metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3-di­methyl­amino-1-(pyridin-2-yl)prop-2-en-1-one-κ2N1,O]tris­­(nitrato-κ2O,O)gadolinium(III) ethanol disolvate

aDepartment of City Science, Jiangsu City Vocation College, Nanjing, 210003, People's Republic of China
*Correspondence e-mail: liuxia1107@hotmail.com

(Received 7 November 2011; accepted 24 November 2011; online 30 November 2011)

In the title compound, [Gd(NO3)3(C10H12N2O)2]·2C2H5OH, the GdIII ion and one nitrate anion are located on a twofold rotation axis. The GdIII ion is ten-coordinated by two N and two O atoms from two bidentate 3-(N,N-dimethyl­amino)-1-(2-pyrid­yl)prop-2-en-1-one) ligands and six O atoms from three nitrate anions in a distorted bicapped square-anti­prismatic geometry. In the crystal, the components are linked by O—H⋯O hydrogen bonds. The ethanol solvent mol­ecule is disordered over two positions in a ratio 0.615 (16):0.385 (16).

Related literature

For isotypic structures, see: Hu (2010[Hu, D.-H. (2010). Acta Cryst. E66, m709.]); Shen et al. (2011[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011). Acta Cryst. E67, m1357.]). For compounds containing the 3-(N,N-dimethyl­amino)-1-(2-pyrid­yl)prop-2-en-1-one) ligand, see: Bi (2009[Bi, J.-H. (2009). Acta Cryst. E65, m633.]); Hu & Tian (2007[Hu, T.-L. & Tian, J.-L. (2007). Acta Cryst. E63, m1092-m1093.]); Li et al. (2005[Li, G.-X., Li, J.-Q. & Kang, X.-Z. (2005). Acta Cryst. E61, m410-m411.]); Shen et al. (2011[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011). Acta Cryst. E67, m1357.]); Wang et al. (2005[Wang, P., Xu, X.-N., Zheng, L.-F. & Bao, Y.-Q. (2005). Acta Cryst. E61, m1462-m1463.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd(NO3)3(C10H12N2O)2]·2C2H6O

  • Mr = 787.85

  • Monoclinic, C 2/c

  • a = 21.322 (2) Å

  • b = 10.9876 (11) Å

  • c = 16.3844 (16) Å

  • β = 121.020 (2)°

  • V = 3289.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]) Tmin = 0.624, Tmax = 0.705

  • 8248 measured reflections

  • 3005 independent reflections

  • 2563 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.087

  • S = 1.02

  • 3005 reflections

  • 237 parameters

  • 130 restraints

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3 0.82 2.26 3.084 (12) 179
O7B—H7B⋯O3 0.82 2.19 3.00 (2) 168

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structures of some coordination complexes of the ligand 3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one) with Co, Ni, Zn, Cd, and Pr, have been described ((Bi et al., 2009; Hu & Tian, 2007; Li et al., 2005; Wang et al., 2005 Hu, 2010). Here we report the crystal structure of the title complex with gadolinium(III).

The coordination geometry about Gd(III) center is shown in Fig. 1. Each Gd(III) atom is in a ten coordinate environment comprising two oxygen atoms and two nitrogen atoms from the two bidentate organic ligands L and six oxygen atoms from three tertiary nitrate anions that act as bidentate anionic ligands. Thus the coordination polyhedron of Gd(III) is a distorted bicapped square antiprism. The Gd—O distances lie in two groups; those to the oxygen atoms of organic ligands are 2.348 Å, whereas those to nitrate O atoms are in the range of 2.494 (5)–2.549 (5) Å, which were similar to those in the Pr complex (Hu, 2010; Shen et al., 2011).

Related literature top

For isotypic structures, see: Hu (2010); Shen et al. (2011). For the compounds containing the 3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one) ligand, see: Bi (2009); Hu & Tian (2007); Li et al. (2005); Shen et al. (2011); Wang et al. (2005).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. For the synthesis of title compoud, a solution of ligand (0.2 mmol) and Gd(NO3)3 (0.1 mmol) in 50 ml e thanol was refluxed for 1 h, and then cooled to room temperature and filtered. Single crystals suitable for X-ray analysis were grown from the ethanol solution by slow evaporation at room temperature in air.

Refinement top

The ethanol solvent molecule is disordered over two orientations in a ratio 0.615 (16):0.385 (16). Restraints were applied to the displacement parameters and distances of the non-hydrogen atoms of the ethanol solvent molecule, respectively, in order to keep them structurely reasonable. The highest difference electron density peak of 1.28 e/Å3 and deepest hole of -0.64 e/Å3 were found to be 0.03 and 0.66 Å from the Gd1 atom, respectively. All the hydrogen atoms were geometrically positioned (C—H 0.93–0.97 Å and O—H 0.82 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atoms.

Structure description top

The crystal structures of some coordination complexes of the ligand 3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one) with Co, Ni, Zn, Cd, and Pr, have been described ((Bi et al., 2009; Hu & Tian, 2007; Li et al., 2005; Wang et al., 2005 Hu, 2010). Here we report the crystal structure of the title complex with gadolinium(III).

The coordination geometry about Gd(III) center is shown in Fig. 1. Each Gd(III) atom is in a ten coordinate environment comprising two oxygen atoms and two nitrogen atoms from the two bidentate organic ligands L and six oxygen atoms from three tertiary nitrate anions that act as bidentate anionic ligands. Thus the coordination polyhedron of Gd(III) is a distorted bicapped square antiprism. The Gd—O distances lie in two groups; those to the oxygen atoms of organic ligands are 2.348 Å, whereas those to nitrate O atoms are in the range of 2.494 (5)–2.549 (5) Å, which were similar to those in the Pr complex (Hu, 2010; Shen et al., 2011).

For isotypic structures, see: Hu (2010); Shen et al. (2011). For the compounds containing the 3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one) ligand, see: Bi (2009); Hu & Tian (2007); Li et al. (2005); Shen et al. (2011); Wang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering. The solvent molecule is omitted for clarity. symmetry operation i: -x, y, 0.5 - z.
Bis[3-dimethylamino-1-(pyridin-2-yl)prop-2-en-1-one- κ2N1,O]tris(nitrato-κ2O,O)gadolinium(III) ethanol disolvate top
Crystal data top
[Gd(NO3)3(C10H12N2O)2]·2C2H6OF(000) = 1588
Mr = 787.85Dx = 1.591 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1903 reflections
a = 21.322 (2) Åθ = 2.2–25.3°
b = 10.9876 (11) ŵ = 2.09 mm1
c = 16.3844 (16) ÅT = 293 K
β = 121.020 (2)°Block, colorless
V = 3289.5 (6) Å30.25 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3005 independent reflections
Radiation source: fine-focus sealed tube2563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
phi and ω scansθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2523
Tmin = 0.624, Tmax = 0.705k = 1113
8248 measured reflectionsl = 1319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 1.28 e Å3
130 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Gd(NO3)3(C10H12N2O)2]·2C2H6OV = 3289.5 (6) Å3
Mr = 787.85Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.322 (2) ŵ = 2.09 mm1
b = 10.9876 (11) ÅT = 293 K
c = 16.3844 (16) Å0.25 × 0.22 × 0.18 mm
β = 121.020 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3005 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2563 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.705Rint = 0.053
8248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049130 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.02Δρmax = 1.28 e Å3
3005 reflectionsΔρmin = 0.64 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd10.50000.68895 (3)0.75000.04053 (15)
C10.3556 (3)0.6948 (6)0.5155 (4)0.0635 (17)
H10.34560.76630.53690.076*
C20.3110 (4)0.6640 (7)0.4213 (4)0.072 (2)
H20.27230.71400.37990.086*
C30.3250 (4)0.5580 (8)0.3900 (4)0.077 (2)
H30.29630.53490.32660.093*
C40.3821 (3)0.4859 (6)0.4536 (4)0.0626 (18)
H40.39160.41230.43390.075*
C50.4255 (3)0.5237 (5)0.5470 (3)0.0455 (14)
C60.4913 (3)0.4574 (5)0.6206 (4)0.0478 (15)
C70.5062 (3)0.3384 (5)0.6053 (4)0.0547 (16)
H70.47420.29880.54860.066*
C80.5677 (4)0.2802 (5)0.6734 (4)0.0551 (16)
H80.59630.32320.72960.066*
C90.5512 (4)0.0952 (6)0.5869 (5)0.088 (2)
H9A0.50370.07840.57740.132*
H9B0.57720.02020.59620.132*
H9C0.54590.13630.53190.132*
C100.6585 (4)0.1229 (6)0.7484 (5)0.088 (2)
H10A0.68470.18630.79370.131*
H10B0.68830.09090.72520.131*
H10C0.64700.05900.77850.131*
N10.4118 (2)0.6285 (4)0.5772 (3)0.0490 (12)
N20.5917 (3)0.1716 (4)0.6697 (4)0.0614 (14)
N30.6199 (3)0.7461 (5)0.7143 (4)0.0601 (14)
N40.50000.9580 (8)0.75000.083 (3)
O10.5330 (2)0.5152 (3)0.6968 (2)0.0544 (11)
O20.5542 (2)0.7683 (4)0.6534 (3)0.0611 (12)
O30.6327 (2)0.7032 (3)0.7932 (3)0.0579 (11)
O40.6696 (3)0.7642 (5)0.6994 (3)0.0965 (17)
O50.5524 (2)0.8938 (4)0.8143 (3)0.0671 (12)
O60.50001.0655 (6)0.75000.098 (2)
O70.7048 (8)0.4494 (12)0.8453 (9)0.156 (6)0.615 (16)
H7A0.68490.51630.83150.234*0.615 (16)
C110.7467 (10)0.443 (2)0.9319 (11)0.136 (6)0.615 (16)
H11A0.72080.39340.95380.163*0.615 (16)
H11B0.74640.52500.95430.163*0.615 (16)
C120.8233 (9)0.4041 (19)0.9907 (14)0.130 (6)0.615 (16)
H12A0.82740.34541.03660.195*0.615 (16)
H12B0.85350.47331.02320.195*0.615 (16)
H12C0.83900.36820.95080.195*0.615 (16)
O7B0.7568 (13)0.525 (2)0.8763 (16)0.153 (7)0.385 (16)
H7B0.72270.57210.86090.230*0.385 (16)
C11B0.773 (2)0.475 (3)0.9530 (18)0.141 (8)0.385 (16)
H11C0.72900.47060.95540.169*0.385 (16)
H11D0.80600.53081.00320.169*0.385 (16)
C12B0.8080 (19)0.353 (2)0.979 (3)0.133 (9)0.385 (16)
H12D0.77290.29440.97400.200*0.385 (16)
H12E0.84870.35491.04350.200*0.385 (16)
H12F0.82490.33140.93700.200*0.385 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0412 (3)0.0372 (2)0.0343 (2)0.0000.01310 (17)0.000
C10.051 (4)0.072 (4)0.052 (4)0.006 (4)0.016 (3)0.004 (3)
C20.059 (5)0.090 (6)0.048 (4)0.007 (4)0.015 (3)0.008 (4)
C30.057 (5)0.120 (7)0.038 (4)0.027 (5)0.012 (3)0.005 (4)
C40.059 (4)0.074 (5)0.052 (4)0.019 (4)0.027 (3)0.020 (3)
C50.042 (4)0.052 (4)0.038 (3)0.012 (3)0.017 (3)0.003 (3)
C60.050 (4)0.051 (4)0.046 (3)0.008 (3)0.028 (3)0.005 (3)
C70.054 (4)0.049 (4)0.059 (4)0.006 (3)0.027 (3)0.015 (3)
C80.064 (4)0.047 (4)0.062 (4)0.010 (3)0.037 (3)0.012 (3)
C90.120 (7)0.053 (4)0.095 (5)0.001 (4)0.057 (5)0.018 (4)
C100.085 (6)0.073 (5)0.100 (6)0.021 (4)0.044 (5)0.004 (4)
N10.046 (3)0.046 (3)0.043 (3)0.002 (2)0.015 (2)0.001 (2)
N20.068 (4)0.049 (3)0.072 (3)0.002 (3)0.039 (3)0.005 (3)
N30.055 (4)0.067 (3)0.059 (4)0.016 (3)0.029 (3)0.018 (3)
N40.112 (9)0.049 (6)0.101 (7)0.0000.065 (7)0.000
O10.053 (3)0.047 (2)0.047 (2)0.0048 (19)0.014 (2)0.0065 (19)
O20.058 (3)0.067 (3)0.048 (2)0.004 (2)0.020 (2)0.003 (2)
O30.055 (3)0.065 (3)0.045 (2)0.002 (2)0.020 (2)0.002 (2)
O40.068 (4)0.153 (5)0.082 (3)0.023 (3)0.049 (3)0.011 (3)
O50.074 (3)0.049 (3)0.074 (3)0.007 (2)0.036 (3)0.009 (2)
O60.131 (7)0.042 (4)0.150 (7)0.0000.093 (6)0.000
O70.147 (8)0.135 (8)0.138 (7)0.024 (6)0.039 (6)0.033 (6)
C110.137 (9)0.136 (9)0.137 (8)0.007 (7)0.072 (7)0.005 (7)
C120.132 (9)0.117 (9)0.127 (8)0.005 (8)0.057 (7)0.001 (8)
O7B0.146 (10)0.157 (10)0.164 (10)0.004 (8)0.086 (7)0.008 (8)
C11B0.135 (10)0.140 (10)0.144 (10)0.002 (8)0.071 (7)0.011 (8)
C12B0.129 (11)0.137 (11)0.130 (10)0.011 (8)0.064 (8)0.006 (8)
Geometric parameters (Å, º) top
Gd1—O12.352 (4)C9—H9A0.9600
Gd1—O1i2.352 (4)C9—H9B0.9600
Gd1—O52.492 (4)C9—H9C0.9600
Gd1—O5i2.492 (4)C10—N21.444 (7)
Gd1—O32.543 (4)C10—H10A0.9600
Gd1—O3i2.543 (4)C10—H10B0.9600
Gd1—O22.547 (4)C10—H10C0.9600
Gd1—O2i2.547 (4)N3—O41.220 (6)
Gd1—N12.551 (4)N3—O21.254 (6)
Gd1—N1i2.551 (4)N3—O31.267 (6)
Gd1—N3i2.968 (6)N4—O61.181 (9)
C1—N11.319 (7)N4—O5i1.281 (5)
C1—C21.374 (8)N4—O51.281 (5)
C1—H10.9300O7—C111.228 (9)
C2—C31.366 (9)O7—H7A0.8200
C2—H20.9300C11—C121.469 (9)
C3—C41.374 (8)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.382 (7)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C5—N11.344 (7)C12—H12C0.9600
C5—C61.487 (7)O7B—C11B1.242 (10)
C6—O11.268 (6)O7B—H7B0.8200
C6—C71.399 (7)C11B—C12B1.485 (10)
C7—C81.365 (8)C11B—H11C0.9700
C7—H70.9300C11B—H11D0.9700
C8—N21.311 (7)C12B—H12D0.9600
C8—H80.9300C12B—H12E0.9600
C9—N21.444 (7)C12B—H12F0.9600
O1—Gd1—O1i71.45 (19)C3—C4—C5119.4 (6)
O1—Gd1—O5137.36 (14)C3—C4—H4120.3
O1i—Gd1—O5136.97 (13)C5—C4—H4120.3
O1—Gd1—O5i136.97 (13)N1—C5—C4121.2 (5)
O1i—Gd1—O5i137.36 (14)N1—C5—C6114.4 (4)
O5—Gd1—O5i50.8 (2)C4—C5—C6124.4 (6)
O1—Gd1—O369.56 (13)O1—C6—C7122.4 (5)
O1i—Gd1—O3116.68 (13)O1—C6—C5116.4 (5)
O5—Gd1—O368.60 (14)C7—C6—C5121.3 (5)
O5i—Gd1—O3104.71 (14)C8—C7—C6120.2 (5)
O1—Gd1—O3i116.68 (13)C8—C7—H7119.9
O1i—Gd1—O3i69.56 (13)C6—C7—H7119.9
O5—Gd1—O3i104.71 (14)N2—C8—C7128.4 (6)
O5i—Gd1—O3i68.60 (14)N2—C8—H8115.8
O3—Gd1—O3i172.95 (18)C7—C8—H8115.8
O1—Gd1—O274.31 (13)N2—C9—H9A109.5
O1i—Gd1—O2145.72 (14)N2—C9—H9B109.5
O5—Gd1—O272.87 (13)H9A—C9—H9B109.5
O5i—Gd1—O271.10 (14)N2—C9—H9C109.5
O3—Gd1—O249.88 (13)H9A—C9—H9C109.5
O3i—Gd1—O2127.03 (13)H9B—C9—H9C109.5
O1—Gd1—O2i145.72 (14)N2—C10—H10A109.5
O1i—Gd1—O2i74.31 (13)N2—C10—H10B109.5
O5—Gd1—O2i71.10 (14)H10A—C10—H10B109.5
O5i—Gd1—O2i72.87 (13)N2—C10—H10C109.5
O3—Gd1—O2i127.03 (13)H10A—C10—H10C109.5
O3i—Gd1—O2i49.88 (13)H10B—C10—H10C109.5
O2—Gd1—O2i139.96 (19)C1—N1—C5118.3 (5)
O1—Gd1—N164.37 (14)C1—N1—Gd1124.5 (4)
O1i—Gd1—N190.57 (13)C5—N1—Gd1117.2 (3)
O5—Gd1—N1128.14 (14)C8—N2—C9120.9 (6)
O5i—Gd1—N181.52 (14)C8—N2—C10121.7 (5)
O3—Gd1—N1113.76 (14)C9—N2—C10117.4 (5)
O3i—Gd1—N168.23 (14)O4—N3—O2122.5 (6)
O2—Gd1—N173.16 (14)O4—N3—O3120.8 (6)
O2i—Gd1—N1117.89 (15)O2—N3—O3116.7 (5)
O1—Gd1—N1i90.57 (13)O6—N4—O5i123.4 (4)
O1i—Gd1—N1i64.37 (14)O6—N4—O5123.4 (4)
O5—Gd1—N1i81.52 (14)O5i—N4—O5113.2 (8)
O5i—Gd1—N1i128.14 (14)C6—O1—Gd1125.4 (4)
O3—Gd1—N1i68.23 (14)N3—O2—Gd196.7 (3)
O3i—Gd1—N1i113.76 (14)N3—O3—Gd196.6 (3)
O2—Gd1—N1i117.89 (15)N4—O5—Gd198.0 (4)
O2i—Gd1—N1i73.16 (14)C11—O7—H7A109.5
N1—Gd1—N1i149.8 (2)O7—C11—C12132.5 (19)
O1—Gd1—N3i134.19 (15)O7—C11—H11A104.1
O1i—Gd1—N3i69.29 (14)C12—C11—H11A104.1
O5—Gd1—N3i88.23 (15)O7—C11—H11B104.1
O5i—Gd1—N3i69.43 (14)C12—C11—H11B104.1
O3—Gd1—N3i151.60 (13)H11A—C11—H11B105.5
O3i—Gd1—N3i25.09 (12)C11B—O7B—H7B109.5
O2—Gd1—N3i139.72 (13)O7B—C11B—C12B122 (3)
O2i—Gd1—N3i24.81 (12)O7B—C11B—H11C106.8
N1—Gd1—N3i93.27 (16)C12B—C11B—H11C106.8
N1i—Gd1—N3i93.04 (15)O7B—C11B—H11D106.8
N1—C1—C2123.7 (6)C12B—C11B—H11D106.8
N1—C1—H1118.2H11C—C11B—H11D106.7
C2—C1—H1118.2C11B—C12B—H12D109.5
C3—C2—C1118.2 (7)C11B—C12B—H12E109.5
C3—C2—H2120.9H12D—C12B—H12E109.5
C1—C2—H2120.9C11B—C12B—H12F109.5
C2—C3—C4119.2 (6)H12D—C12B—H12F109.5
C2—C3—H3120.4H12E—C12B—H12F109.5
C4—C3—H3120.4
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O30.822.263.084 (12)179
O7B—H7B···O30.822.193.00 (2)168

Experimental details

Crystal data
Chemical formula[Gd(NO3)3(C10H12N2O)2]·2C2H6O
Mr787.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.322 (2), 10.9876 (11), 16.3844 (16)
β (°) 121.020 (2)
V3)3289.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.624, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
8248, 3005, 2563
Rint0.053
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.087, 1.02
No. of reflections3005
No. of parameters237
No. of restraints130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.64

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O30.822.263.084 (12)178.5
O7B—H7B···O30.822.193.00 (2)168.2
 

Acknowledgements

The authors are indebted to the Qinglan project for financial support.

References

First citationBi, J.-H. (2009). Acta Cryst. E65, m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationHu, D.-H. (2010). Acta Cryst. E66, m709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, T.-L. & Tian, J.-L. (2007). Acta Cryst. E63, m1092–m1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, G.-X., Li, J.-Q. & Kang, X.-Z. (2005). Acta Cryst. E61, m410–m411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011). Acta Cryst. E67, m1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, P., Xu, X.-N., Zheng, L.-F. & Bao, Y.-Q. (2005). Acta Cryst. E61, m1462–m1463.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds