) 2.705 (7) 173 (7)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y, -z+1; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with our on-going studies on metal-binding properties of a new series of macrocylic polyamide compounds, we were interested in determining whether such macrocycles, by analogy with analogous salen (N,N'-Ethylenebis(salicylimine)) compounds, would also form stable uranyl complexes. Using similar conditions to those which Amato et al. (2007) employed with their salens, the title compound crystallized out in the form reported herein.

Bond valence sum calculations (Wills, 2010) performed on the title compound indicate that both crystallographically independent uranium atoms are in the +6 oxidations state (U1 = 6.095, U2 = 6.074). The centrosymmetric U(VI) tetramer consists of two hexagonal bipyramids, and two pentagonal bipyramids (U1 and U2, and symmetry equivalents (-x + 1, -y, -z + 1), respectively; Figure 1), with (UO2)2+ oxygen-atoms occupying the axial positions for both U1 and U2. For U1, the equatorial plane consists of trans-bidentate acetate anions, each with one bridging µ2-O-atom (O1 and O3), and a µ3-O2- anion (O5) trans to a water molecule. The equatorial plane of U2 is therefore composed of the aforementioned µ2-O and µ3-O atoms, and their inversion-symmetry generated counter-parts, as well as water molecule (O11). Similar to the description given by Andrews et al. (2008) for [Bi23-O)(OCH(CF3)2)2(µ-OCH(CF3)2)2(Solv)]2 (Solv = C7H8, Et2O, thf) tetramers, this complex consists of a near planar, ten atom "raft", with maximum deviation from the least squares plane [U1, U2, O1–5 and symmetry equivalents (-x + 1, -y, -z + 1)] of 0.294 (6) Å for O5. Examination of longer range interactions reveals numerous hydrogen bonds, including a lattice solvent methanol molecule bound to one of the pentagonal bipyramidal uranyl oxygen atoms (O12—H12···O9; Figure 1), which further bridges to a bound water molecule of a second tetramer (O8—H8B···O12iii, (iii) x, -y+1/2, z-1/2; Figure 2, green dashed lines.) The tetramers interact via an additional hydrogen bond, wherby the aforementioned water molecule acts as a donor to one of the hexagonal bipyramidal uranyl oxygen atoms on the first assembly (O8—H8A···O7ii, (ii) -x+1, y+1/2, -z+1/2; Figure 2, black dashed lines) leading to a 24-membered H-bonded ring (graph set notation R44(24)) which spans all four tetramers present in the unit cell.

Related literature top

For structurally similar tetrameric complexes with U(VI), M4[(UO2)43-O)2L4] (M = NH4+, K+, Cs+; L = phthalate), see: Charushnikova et al. (2005), and with Bi, [Bi23-O)(OCH(CF3)2)2(µ-OCH(CF3)2)2(Solv)]2 (Solv = C7H8, Et2O, thf), see: Andrews et al. (2008). For a planar, mixed valent U(V)2U(VI)2 alkoxide, see: Zozulin et al. (1982). For a p-benzylcalix[7]arene complex containing a hexanuclear U(VI) cluster with a planar tetrameric core, see: Thuéry et al. (1999), and for dinuclear uranyl-containing salen [N,N'-ethylenebis(salicylimine)] complexes, see: Amato et al. (2007). For bond-valence-sum calculations, see: Wills (2010).

Experimental top

160 mg (0.337 mmol) of uranyl acetate dihydrate (UO2(CH3COO)2.2H2O) was dissolved in 1 ml methanol, and warmed in a hot water bath (323 K) for 5 minutes. The solution was left at room temperature (293 K) for slow evaporation. Yellow prismatic crystals, suitable for analysis by X-ray diffraction, formed after one week.

Refinement top

The water H-atoms, H8(A,B) and H11(A,B), were located from difference Fourier maps, and were refined with distance and angle restraints: O—H = 0.87 (2) Å, H—O—H = 104.50 (4)°. The C-bound methyl and methanolic H-atoms were included in calculated positions and treated as riding atoms: X—H = 0.98 and 0.84 Å for H-methyl and H-OMe H-atoms, respectively. For all H atoms, Uiso(H) = k × Ueq(parent atom), where k = 1.2 for H-methyl and k = 1.5 for all O-bound H-atoms. The final electron density synthesis shows the highest peak of 1.71 eÅ3 located 0.98 Å from U2 and the deepest hole of -2.85 eÅ3 located 0.72 Å from U1 and may be the result of residual absorption effects.

Structure description top

In connection with our on-going studies on metal-binding properties of a new series of macrocylic polyamide compounds, we were interested in determining whether such macrocycles, by analogy with analogous salen (N,N'-Ethylenebis(salicylimine)) compounds, would also form stable uranyl complexes. Using similar conditions to those which Amato et al. (2007) employed with their salens, the title compound crystallized out in the form reported herein.

Bond valence sum calculations (Wills, 2010) performed on the title compound indicate that both crystallographically independent uranium atoms are in the +6 oxidations state (U1 = 6.095, U2 = 6.074). The centrosymmetric U(VI) tetramer consists of two hexagonal bipyramids, and two pentagonal bipyramids (U1 and U2, and symmetry equivalents (-x + 1, -y, -z + 1), respectively; Figure 1), with (UO2)2+ oxygen-atoms occupying the axial positions for both U1 and U2. For U1, the equatorial plane consists of trans-bidentate acetate anions, each with one bridging µ2-O-atom (O1 and O3), and a µ3-O2- anion (O5) trans to a water molecule. The equatorial plane of U2 is therefore composed of the aforementioned µ2-O and µ3-O atoms, and their inversion-symmetry generated counter-parts, as well as water molecule (O11). Similar to the description given by Andrews et al. (2008) for [Bi23-O)(OCH(CF3)2)2(µ-OCH(CF3)2)2(Solv)]2 (Solv = C7H8, Et2O, thf) tetramers, this complex consists of a near planar, ten atom "raft", with maximum deviation from the least squares plane [U1, U2, O1–5 and symmetry equivalents (-x + 1, -y, -z + 1)] of 0.294 (6) Å for O5. Examination of longer range interactions reveals numerous hydrogen bonds, including a lattice solvent methanol molecule bound to one of the pentagonal bipyramidal uranyl oxygen atoms (O12—H12···O9; Figure 1), which further bridges to a bound water molecule of a second tetramer (O8—H8B···O12iii, (iii) x, -y+1/2, z-1/2; Figure 2, green dashed lines.) The tetramers interact via an additional hydrogen bond, wherby the aforementioned water molecule acts as a donor to one of the hexagonal bipyramidal uranyl oxygen atoms on the first assembly (O8—H8A···O7ii, (ii) -x+1, y+1/2, -z+1/2; Figure 2, black dashed lines) leading to a 24-membered H-bonded ring (graph set notation R44(24)) which spans all four tetramers present in the unit cell.

For structurally similar tetrameric complexes with U(VI), M4[(UO2)43-O)2L4] (M = NH4+, K+, Cs+; L = phthalate), see: Charushnikova et al. (2005), and with Bi, [Bi23-O)(OCH(CF3)2)2(µ-OCH(CF3)2)2(Solv)]2 (Solv = C7H8, Et2O, thf), see: Andrews et al. (2008). For a planar, mixed valent U(V)2U(VI)2 alkoxide, see: Zozulin et al. (1982). For a p-benzylcalix[7]arene complex containing a hexanuclear U(VI) cluster with a planar tetrameric core, see: Thuéry et al. (1999), and for dinuclear uranyl-containing salen [N,N'-ethylenebis(salicylimine)] complexes, see: Amato et al. (2007). For bond-valence-sum calculations, see: Wills (2010).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. 50% displacement ellipsoid representation of the title compound; hydrogen bonding indicated by dashed lines. Symmetry code: (i) -x + 1, -y, -z + 1.
[Figure 2] Fig. 2. 50% displacement ellipsoid representation of the packed unit cell for the title compound; hydrogen bonding indicated by dashed lines. H-bonding for O11—H11A···O10iv and O11—H11B···O2v not shown. Symmetry codes: (ii)-x + 1, y + 1/2, -z + 1/2, (vi) x, -y + 1/2, z + 1/2, (vii) -x + 1, -y + 1, -z + 1, (viii)x, y + 1, z, (ix) -x + 1, y + 1/2, -z + 3/2.
Tetra-µ2-acetato-tetraaquadi-µ3-oxido-octaoxidotetrauranium(VI) methanol disolvate tetrahydrate top
Crystal data top
[U4(C2H3O2)4O10(H2O)4]·2CH4OF(000) = 1296
Mr = 1484.44Dx = 3.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 4946 reflections
a = 8.334 (3) Åθ = 1.9–29.5°
b = 10.649 (3) ŵ = 22.87 mm1
c = 16.763 (5) ÅT = 163 K
β = 107.632 (4)°Prism, yellow
V = 1417.8 (8) Å30.10 × 0.07 × 0.05 mm
Z = 2
Data collection top
Rigaku Saturn70 CCD
diffractometer
3255 independent reflections
Radiation source: fine-focus sealed tube3136 reflections with I > 2σ(I)
Graphite - Rigaku SHINE monochromatorRint = 0.076
Detector resolution: 14.63 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1010
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
k = 1313
Tmin = 0.638, Tmax = 0.880l = 2121
15149 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0469P)2 + 6.6005P]
where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 1.71 e Å3
6 restraintsΔρmin = 2.85 e Å3
Crystal data top
[U4(C2H3O2)4O10(H2O)4]·2CH4OV = 1417.8 (8) Å3
Mr = 1484.44Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.334 (3) ŵ = 22.87 mm1
b = 10.649 (3) ÅT = 163 K
c = 16.763 (5) Å0.10 × 0.07 × 0.05 mm
β = 107.632 (4)°
Data collection top
Rigaku Saturn70 CCD
diffractometer
3255 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
3136 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.880Rint = 0.076
15149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.71 e Å3
3255 reflectionsΔρmin = 2.85 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.41912 (3)0.20869 (2)0.332933 (15)0.01529 (10)
U20.71490 (3)0.06455 (2)0.542406 (14)0.01236 (10)
O10.1576 (7)0.0796 (5)0.3408 (3)0.0247 (11)
O20.1274 (7)0.1931 (5)0.2295 (3)0.0272 (12)
O30.7084 (7)0.2370 (6)0.4457 (4)0.0296 (13)
O40.6738 (7)0.3262 (6)0.3266 (4)0.0306 (13)
O50.4581 (6)0.0936 (5)0.4484 (3)0.0217 (11)
O60.3486 (7)0.3399 (5)0.3788 (4)0.0277 (12)
O70.4880 (7)0.0816 (5)0.2841 (4)0.0277 (12)
O80.3755 (7)0.3336 (5)0.2040 (3)0.0230 (11)
H8A0.403 (12)0.406 (4)0.188 (5)0.034*
H8B0.367 (13)0.286 (6)0.160 (4)0.034*
O90.6588 (7)0.1628 (5)0.6159 (4)0.0264 (12)
O100.7947 (6)0.0283 (5)0.4734 (3)0.0236 (11)
O110.9960 (6)0.1499 (5)0.5992 (3)0.0202 (10)
H11A1.075 (7)0.121 (8)0.580 (5)0.030*
H11B1.047 (9)0.200 (7)0.641 (4)0.030*
O120.3208 (9)0.2904 (6)0.5615 (4)0.0376 (15)
H120.38760.23460.55570.056*
C10.0629 (9)0.1183 (7)0.2696 (4)0.0207 (14)
C20.1168 (10)0.0795 (8)0.2383 (6)0.0332 (19)
H2A0.16010.06630.28590.040*
H2B0.12610.00130.20640.040*
H2C0.18250.14540.20200.040*
C30.7675 (10)0.2993 (7)0.3966 (5)0.0239 (16)
C40.9472 (12)0.3420 (11)0.4242 (7)0.049 (3)
H4A0.96390.40530.38500.059*
H4B1.02120.27010.42520.059*
H4C0.97410.37850.48030.059*
C50.4006 (16)0.4061 (10)0.5715 (6)0.051 (3)
H5A0.40340.44180.62580.062*
H5B0.33880.46280.52670.062*
H5C0.51590.39550.56920.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01397 (15)0.01724 (15)0.01456 (16)0.00003 (8)0.00417 (11)0.00355 (8)
U20.00972 (14)0.01612 (15)0.01148 (15)0.00104 (8)0.00357 (10)0.00029 (8)
O10.018 (3)0.031 (3)0.021 (3)0.001 (2)0.000 (2)0.014 (2)
O20.023 (3)0.037 (3)0.018 (3)0.006 (2)0.002 (2)0.015 (2)
O30.020 (3)0.034 (3)0.033 (3)0.006 (2)0.005 (2)0.016 (3)
O40.022 (3)0.043 (3)0.025 (3)0.007 (2)0.003 (2)0.005 (2)
O50.012 (2)0.031 (3)0.019 (3)0.006 (2)0.0002 (19)0.010 (2)
O60.019 (3)0.032 (3)0.029 (3)0.006 (2)0.003 (2)0.001 (2)
O70.026 (3)0.029 (3)0.029 (3)0.002 (2)0.011 (2)0.001 (2)
O80.023 (3)0.025 (3)0.022 (3)0.001 (2)0.008 (2)0.011 (2)
O90.021 (3)0.029 (3)0.032 (3)0.000 (2)0.011 (2)0.008 (2)
O100.016 (2)0.032 (3)0.022 (3)0.004 (2)0.004 (2)0.009 (2)
O110.014 (2)0.027 (3)0.022 (3)0.006 (2)0.009 (2)0.010 (2)
O120.042 (4)0.040 (4)0.033 (3)0.004 (3)0.014 (3)0.004 (3)
C10.017 (3)0.020 (3)0.020 (3)0.000 (3)0.001 (3)0.006 (3)
C20.016 (4)0.043 (5)0.036 (5)0.006 (3)0.001 (3)0.014 (4)
C30.023 (4)0.021 (3)0.031 (4)0.005 (3)0.012 (3)0.003 (3)
C40.028 (5)0.073 (7)0.044 (6)0.014 (5)0.006 (4)0.021 (5)
C50.072 (8)0.041 (5)0.032 (5)0.009 (5)0.002 (5)0.005 (4)
Geometric parameters (Å, º) top
U1—O71.765 (6)O4—C31.230 (10)
U1—O61.779 (6)O5—U2i2.252 (5)
U1—O52.230 (5)O8—H8A0.87 (2)
U1—O82.469 (5)O8—H8B0.87 (2)
U1—O42.494 (6)O11—H11A0.87 (2)
U1—O22.528 (6)O11—H11B0.87 (2)
U1—O32.592 (6)O12—C51.385 (12)
U1—O12.614 (5)O12—H120.8400
U2—O91.784 (5)C1—C21.487 (10)
U2—O101.795 (5)C2—H2A0.9800
U2—O5i2.252 (5)C2—H2B0.9800
U2—O52.261 (5)C2—H2C0.9800
U2—O112.422 (5)C3—C41.498 (12)
U2—O32.438 (5)C4—H4A0.9800
U2—O1i2.461 (5)C4—H4B0.9800
O1—C11.284 (8)C4—H4C0.9800
O1—U2i2.461 (5)C5—H5A0.9800
O2—C11.262 (9)C5—H5B0.9800
O3—C31.268 (9)C5—H5C0.9800
O7—U1—O6178.0 (3)O5—U2—O1i136.78 (17)
O7—U1—O589.9 (2)O11—U2—O1i77.77 (18)
O6—U1—O592.1 (2)O3—U2—O1i156.28 (18)
O7—U1—O889.4 (2)C1—O1—U2i159.4 (5)
O6—U1—O888.6 (2)C1—O1—U194.1 (4)
O5—U1—O8179.2 (2)U2i—O1—U1101.70 (18)
O7—U1—O488.0 (2)C1—O2—U198.8 (4)
O6—U1—O491.2 (2)C3—O3—U2153.0 (5)
O5—U1—O4114.24 (18)C3—O3—U192.6 (5)
O8—U1—O466.05 (18)U2—O3—U1103.06 (19)
O7—U1—O290.7 (2)C3—O4—U198.3 (5)
O6—U1—O288.5 (2)U1—O5—U2i122.8 (2)
O5—U1—O2114.60 (17)U1—O5—U2122.6 (2)
O8—U1—O265.10 (17)U2i—O5—U2109.9 (2)
O4—U1—O2131.14 (18)U1—O8—H8A140 (6)
O7—U1—O393.8 (2)U1—O8—H8B112 (5)
O6—U1—O387.1 (2)H8A—O8—H8B102 (4)
O5—U1—O364.64 (17)U2—O11—H11A118 (5)
O8—U1—O3115.72 (17)U2—O11—H11B136 (5)
O4—U1—O350.00 (18)H11A—O11—H11B105 (4)
O2—U1—O3175.5 (2)C5—O12—H12109.5
O7—U1—O190.8 (2)O2—C1—O1117.2 (6)
O6—U1—O190.1 (2)O2—C1—C2122.2 (7)
O5—U1—O164.63 (17)O1—C1—C2120.5 (7)
O8—U1—O1115.07 (17)C1—C2—H2A109.5
O4—U1—O1178.31 (18)C1—C2—H2B109.5
O2—U1—O149.97 (16)H2A—C2—H2B109.5
O3—U1—O1129.03 (16)C1—C2—H2C109.5
O9—U2—O10173.7 (2)H2A—C2—H2C109.5
O9—U2—O5i94.8 (2)H2B—C2—H2C109.5
O10—U2—O5i90.1 (2)O4—C3—O3118.9 (7)
O9—U2—O590.6 (2)O4—C3—C4120.7 (7)
O10—U2—O594.8 (2)O3—C3—C4120.4 (8)
O5i—U2—O570.1 (2)C3—C4—H4A109.5
O9—U2—O1186.2 (2)C3—C4—H4B109.5
O10—U2—O1187.5 (2)H4A—C4—H4B109.5
O5i—U2—O11144.73 (18)C3—C4—H4C109.5
O5—U2—O11145.17 (18)H4A—C4—H4C109.5
O9—U2—O393.4 (2)H4B—C4—H4C109.5
O10—U2—O385.7 (2)O12—C5—H5A109.5
O5i—U2—O3136.25 (19)O12—C5—H5B109.5
O5—U2—O366.93 (18)H5A—C5—H5B109.5
O11—U2—O378.65 (18)O12—C5—H5C109.5
O9—U2—O1i87.5 (2)H5A—C5—H5C109.5
O10—U2—O1i90.8 (2)H5B—C5—H5C109.5
O5i—U2—O1i67.08 (17)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O90.842.313.009 (10)141
O12—H12···O50.842.543.257 (9)143
O8—H8A···O7ii0.87 (6)2.07 (6)2.859 (8)151 (7)
O8—H8B···O12iii0.88 (7)1.78 (6)2.645 (8)170 (9)
O11—H11A···O10iv0.87 (7)1.88 (7)2.736 (7)166 (8)
O11—H11B···O2v0.88 (7)1.83 (7)2.705 (7)173 (7)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+2, y, z+1; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[U4(C2H3O2)4O10(H2O)4]·2CH4O
Mr1484.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)163
a, b, c (Å)8.334 (3), 10.649 (3), 16.763 (5)
β (°) 107.632 (4)
V3)1417.8 (8)
Z2
Radiation typeMo Kα
µ (mm1)22.87
Crystal size (mm)0.10 × 0.07 × 0.05
Data collection
DiffractometerRigaku Saturn70 CCD
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.638, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
15149, 3255, 3136
Rint0.076
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.09
No. of reflections3255
No. of parameters188
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.71, 2.85

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O90.842.313.009 (10)141
O8—H8A···O7i0.87 (6)2.07 (6)2.859 (8)151 (7)
O8—H8B···O12ii0.88 (7)1.78 (6)2.645 (8)170 (9)
O11—H11A···O10iii0.87 (7)1.88 (7)2.736 (7)166 (8)
O11—H11B···O2iv0.88 (7)1.83 (7)2.705 (7)173 (7)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y, z+1; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

The Egyptian Government is thanked for the scholarship to HS. LND would like to acknowledge Dr Amy Sarjeant, Northwestern University, for a helpful discussion about heavy atom structure refinements. Financial support from the Dean of Science and the Chemistry Department, Memorial University of Newfoundland, is acknowledged.

References

First citationAmato, M. E., Ballisteri, M. E., Pappalardo, A., Sciotto, D., Tomaselli, G. A. & Toscano, R. M. (2007). Tetrahedron, 63, 9751–9757.  Web of Science CrossRef CAS Google Scholar
First citationAndrews, P. C., Junk, P. C., Nuzhnaya, I. & Spiccia, L. (2008). Dalton Trans. pp. 2557–2568.  Web of Science CSD CrossRef Google Scholar
First citationCharushnikova, I. A., Krot, N. N., Polyakova, I. N. & Makarenkov, V. I. (2005). Radiochem. 47, 241–246.  CrossRef CAS Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThuéry, P., Nierlich, M., Souley, B., Asfari, Z. & Vicens, J. (1999). J. Chem. Soc. Dalton Trans. pp. 2589–2594.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWills, A. S. (2010). VaList. Program available from www.CCP14.ac.uk.  Google Scholar
First citationZozulin, A. J., Moody, D. C. & Ryan, R. R. (1982). Inorg. Chem. 21, 3083–3086.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds