metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,2′-Bis(di­phenyl­phosphan­yl)-1,1′-bi­naphthyl-κ2P,P′]chlorido(4-methyl­phenyl­sulfon­yl-κS)palladium(II) di­chloro­methane tris­­olvate monohydrate

aDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: weix@chem.rochester.edu

(Received 14 November 2011; accepted 21 November 2011; online 25 November 2011)

In the title compound, [Pd(C7H7O2S)Cl(C44H32P2)]·3CH2Cl2·H2O, the geometry around the metal atom is distorted square planar, with a twist angle between the P—Pd—P and S—Pd—Cl planes of 28.11 (2)°. The two Pd—P bond lengths differ by about 0.04 Å and the biphosphane bite angle is slightly obtuse [92.92 (2)°]. There are three dichloro­methane and one water mol­ecule co-crystallized with the palladium mol­ecule, all with atoms in general positions. Alternating water and palladium mol­ecules form four-membered cyclic units through O—H⋯Cl and O—H⋯O hydrogen bonding. One of the dichloromethane solvent molecules is disordered over two positions in a 0.55:0.45 ratio.

Related literature

For the only other structurally characterized complex with a closely related ligand set, see: Li et al. (2003[Li, K., Guzei, I. A. & Darkwa, J. (2003). Polyhedron, 22, 805-810.]). For the synthesis of the precursor complex (BINAP)PdCl2, see: Ozawa et al. (1993[Ozawa, F., Kubo, A., Matsumoto, Y., Hayashi, T., Nishioka, E., Yanagi, K. & Moriguchi, K. (1993). Organometallics, 12, 4188-4196.]). For an additional related example with spectroscopic characterization, see: Kashiwabara & Tanaka (2005[Kashiwabara, T. & Tanaka, M. (2005). Tetrahedron Lett. 46, 7125-7128.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C7H7O2S)Cl(C44H32P2)]·3CH2Cl2·H2O

  • Mr = 1192.47

  • Triclinic, [P \overline 1]

  • a = 12.7273 (12) Å

  • b = 13.7474 (13) Å

  • c = 16.533 (3) Å

  • α = 101.808 (2)°

  • β = 101.339 (2)°

  • γ = 109.743 (2)°

  • V = 2551.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 100 K

  • 0.34 × 0.18 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.754, Tmax = 0.949

  • 55527 measured reflections

  • 22145 independent reflections

  • 15533 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.128

  • S = 1.03

  • 22145 reflections

  • 629 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 3.12 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—P2 2.2574 (6)
Pd1—P1 2.2990 (7)
Pd1—S1 2.3331 (7)
Pd1—Cl1 2.3710 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯Cl1i 0.78 (4) 2.49 (4) 3.236 (2) 159 (3)
O3—H3B⋯O1ii 0.80 (4) 2.07 (4) 2.834 (3) 162 (4)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We report the synthesis, isolation and structural characterization of the title compound, (BINAP)Pd(SO2-4-methylphenyl)Cl, BINAP = 2,2'-bis(diphenylphosphano)-1,1'-binaphthyl. To date the only other structurally characterized palladium complex with a related ligand set (biphosphane, SO2R, halide) is (dppf)Pd(SO2Me)Cl, dppf = 1,1'-bis(diphenylphosphanyl)ferrocene, synthesized via insertion of SO2 into the Pd–C bond of (dppf)Pd(Me)Cl (Li et al., 2003, CSD refcode WUYJUV (Allen, 2002)). The distorted square planar geometry around the metal center is typical for 16-electron palladium complexes, with the cis angles ranging from 88.60 (2) to 93.84 (2)° and with a twist angle between the P–Pd–P and S–Pd–Cl planes of 28.11 (2)°. The biphosphane bite angle is 92.92 (2)°. While the Pd–S and Pd–Cl bond lengths in the title compound are similar to those in (dppf)Pd(SO2Me)Cl, the individual and average Pd–P bond lengths are shorter in the title compound than they are in the latter complex: the average Pd–P bond lengths are 2.2782 (9) and 2.3436 (11) Å, respectively (Li et al., 2003).

The asymmetric unit contains one palladium monomer, one water and three dichloromethane solvent molecules, all with atoms in general positions (Fig. 1). One dichloromethane molecule is modeled as disordered over two positions (55:45). Larger units are formed via hydrogen bonding among two palladium and two water molecules (Fig. 2).

Related literature top

For the only other structurally characterized complex with a closely related ligand set, see: Li et al. (2003). For the synthesis of the precursor complex (BINAP)PdCl2, see: Ozawa et al. (1993). For an additional related example with spectroscopic characterization, see: Kashiwabara & Tanaka (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

1H and 31P{1H} NMR spectra were recorded on a Bruker 400 MHz spectrometer with residual protiated solvent as a reference for 1H NMR (δ = 7.26 ppm) and 85% H3PO4 (δ = 0.00 ppm) as a reference for 31P NMR. Dry solvents were prepared from ACS grade, inhibitor free solvents by passage through activated alumina and molecular sieves in a Vacuum Atmospheres solvent purification system. Water content was routinely measured using Karl-Fisher titration (Metrohm) and was less than 30 ppm in all cases. NMR solvents were purchased from Cambridge Isotope Laboratories and used after vacuum transfer from calcium hydride. PdCl2 (Strem Chemicals), BINAP (Alfa Aesar) and p-toluenesulfinate sodium salt (Aldrich) were purchased commercially and used as received.

Under an inert atmosphere, in a dry bomb flask equipped with a magnetic stir bar, 400 mg (0.5 mmol) of (BINAP)PdCl2 (Ozawa et al., 1993), 178 mg (1.0 mmol) of p-tolSO2Na and 10 mL THF were added and stirred overnight at 333 K. The reaction was stopped when the yellow solution changed color to bright orange. The reaction mixture was filtered through celite. The filtrate was removed under reduced pressure. The bright orange residue obtained was dissolved in a minimum volume of CH2Cl2 and layered with pentane. The supernatant was removed and the bright orange crystals obtained were dried under reduced pressure. Vapor diffusion of pentane into a solution of material dissolved in CH2Cl2 afforded crystals appropriate for X-ray crystal diffraction. The crystals obtained were characterized by 1H, 31P{1H} NMR, IR spectroscopy and X-ray diffraction. 1H NMR (CDCl3, ppm): δ 2.45 (s, 3H), 7.2-8.3 (m, 32 H). 31P NMR (CDCl3, ppm): δ 21.4 (d, J = 45 Hz), 31.6 (d, J = 45 Hz). IR (KBr, νSO): 1265, 1088 cm-1. The IR data compare well to those of the (PPh3)Pd(SO2Ph)Cl complex (Kashiwabara and Tanaka, 2005).

Refinement top

One of the co-crystallized dichloromethane solvent molecules is modeled as disordered over two positions (55:45). Bond lengths and angles in both orientations of the disordered dichloromethane molecule were restrained to be similar. Atoms CL6 and CL6' were constrained to be isopositional. Anisotropic displacement parameters for spatially close atom pairs were constrained to be equivalent.

The hydrogen atoms of the co-crystallized water molecule were found from the difference Fourier map and refined independently from the oxygen atom with individual isotropic displacement parameters. All other hydrogen atoms were placed geometrically and refined relative to the carbon atoms for position and thermal motion (Uiso[H] = 1.2*Ueq[C(non-methyl)] or 1.5*Ueq[C(methyl)]).

The maximum residual peak of 3.13 e/Å3 in the final difference map, located 0.71 Å from the Pd atom, is likely the result of residual absorption errors or a very minor systematic problem with the data (e.g., unresolved twinning, etc.). The maximum residual peak located away from a metal center is found 0.82 Å from atom CL5, and is likely a very minor occupancy disorder position of the chloride atom. The deepest hole of -1.16 e/Å3, located 0.45 Å from atom CL7', is likely the result of imperfect disorder modeling.

Structure description top

We report the synthesis, isolation and structural characterization of the title compound, (BINAP)Pd(SO2-4-methylphenyl)Cl, BINAP = 2,2'-bis(diphenylphosphano)-1,1'-binaphthyl. To date the only other structurally characterized palladium complex with a related ligand set (biphosphane, SO2R, halide) is (dppf)Pd(SO2Me)Cl, dppf = 1,1'-bis(diphenylphosphanyl)ferrocene, synthesized via insertion of SO2 into the Pd–C bond of (dppf)Pd(Me)Cl (Li et al., 2003, CSD refcode WUYJUV (Allen, 2002)). The distorted square planar geometry around the metal center is typical for 16-electron palladium complexes, with the cis angles ranging from 88.60 (2) to 93.84 (2)° and with a twist angle between the P–Pd–P and S–Pd–Cl planes of 28.11 (2)°. The biphosphane bite angle is 92.92 (2)°. While the Pd–S and Pd–Cl bond lengths in the title compound are similar to those in (dppf)Pd(SO2Me)Cl, the individual and average Pd–P bond lengths are shorter in the title compound than they are in the latter complex: the average Pd–P bond lengths are 2.2782 (9) and 2.3436 (11) Å, respectively (Li et al., 2003).

The asymmetric unit contains one palladium monomer, one water and three dichloromethane solvent molecules, all with atoms in general positions (Fig. 1). One dichloromethane molecule is modeled as disordered over two positions (55:45). Larger units are formed via hydrogen bonding among two palladium and two water molecules (Fig. 2).

For the only other structurally characterized complex with a closely related ligand set, see: Li et al. (2003). For the synthesis of the precursor complex (BINAP)PdCl2, see: Ozawa et al. (1993). For an additional related example with spectroscopic characterization, see: Kashiwabara & Tanaka (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A displacement ellisoid (50% probability) drawing of the title complex.
[Figure 2] Fig. 2. Dimers are formed via hydrogen bonding. Dichloromethane solvent molecules (which do not participate in hydrogen bonding) have been omitted for clarity.
[2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl-κ2P,P'] chlorido(4-methylphenylsulfonyl-κS)palladium(II) dichloromethane trisolvate monohydrate top
Crystal data top
[Pd(C7H7O2S)Cl(C44H32P2)]·3CH2Cl2·H2OZ = 2
Mr = 1192.47F(000) = 1212
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.7273 (12) ÅCell parameters from 9765 reflections
b = 13.7474 (13) Åθ = 2.3–38.0°
c = 16.533 (3) ŵ = 0.88 mm1
α = 101.808 (2)°T = 100 K
β = 101.339 (2)°Plate, orange
γ = 109.743 (2)°0.34 × 0.18 × 0.06 mm
V = 2551.8 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
22145 independent reflections
Radiation source: fine-focus sealed tube15533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
area detector, ω scans at different φθmax = 35.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 2020
Tmin = 0.754, Tmax = 0.949k = 2222
55527 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.059P)2 + 0.5385P]
where P = (Fo2 + 2Fc2)/3
22145 reflections(Δ/σ)max = 0.001
629 parametersΔρmax = 3.12 e Å3
3 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Pd(C7H7O2S)Cl(C44H32P2)]·3CH2Cl2·H2Oγ = 109.743 (2)°
Mr = 1192.47V = 2551.8 (5) Å3
Triclinic, P1Z = 2
a = 12.7273 (12) ÅMo Kα radiation
b = 13.7474 (13) ŵ = 0.88 mm1
c = 16.533 (3) ÅT = 100 K
α = 101.808 (2)°0.34 × 0.18 × 0.06 mm
β = 101.339 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
22145 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
15533 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.949Rint = 0.051
55527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 3.12 e Å3
22145 reflectionsΔρmin = 1.19 e Å3
629 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.984460 (14)0.254567 (14)0.170687 (11)0.01342 (4)
Cl11.16871 (5)0.24732 (5)0.22063 (4)0.01911 (10)
P10.99218 (5)0.32202 (5)0.31194 (4)0.01322 (10)
P20.78889 (5)0.19958 (5)0.12437 (4)0.01378 (10)
S11.00768 (5)0.25072 (5)0.03371 (4)0.01730 (10)
O11.04773 (16)0.16952 (15)0.00573 (12)0.0245 (4)
O20.91331 (16)0.26402 (16)0.02318 (12)0.0240 (4)
C11.13412 (19)0.43331 (18)0.36018 (15)0.0159 (4)
C21.1737 (2)0.50283 (19)0.31162 (15)0.0191 (4)
H21.12490.49330.25670.023*
C31.2834 (2)0.5854 (2)0.34332 (16)0.0215 (5)
H31.30910.63330.31060.026*
C41.3563 (2)0.5986 (2)0.42264 (17)0.0227 (5)
H41.43190.65490.44390.027*
C51.3187 (2)0.5296 (2)0.47086 (16)0.0223 (5)
H51.36880.53880.52520.027*
C61.2077 (2)0.4468 (2)0.44019 (15)0.0186 (4)
H61.18220.39970.47350.022*
C70.97608 (19)0.23210 (18)0.37843 (15)0.0166 (4)
C80.9668 (2)0.1269 (2)0.34504 (17)0.0213 (5)
H80.97590.10460.28950.026*
C90.9441 (2)0.0551 (2)0.39340 (19)0.0275 (5)
H90.93700.01690.37050.033*
C100.9318 (2)0.0872 (2)0.47488 (19)0.0293 (6)
H100.91510.03710.50730.035*
C110.9440 (2)0.1926 (2)0.50894 (17)0.0244 (5)
H110.93770.21530.56540.029*
C120.9653 (2)0.2652 (2)0.46091 (15)0.0194 (4)
H120.97260.33710.48410.023*
C130.72688 (18)0.19554 (17)0.27927 (14)0.0140 (4)
C140.72625 (18)0.13534 (17)0.20028 (14)0.0141 (4)
C150.6869 (2)0.02110 (18)0.18069 (15)0.0174 (4)
H150.68510.02000.12630.021*
C160.6515 (2)0.03050 (19)0.23889 (16)0.0194 (4)
H160.62620.10690.22460.023*
C170.6193 (2)0.0251 (2)0.38152 (17)0.0224 (5)
H170.59580.10130.36810.027*
C180.6212 (2)0.0321 (2)0.46000 (18)0.0251 (5)
H180.60110.00370.50160.030*
C190.6531 (2)0.1446 (2)0.47905 (17)0.0231 (5)
H190.65170.18400.53300.028*
C200.6860 (2)0.1982 (2)0.42126 (15)0.0190 (4)
H200.70820.27420.43590.023*
C210.68735 (19)0.14164 (18)0.33960 (15)0.0162 (4)
C220.65194 (19)0.02749 (19)0.31962 (16)0.0178 (4)
C230.76806 (19)0.31632 (17)0.30225 (14)0.0138 (4)
C240.88568 (19)0.38189 (18)0.32198 (14)0.0145 (4)
C250.9210 (2)0.49524 (18)0.34099 (14)0.0164 (4)
H251.00150.53990.35550.020*
C260.8414 (2)0.54170 (18)0.33889 (15)0.0176 (4)
H260.86710.61790.35020.021*
C270.6375 (2)0.5244 (2)0.31807 (16)0.0212 (5)
H270.66180.60040.32840.025*
C280.5224 (2)0.4617 (2)0.30143 (16)0.0229 (5)
H280.46710.49410.30060.027*
C290.4852 (2)0.3491 (2)0.28554 (16)0.0231 (5)
H290.40480.30580.27430.028*
C300.5637 (2)0.30137 (19)0.28612 (15)0.0185 (4)
H300.53720.22520.27490.022*
C310.68385 (19)0.36371 (18)0.30311 (14)0.0156 (4)
C320.7215 (2)0.47790 (18)0.32015 (14)0.0164 (4)
C330.7248 (2)0.29563 (19)0.10867 (14)0.0168 (4)
C340.7952 (2)0.39884 (19)0.11076 (16)0.0205 (4)
H340.87650.41830.11950.025*
C350.7469 (3)0.4740 (2)0.10004 (18)0.0266 (5)
H350.79500.54460.10130.032*
C360.6281 (3)0.4454 (2)0.08756 (17)0.0276 (6)
H360.59500.49660.08020.033*
C370.5577 (2)0.3427 (2)0.08568 (16)0.0257 (5)
H370.47650.32390.07750.031*
C380.6052 (2)0.2670 (2)0.09569 (15)0.0194 (4)
H380.55660.19630.09370.023*
C390.73753 (19)0.09204 (18)0.02366 (14)0.0163 (4)
C400.7939 (2)0.02060 (19)0.01685 (16)0.0183 (4)
H400.85230.02620.06530.022*
C410.7651 (2)0.0581 (2)0.06017 (16)0.0218 (5)
H410.80320.10670.06450.026*
C420.6804 (2)0.0658 (2)0.13095 (17)0.0241 (5)
H420.66210.11860.18430.029*
C430.6224 (2)0.0030 (2)0.12437 (16)0.0244 (5)
H430.56320.00400.17290.029*
C440.6503 (2)0.0826 (2)0.04698 (15)0.0206 (4)
H440.61030.12980.04250.025*
C451.1288 (2)0.37812 (19)0.06411 (15)0.0185 (4)
C461.2422 (2)0.3836 (2)0.08485 (16)0.0211 (4)
H461.25660.31950.07950.025*
C471.3344 (2)0.4843 (2)0.11351 (17)0.0232 (5)
H471.41230.48860.12750.028*
C481.3142 (2)0.5790 (2)0.12202 (17)0.0250 (5)
C491.1998 (2)0.5712 (2)0.10011 (17)0.0242 (5)
H491.18480.63500.10470.029*
C501.1084 (2)0.4721 (2)0.07185 (17)0.0222 (5)
H501.03060.46780.05750.027*
C511.4146 (3)0.6861 (3)0.1523 (2)0.0404 (7)
H51A1.47930.68300.19370.061*
H51B1.39080.74180.18030.061*
H51C1.43980.70370.10290.061*
C520.8141 (3)0.7969 (3)0.1659 (2)0.0362 (7)
H52A0.85460.87620.17960.043*
H52B0.86440.76300.14410.043*
Cl20.68188 (7)0.75253 (7)0.08601 (5)0.03948 (18)
Cl30.79193 (9)0.76377 (7)0.26067 (6)0.0452 (2)
C530.8372 (3)0.1678 (3)0.7730 (2)0.0386 (7)
H53A0.83890.18220.83450.046*
H53B0.86030.10620.75760.046*
Cl40.93786 (8)0.28336 (8)0.75821 (6)0.0475 (2)
Cl50.69207 (9)0.13308 (8)0.70774 (6)0.0466 (2)
Cl60.73926 (9)0.78959 (7)0.48139 (5)0.0452 (2)0.553 (2)
C540.7043 (6)0.7713 (6)0.5778 (4)0.0381 (12)0.553 (2)
H54A0.77240.77110.61870.046*0.553 (2)
H54B0.63880.70060.56430.046*0.553 (2)
Cl70.66451 (19)0.87697 (16)0.62695 (12)0.0393 (3)0.553 (2)
Cl6'0.73926 (9)0.78959 (7)0.48139 (5)0.0452 (2)0.447 (2)
C54'0.7452 (7)0.8276 (8)0.5904 (5)0.0381 (12)0.447 (2)
H54C0.75910.77380.61780.046*0.447 (2)
H54D0.81030.89860.62060.046*0.447 (2)
Cl7'0.6138 (2)0.8357 (2)0.59866 (16)0.0393 (3)0.447 (2)
O30.9752 (2)0.01143 (18)0.83235 (15)0.0305 (4)
H3A0.928 (3)0.047 (3)0.826 (2)0.031 (9)*
H3B1.011 (3)0.057 (3)0.877 (3)0.043 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01213 (7)0.01655 (7)0.01153 (7)0.00649 (5)0.00305 (5)0.00260 (5)
Cl10.0150 (2)0.0249 (3)0.0189 (2)0.0110 (2)0.00325 (18)0.0052 (2)
P10.0124 (2)0.0149 (2)0.0121 (2)0.00598 (19)0.00271 (18)0.00287 (19)
P20.0139 (2)0.0151 (2)0.0120 (2)0.00681 (19)0.00234 (19)0.00249 (19)
S10.0167 (2)0.0224 (3)0.0140 (2)0.0091 (2)0.00521 (19)0.0043 (2)
O10.0253 (9)0.0250 (9)0.0218 (9)0.0106 (7)0.0092 (7)0.0001 (7)
O20.0208 (8)0.0322 (9)0.0205 (8)0.0115 (7)0.0047 (7)0.0096 (7)
C10.0144 (9)0.0172 (9)0.0154 (10)0.0062 (8)0.0042 (7)0.0029 (7)
C20.0190 (10)0.0209 (10)0.0158 (10)0.0068 (8)0.0040 (8)0.0046 (8)
C30.0217 (10)0.0188 (10)0.0219 (11)0.0043 (9)0.0079 (9)0.0058 (9)
C40.0158 (10)0.0236 (11)0.0215 (11)0.0040 (9)0.0033 (8)0.0002 (9)
C50.0147 (9)0.0287 (12)0.0183 (11)0.0061 (9)0.0007 (8)0.0037 (9)
C60.0154 (9)0.0237 (11)0.0158 (10)0.0075 (8)0.0029 (8)0.0051 (8)
C70.0142 (9)0.0186 (10)0.0169 (10)0.0070 (8)0.0023 (7)0.0066 (8)
C80.0207 (10)0.0202 (10)0.0233 (11)0.0100 (9)0.0036 (9)0.0063 (9)
C90.0300 (13)0.0213 (11)0.0314 (14)0.0117 (10)0.0030 (11)0.0111 (10)
C100.0284 (13)0.0301 (13)0.0310 (14)0.0106 (11)0.0037 (11)0.0185 (11)
C110.0208 (11)0.0344 (13)0.0176 (11)0.0084 (10)0.0044 (9)0.0123 (10)
C120.0167 (9)0.0225 (10)0.0183 (10)0.0072 (8)0.0038 (8)0.0065 (8)
C130.0130 (8)0.0156 (9)0.0140 (9)0.0062 (7)0.0033 (7)0.0043 (7)
C140.0124 (8)0.0166 (9)0.0143 (9)0.0066 (7)0.0040 (7)0.0044 (7)
C150.0172 (9)0.0160 (9)0.0180 (10)0.0066 (8)0.0047 (8)0.0030 (8)
C160.0184 (10)0.0159 (9)0.0242 (11)0.0068 (8)0.0068 (9)0.0058 (8)
C170.0209 (10)0.0239 (11)0.0276 (12)0.0093 (9)0.0094 (9)0.0145 (10)
C180.0252 (12)0.0344 (13)0.0263 (13)0.0147 (11)0.0150 (10)0.0181 (11)
C190.0253 (11)0.0317 (13)0.0204 (11)0.0157 (10)0.0125 (9)0.0103 (10)
C200.0187 (10)0.0224 (10)0.0184 (10)0.0107 (9)0.0065 (8)0.0059 (8)
C210.0141 (9)0.0193 (10)0.0166 (10)0.0074 (8)0.0047 (7)0.0066 (8)
C220.0151 (9)0.0197 (10)0.0207 (11)0.0078 (8)0.0053 (8)0.0080 (8)
C230.0160 (9)0.0167 (9)0.0107 (9)0.0085 (7)0.0042 (7)0.0035 (7)
C240.0146 (9)0.0174 (9)0.0122 (9)0.0077 (7)0.0034 (7)0.0036 (7)
C250.0162 (9)0.0168 (9)0.0150 (10)0.0060 (8)0.0037 (8)0.0034 (7)
C260.0200 (10)0.0167 (9)0.0166 (10)0.0083 (8)0.0045 (8)0.0044 (8)
C270.0244 (11)0.0237 (11)0.0207 (11)0.0154 (9)0.0072 (9)0.0062 (9)
C280.0234 (11)0.0310 (12)0.0200 (11)0.0185 (10)0.0059 (9)0.0061 (9)
C290.0183 (10)0.0308 (12)0.0214 (11)0.0133 (9)0.0049 (9)0.0048 (9)
C300.0161 (9)0.0207 (10)0.0196 (11)0.0091 (8)0.0051 (8)0.0044 (8)
C310.0151 (9)0.0196 (10)0.0136 (9)0.0103 (8)0.0033 (7)0.0033 (7)
C320.0189 (9)0.0195 (10)0.0128 (9)0.0105 (8)0.0041 (8)0.0040 (8)
C330.0184 (9)0.0200 (10)0.0128 (9)0.0097 (8)0.0026 (7)0.0047 (8)
C340.0244 (11)0.0197 (10)0.0203 (11)0.0102 (9)0.0091 (9)0.0071 (8)
C350.0349 (14)0.0266 (12)0.0286 (13)0.0188 (11)0.0149 (11)0.0123 (10)
C360.0396 (15)0.0334 (14)0.0223 (12)0.0270 (12)0.0102 (11)0.0106 (10)
C370.0265 (12)0.0385 (14)0.0183 (11)0.0216 (11)0.0057 (9)0.0066 (10)
C380.0200 (10)0.0236 (11)0.0164 (10)0.0121 (9)0.0033 (8)0.0047 (8)
C390.0154 (9)0.0174 (9)0.0139 (9)0.0059 (8)0.0031 (7)0.0018 (7)
C400.0168 (9)0.0188 (10)0.0187 (10)0.0070 (8)0.0051 (8)0.0041 (8)
C410.0211 (10)0.0191 (10)0.0232 (12)0.0071 (9)0.0084 (9)0.0019 (9)
C420.0216 (11)0.0230 (11)0.0186 (11)0.0049 (9)0.0034 (9)0.0039 (9)
C430.0193 (10)0.0293 (12)0.0171 (11)0.0079 (9)0.0008 (9)0.0005 (9)
C440.0170 (10)0.0251 (11)0.0167 (10)0.0089 (9)0.0021 (8)0.0012 (8)
C450.0197 (10)0.0228 (10)0.0162 (10)0.0102 (9)0.0073 (8)0.0067 (8)
C460.0200 (10)0.0254 (11)0.0217 (11)0.0115 (9)0.0076 (9)0.0086 (9)
C470.0207 (11)0.0269 (12)0.0244 (12)0.0100 (9)0.0076 (9)0.0096 (10)
C480.0291 (12)0.0240 (11)0.0220 (12)0.0068 (10)0.0118 (10)0.0090 (9)
C490.0317 (13)0.0240 (11)0.0247 (12)0.0154 (10)0.0138 (10)0.0096 (9)
C500.0238 (11)0.0286 (12)0.0216 (11)0.0151 (10)0.0097 (9)0.0112 (9)
C510.0398 (17)0.0318 (15)0.0430 (18)0.0057 (13)0.0163 (14)0.0080 (13)
C520.0323 (14)0.0372 (16)0.0397 (17)0.0119 (13)0.0122 (13)0.0137 (13)
Cl20.0384 (4)0.0423 (4)0.0327 (4)0.0181 (3)0.0068 (3)0.0005 (3)
Cl30.0573 (5)0.0453 (4)0.0440 (5)0.0247 (4)0.0166 (4)0.0253 (4)
C530.056 (2)0.0401 (16)0.0255 (14)0.0281 (16)0.0060 (13)0.0103 (12)
Cl40.0502 (5)0.0647 (6)0.0435 (5)0.0307 (4)0.0237 (4)0.0243 (4)
Cl50.0543 (5)0.0491 (5)0.0316 (4)0.0198 (4)0.0004 (4)0.0130 (3)
Cl60.0676 (6)0.0487 (5)0.0301 (4)0.0341 (4)0.0169 (4)0.0115 (3)
C540.037 (3)0.051 (3)0.027 (2)0.021 (3)0.006 (2)0.011 (3)
Cl70.0555 (10)0.0419 (9)0.0355 (8)0.0298 (7)0.0203 (7)0.0163 (6)
Cl6'0.0676 (6)0.0487 (5)0.0301 (4)0.0341 (4)0.0169 (4)0.0115 (3)
C54'0.037 (3)0.051 (3)0.027 (2)0.021 (3)0.006 (2)0.011 (3)
Cl7'0.0555 (10)0.0419 (9)0.0355 (8)0.0298 (7)0.0203 (7)0.0163 (6)
O30.0340 (11)0.0235 (10)0.0307 (11)0.0067 (9)0.0145 (9)0.0032 (9)
Geometric parameters (Å, º) top
Pd1—P22.2574 (6)C27—H270.9500
Pd1—P12.2990 (7)C28—C291.406 (4)
Pd1—S12.3331 (7)C28—H280.9500
Pd1—Cl12.3710 (6)C29—C301.369 (3)
P1—C71.803 (2)C29—H290.9500
P1—C11.819 (2)C30—C311.414 (3)
P1—C241.824 (2)C30—H300.9500
P2—C331.806 (2)C31—C321.425 (3)
P2—C391.816 (2)C33—C341.388 (3)
P2—C141.834 (2)C33—C381.395 (3)
S1—O21.4609 (18)C34—C351.393 (3)
S1—O11.4663 (18)C34—H340.9500
S1—C451.791 (2)C35—C361.387 (4)
C1—C61.399 (3)C35—H350.9500
C1—C21.400 (3)C36—C371.383 (4)
C2—C31.382 (3)C36—H360.9500
C2—H20.9500C37—C381.391 (3)
C3—C41.386 (3)C37—H370.9500
C3—H30.9500C38—H380.9500
C4—C51.384 (4)C39—C441.394 (3)
C4—H40.9500C39—C401.399 (3)
C5—C61.394 (3)C40—C411.382 (3)
C5—H50.9500C40—H400.9500
C6—H60.9500C41—C421.384 (4)
C7—C81.393 (3)C41—H410.9500
C7—C121.395 (3)C42—C431.383 (4)
C8—C91.385 (4)C42—H420.9500
C8—H80.9500C43—C441.395 (3)
C9—C101.386 (4)C43—H430.9500
C9—H90.9500C44—H440.9500
C10—C111.385 (4)C45—C501.387 (3)
C10—H100.9500C45—C461.389 (3)
C11—C121.388 (3)C46—C471.390 (4)
C11—H110.9500C46—H460.9500
C12—H120.9500C47—C481.395 (4)
C13—C141.392 (3)C47—H470.9500
C13—C211.431 (3)C48—C491.392 (4)
C13—C231.500 (3)C48—C511.491 (4)
C14—C151.421 (3)C49—C501.372 (4)
C15—C161.365 (3)C49—H490.9500
C15—H150.9500C50—H500.9500
C16—C221.406 (3)C51—H51A0.9800
C16—H160.9500C51—H51B0.9800
C17—C181.364 (4)C51—H51C0.9800
C17—C221.418 (3)C52—Cl21.747 (3)
C17—H170.9500C52—Cl31.766 (3)
C18—C191.408 (4)C52—H52A0.9900
C18—H180.9500C52—H52B0.9900
C19—C201.367 (3)C53—Cl41.769 (4)
C19—H190.9500C53—Cl51.792 (3)
C20—C211.419 (3)C53—H53A0.9900
C20—H200.9500C53—H53B0.9900
C21—C221.423 (3)Cl6—C541.782 (6)
C23—C241.391 (3)C54—Cl71.788 (6)
C23—C311.431 (3)C54—H54A0.9900
C24—C251.414 (3)C54—H54B0.9900
C25—C261.367 (3)C54'—Cl7'1.741 (8)
C25—H250.9500C54'—H54C0.9900
C26—C321.412 (3)C54'—H54D0.9900
C26—H260.9500O3—H3A0.78 (4)
C27—C281.363 (4)O3—H3B0.80 (4)
C27—C321.418 (3)
P2—Pd1—P192.92 (2)C32—C26—H26119.6
P2—Pd1—S193.84 (2)C28—C27—C32120.9 (2)
P1—Pd1—S1159.89 (2)C28—C27—H27119.5
P2—Pd1—Cl1159.39 (2)C32—C27—H27119.5
P1—Pd1—Cl188.60 (2)C27—C28—C29120.1 (2)
S1—Pd1—Cl191.67 (2)C27—C28—H28120.0
C7—P1—C1108.21 (10)C29—C28—H28120.0
C7—P1—C24106.06 (10)C30—C29—C28120.6 (2)
C1—P1—C24105.61 (10)C30—C29—H29119.7
C7—P1—Pd1118.23 (8)C28—C29—H29119.7
C1—P1—Pd1105.45 (8)C29—C30—C31121.0 (2)
C24—P1—Pd1112.55 (7)C29—C30—H30119.5
C33—P2—C39108.31 (10)C31—C30—H30119.5
C33—P2—C14106.74 (10)C30—C31—C32118.37 (19)
C39—P2—C14105.27 (10)C30—C31—C23122.5 (2)
C33—P2—Pd1120.21 (8)C32—C31—C23119.1 (2)
C39—P2—Pd1107.15 (7)C26—C32—C27121.8 (2)
C14—P2—Pd1108.24 (7)C26—C32—C31119.15 (19)
O2—S1—O1115.97 (11)C27—C32—C31119.1 (2)
O2—S1—C45104.74 (11)C34—C33—C38120.0 (2)
O1—S1—C45105.94 (11)C34—C33—P2119.65 (18)
O2—S1—Pd1112.78 (8)C38—C33—P2120.36 (18)
O1—S1—Pd1116.91 (8)C33—C34—C35120.1 (2)
C45—S1—Pd197.59 (8)C33—C34—H34120.0
C6—C1—C2119.3 (2)C35—C34—H34120.0
C6—C1—P1122.67 (18)C36—C35—C34119.7 (3)
C2—C1—P1117.86 (17)C36—C35—H35120.1
C3—C2—C1120.3 (2)C34—C35—H35120.1
C3—C2—H2119.9C37—C36—C35120.4 (2)
C1—C2—H2119.9C37—C36—H36119.8
C2—C3—C4120.3 (2)C35—C36—H36119.8
C2—C3—H3119.9C36—C37—C38120.2 (2)
C4—C3—H3119.9C36—C37—H37119.9
C5—C4—C3120.0 (2)C38—C37—H37119.9
C5—C4—H4120.0C37—C38—C33119.6 (2)
C3—C4—H4120.0C37—C38—H38120.2
C4—C5—C6120.3 (2)C33—C38—H38120.2
C4—C5—H5119.8C44—C39—C40119.9 (2)
C6—C5—H5119.8C44—C39—P2122.74 (17)
C5—C6—C1119.8 (2)C40—C39—P2117.27 (16)
C5—C6—H6120.1C41—C40—C39120.2 (2)
C1—C6—H6120.1C41—C40—H40119.9
C8—C7—C12120.0 (2)C39—C40—H40119.9
C8—C7—P1119.69 (18)C40—C41—C42119.8 (2)
C12—C7—P1120.21 (17)C40—C41—H41120.1
C9—C8—C7119.6 (2)C42—C41—H41120.1
C9—C8—H8120.2C43—C42—C41120.4 (2)
C7—C8—H8120.2C43—C42—H42119.8
C8—C9—C10120.6 (2)C41—C42—H42119.8
C8—C9—H9119.7C42—C43—C44120.5 (2)
C10—C9—H9119.7C42—C43—H43119.8
C11—C10—C9119.8 (2)C44—C43—H43119.8
C11—C10—H10120.1C39—C44—C43119.2 (2)
C9—C10—H10120.1C39—C44—H44120.4
C10—C11—C12120.3 (2)C43—C44—H44120.4
C10—C11—H11119.9C50—C45—C46120.1 (2)
C12—C11—H11119.9C50—C45—S1119.32 (18)
C11—C12—C7119.7 (2)C46—C45—S1120.44 (18)
C11—C12—H12120.1C45—C46—C47119.1 (2)
C7—C12—H12120.1C45—C46—H46120.4
C14—C13—C21119.65 (19)C47—C46—H46120.4
C14—C13—C23121.15 (19)C46—C47—C48120.9 (2)
C21—C13—C23119.20 (19)C46—C47—H47119.5
C13—C14—C15119.6 (2)C48—C47—H47119.5
C13—C14—P2122.00 (16)C49—C48—C47118.8 (2)
C15—C14—P2118.05 (16)C49—C48—C51121.2 (3)
C16—C15—C14120.9 (2)C47—C48—C51120.0 (3)
C16—C15—H15119.5C50—C49—C48120.5 (2)
C14—C15—H15119.5C50—C49—H49119.7
C15—C16—C22121.1 (2)C48—C49—H49119.7
C15—C16—H16119.4C49—C50—C45120.5 (2)
C22—C16—H16119.4C49—C50—H50119.8
C18—C17—C22120.9 (2)C45—C50—H50119.8
C18—C17—H17119.6C48—C51—H51A109.5
C22—C17—H17119.6C48—C51—H51B109.5
C17—C18—C19119.6 (2)H51A—C51—H51B109.5
C17—C18—H18120.2C48—C51—H51C109.5
C19—C18—H18120.2H51A—C51—H51C109.5
C20—C19—C18121.0 (2)H51B—C51—H51C109.5
C20—C19—H19119.5Cl2—C52—Cl3111.26 (17)
C18—C19—H19119.5Cl2—C52—H52A109.4
C19—C20—C21120.9 (2)Cl3—C52—H52A109.4
C19—C20—H20119.5Cl2—C52—H52B109.4
C21—C20—H20119.5Cl3—C52—H52B109.4
C20—C21—C22117.9 (2)H52A—C52—H52B108.0
C20—C21—C13122.5 (2)Cl4—C53—Cl5111.35 (17)
C22—C21—C13119.6 (2)Cl4—C53—H53A109.4
C16—C22—C17121.4 (2)Cl5—C53—H53A109.4
C16—C22—C21119.0 (2)Cl4—C53—H53B109.4
C17—C22—C21119.6 (2)Cl5—C53—H53B109.4
C24—C23—C31120.03 (19)H53A—C53—H53B108.0
C24—C23—C13121.13 (18)Cl6—C54—Cl7110.8 (4)
C31—C23—C13118.83 (19)Cl6—C54—H54A109.5
C23—C24—C25119.63 (19)Cl7—C54—H54A109.5
C23—C24—P1120.38 (16)Cl6—C54—H54B109.5
C25—C24—P1119.65 (16)Cl7—C54—H54B109.5
C26—C25—C24121.2 (2)H54A—C54—H54B108.1
C26—C25—H25119.4Cl7'—C54'—H54C109.8
C24—C25—H25119.4Cl7'—C54'—H54D109.8
C25—C26—C32120.8 (2)H54C—C54'—H54D108.3
C25—C26—H26119.6H3A—O3—H3B124 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Cl1i0.78 (4)2.49 (4)3.236 (2)159 (3)
O3—H3B···O1ii0.80 (4)2.07 (4)2.834 (3)162 (4)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Pd(C7H7O2S)Cl(C44H32P2)]·3CH2Cl2·H2O
Mr1192.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)12.7273 (12), 13.7474 (13), 16.533 (3)
α, β, γ (°)101.808 (2), 101.339 (2), 109.743 (2)
V3)2551.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.34 × 0.18 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.754, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
55527, 22145, 15533
Rint0.051
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 1.03
No. of reflections22145
No. of parameters629
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)3.12, 1.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pd1—P22.2574 (6)Pd1—S12.3331 (7)
Pd1—P12.2990 (7)Pd1—Cl12.3710 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Cl1i0.78 (4)2.49 (4)3.236 (2)159 (3)
O3—H3B···O1ii0.80 (4)2.07 (4)2.834 (3)162 (4)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z+1.
 

Acknowledgements

Acknowledgment is made to the University of Rochester and the donors of the American Chemical Society Petroleum Research Fund for partial support of this work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKashiwabara, T. & Tanaka, M. (2005). Tetrahedron Lett. 46, 7125–7128.  Web of Science CrossRef CAS Google Scholar
First citationLi, K., Guzei, I. A. & Darkwa, J. (2003). Polyhedron, 22, 805–810.  Web of Science CSD CrossRef CAS Google Scholar
First citationOzawa, F., Kubo, A., Matsumoto, Y., Hayashi, T., Nishioka, E., Yanagi, K. & Moriguchi, K. (1993). Organometallics, 12, 4188–4196.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds