organic compounds
2-(6-Chloro-2,3,4,9-tetrahydro-1H-carbazol-1-ylidene)propanedinitrile
aPost Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India, bDepartment of Engineering Chemistry, Christ University, Bangalore 560 029, Karnataka, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com
The molecular conformation of the title compound, C15H10ClN3, is stabilized by an intramolecular N—H⋯N hydrogen bond with an S(7) ring motif. The crystal packing is controlled by N—H⋯N and C—H⋯N intermolecular interactions. One of the methylene groups of the cyclohexene ring is disordered over two positions with refined occupancies of 0.457 (12) and 0.543 (12).
Related literature
For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Kirtikar & Basu (1933). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536811046575/bt5656sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046575/bt5656Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811046575/bt5656Isup3.cml
A mixture of 6-Chloro-1-oxo-1,2,3,4-tetrahydrocarbazole (7.5 mmol), and melanonitrile (7.5 mmol), ammonium acetate (0.57 g, 8.125 mmol) and acetic acid (1.5 ml, 24.75 mmol) in 12.5 ml of toluene was stirred at 105°C for 5 h. On cooling the precipitate that formed was filtered off, washed with hexane (20 ml) and dried at 100°C to give a crude product of 6-chloro-2-(1,2,3,4- tetrahydro-9H-carbazol-1-ylidene)propanedinitrile.The crystals of the title compound suitable for single XRD analysis were obtained by the slow evaporation method by using dichloroethane as solvent at room temperature.
The N-bound H atom was located in a difference Fourier map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. One of the methylene groups of the cyclohexene ring is disordered over two positions with refined occupancies of 0.457 (12) and 0.543 (12).
Carbazole
obtained from natural sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals, light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). Against this background and to ascertain the molecular structure and conformation, the determination of the title compound has been carried out.The ORTEP plot of the molecule is shown in Fig. 1. One of the C atoms of the cyclohexene ring is disordered with refined occupancies of 0.457 (12) and 0.543 (12). The sum of the bond angles around N1 [359.8°] is in accordance with sp2
The bond lengths (C15—N16) 1.145 (3)Å & (C17—N18) 1.144 (3)Å and the bond angles, (C14—C15—N16) 176.9 (2)° & (C14—C17—N18) 178.6 (3)° show linear character of the cyano group, a feature observed in carbonitrile compounds.The crystal packing reveals that symmetry-related molecules are linked through a network by C—H···N, N—H···N and π···π types of intra and intermolecular interactions. The intramolecular N1—H1···N16 hydrogen bond generates a S(7) ring motif. The molecules at (x, y, z) and (-x - 1, -y - 1, -z) are linked by N1—H1···N16 hydrogen bonds into cyclic centrosymmetric R22(14) dimer. The dimers are linked via inter molecular C11—H11···N18 hydrogen bond, which forms a one dimensional chain running along diagonally in ac-disection.
For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Kirtikar & Basu (1933). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C15H10ClN3 | F(000) = 552 |
Mr = 267.71 | Dx = 1.382 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4023 reflections |
a = 7.5731 (3) Å | θ = 2.8–30.5° |
b = 7.6865 (3) Å | µ = 0.29 mm−1 |
c = 22.2867 (8) Å | T = 293 K |
β = 97.437 (2)° | Block, brown |
V = 1286.41 (9) Å3 | 0.20 × 0.19 × 0.17 mm |
Z = 4 |
Bruker SMART APEX CCD detector diffractometer | 3828 independent reflections |
Radiation source: fine-focus sealed tube | 2569 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 30.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −10→10 |
Tmin = 0.945, Tmax = 0.953 | k = −10→10 |
24123 measured reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.164 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0867P)2 + 0.2888P] where P = (Fo2 + 2Fc2)/3 |
3828 reflections | (Δ/σ)max < 0.001 |
186 parameters | Δρmax = 0.42 e Å−3 |
1 restraint | Δρmin = −0.30 e Å−3 |
C15H10ClN3 | V = 1286.41 (9) Å3 |
Mr = 267.71 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.5731 (3) Å | µ = 0.29 mm−1 |
b = 7.6865 (3) Å | T = 293 K |
c = 22.2867 (8) Å | 0.20 × 0.19 × 0.17 mm |
β = 97.437 (2)° |
Bruker SMART APEX CCD detector diffractometer | 3828 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2569 reflections with I > 2σ(I) |
Tmin = 0.945, Tmax = 0.953 | Rint = 0.031 |
24123 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 1 restraint |
wR(F2) = 0.164 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.42 e Å−3 |
3828 reflections | Δρmin = −0.30 e Å−3 |
186 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.49620 (8) | 0.90952 (7) | 0.60857 (3) | 0.0642 (2) | |
N1 | 0.15258 (19) | 0.3281 (2) | 0.46981 (6) | 0.0405 (3) | |
H1 | 0.102 (3) | 0.225 (3) | 0.4828 (11) | 0.067 (7)* | |
C2 | 0.1477 (2) | 0.3928 (2) | 0.41129 (7) | 0.0390 (4) | |
C3 | 0.0745 (2) | 0.3114 (2) | 0.35585 (8) | 0.0439 (4) | |
C4 | 0.0935 (4) | 0.4150 (3) | 0.29963 (9) | 0.0653 (6) | |
H4A | −0.0054 | 0.3869 | 0.2690 | 0.078* | 0.457 (12) |
H4B | 0.2021 | 0.3792 | 0.2843 | 0.078* | 0.457 (12) |
H4C | 0.1690 | 0.3487 | 0.2760 | 0.078* | 0.543 (12) |
H4D | −0.0232 | 0.4214 | 0.2760 | 0.078* | 0.543 (12) |
C6 | 0.2437 (3) | 0.6641 (3) | 0.35882 (8) | 0.0513 (5) | |
H6A | 0.3595 | 0.6447 | 0.3458 | 0.062* | 0.457 (12) |
H6B | 0.2335 | 0.7866 | 0.3682 | 0.062* | 0.457 (12) |
H6C | 0.3688 | 0.6823 | 0.3555 | 0.062* | 0.543 (12) |
H6D | 0.1891 | 0.7769 | 0.3628 | 0.062* | 0.543 (12) |
C7 | 0.2261 (2) | 0.5572 (2) | 0.41368 (8) | 0.0404 (4) | |
C8 | 0.2803 (2) | 0.5957 (2) | 0.47570 (8) | 0.0391 (4) | |
C9 | 0.3633 (2) | 0.7404 (2) | 0.50607 (8) | 0.0443 (4) | |
H9 | 0.3960 | 0.8370 | 0.4849 | 0.053* | |
C10 | 0.3943 (2) | 0.7335 (2) | 0.56802 (8) | 0.0449 (4) | |
C11 | 0.3465 (2) | 0.5898 (2) | 0.60126 (8) | 0.0454 (4) | |
H11 | 0.3699 | 0.5911 | 0.6433 | 0.054* | |
C12 | 0.2654 (2) | 0.4470 (2) | 0.57250 (8) | 0.0437 (4) | |
H12 | 0.2338 | 0.3514 | 0.5943 | 0.052* | |
C13 | 0.2319 (2) | 0.4504 (2) | 0.50921 (8) | 0.0381 (4) | |
C14 | −0.0043 (3) | 0.1511 (3) | 0.35074 (8) | 0.0476 (4) | |
C15 | −0.0238 (3) | 0.0361 (3) | 0.40008 (9) | 0.0498 (5) | |
N16 | −0.0422 (3) | −0.0613 (2) | 0.43766 (9) | 0.0659 (5) | |
C17 | −0.0748 (4) | 0.0825 (3) | 0.29288 (11) | 0.0693 (6) | |
N18 | −0.1317 (4) | 0.0246 (4) | 0.24718 (11) | 0.1157 (10) | |
C5A | 0.0989 (7) | 0.6133 (7) | 0.3089 (3) | 0.0420 (16) | 0.457 (12) |
H5A | 0.1198 | 0.6697 | 0.2716 | 0.050* | 0.457 (12) |
H5B | −0.0153 | 0.6527 | 0.3190 | 0.050* | 0.457 (12) |
C5B | 0.159 (2) | 0.5788 (15) | 0.3049 (4) | 0.223 (8) | 0.543 (12) |
H5C | 0.0610 | 0.6539 | 0.2894 | 0.268* | 0.543 (12) |
H5D | 0.2447 | 0.5860 | 0.2761 | 0.268* | 0.543 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0680 (4) | 0.0576 (3) | 0.0639 (4) | −0.0096 (2) | −0.0027 (3) | −0.0157 (2) |
N1 | 0.0444 (8) | 0.0407 (7) | 0.0364 (7) | −0.0022 (6) | 0.0051 (6) | 0.0000 (6) |
C2 | 0.0390 (8) | 0.0434 (9) | 0.0349 (8) | 0.0031 (7) | 0.0055 (6) | 0.0003 (7) |
C3 | 0.0438 (9) | 0.0498 (10) | 0.0381 (9) | 0.0080 (8) | 0.0052 (7) | −0.0042 (7) |
C4 | 0.0973 (18) | 0.0617 (13) | 0.0363 (10) | 0.0043 (12) | 0.0063 (10) | 0.0000 (9) |
C6 | 0.0610 (11) | 0.0502 (11) | 0.0442 (10) | 0.0033 (9) | 0.0124 (9) | 0.0077 (8) |
C7 | 0.0411 (9) | 0.0429 (9) | 0.0377 (8) | 0.0044 (7) | 0.0072 (7) | 0.0016 (7) |
C8 | 0.0365 (8) | 0.0415 (9) | 0.0395 (9) | 0.0038 (7) | 0.0057 (7) | 0.0010 (7) |
C9 | 0.0436 (9) | 0.0422 (9) | 0.0470 (10) | −0.0018 (7) | 0.0058 (7) | 0.0016 (7) |
C10 | 0.0415 (9) | 0.0449 (9) | 0.0476 (10) | 0.0011 (7) | 0.0025 (7) | −0.0079 (8) |
C11 | 0.0431 (9) | 0.0549 (10) | 0.0372 (9) | 0.0034 (8) | 0.0020 (7) | −0.0021 (8) |
C12 | 0.0445 (9) | 0.0498 (10) | 0.0372 (9) | 0.0004 (8) | 0.0062 (7) | 0.0034 (7) |
C13 | 0.0341 (8) | 0.0410 (8) | 0.0392 (9) | 0.0023 (6) | 0.0053 (6) | −0.0003 (7) |
C14 | 0.0495 (10) | 0.0526 (10) | 0.0400 (9) | 0.0051 (8) | 0.0028 (7) | −0.0096 (8) |
C15 | 0.0501 (11) | 0.0473 (10) | 0.0514 (11) | −0.0014 (8) | 0.0040 (8) | −0.0144 (9) |
N16 | 0.0836 (14) | 0.0497 (10) | 0.0637 (12) | −0.0114 (9) | 0.0072 (10) | −0.0025 (9) |
C17 | 0.0872 (16) | 0.0681 (15) | 0.0516 (12) | −0.0068 (12) | 0.0053 (11) | −0.0163 (11) |
N18 | 0.159 (3) | 0.124 (2) | 0.0595 (14) | −0.030 (2) | −0.0041 (15) | −0.0360 (15) |
C5A | 0.047 (3) | 0.040 (3) | 0.040 (3) | 0.018 (2) | 0.0090 (18) | 0.0046 (18) |
C5B | 0.362 (17) | 0.242 (13) | 0.047 (4) | −0.241 (13) | −0.046 (7) | 0.048 (6) |
Cl1—C10 | 1.7498 (18) | C6—H6D | 0.9700 |
N1—C13 | 1.371 (2) | C7—C8 | 1.421 (2) |
N1—C2 | 1.392 (2) | C8—C9 | 1.407 (2) |
N1—H1 | 0.94 (3) | C8—C13 | 1.418 (2) |
C2—C7 | 1.395 (2) | C9—C10 | 1.371 (3) |
C2—C3 | 1.431 (2) | C9—H9 | 0.9300 |
C3—C14 | 1.368 (3) | C10—C11 | 1.404 (3) |
C3—C4 | 1.507 (3) | C11—C12 | 1.375 (3) |
C4—C5B | 1.354 (9) | C11—H11 | 0.9300 |
C4—C5A | 1.538 (6) | C12—C13 | 1.401 (2) |
C4—H4A | 0.9700 | C12—H12 | 0.9300 |
C4—H4B | 0.9700 | C14—C17 | 1.431 (3) |
C4—H4C | 0.9700 | C14—C15 | 1.433 (3) |
C4—H4D | 0.9700 | C15—N16 | 1.145 (3) |
C6—C7 | 1.493 (2) | C17—N18 | 1.144 (3) |
C6—C5A | 1.509 (7) | C5A—H5A | 0.9700 |
C6—C5B | 1.443 (8) | C5A—H5B | 0.9700 |
C6—H6A | 0.9700 | C5B—H5C | 0.9700 |
C6—H6B | 0.9700 | C5B—H5D | 0.9700 |
C6—H6C | 0.9700 | ||
C13—N1—C2 | 108.16 (14) | C7—C6—H6D | 109.5 |
C13—N1—H1 | 122.9 (15) | C5A—C6—H6D | 91.2 |
C2—N1—H1 | 128.7 (15) | C5B—C6—H6D | 109.5 |
N1—C2—C7 | 109.17 (15) | H6A—C6—H6D | 125.2 |
N1—C2—C3 | 127.82 (16) | H6B—C6—H6D | 20.8 |
C7—C2—C3 | 123.01 (16) | H6C—C6—H6D | 108.1 |
C14—C3—C2 | 125.59 (17) | C2—C7—C8 | 107.08 (15) |
C14—C3—C4 | 119.64 (17) | C2—C7—C6 | 123.36 (16) |
C2—C3—C4 | 114.75 (17) | C8—C7—C6 | 129.57 (17) |
C5B—C4—C3 | 119.5 (4) | C9—C8—C13 | 119.94 (15) |
C5B—C4—C5A | 20.5 (8) | C9—C8—C7 | 133.40 (16) |
C3—C4—C5A | 114.5 (3) | C13—C8—C7 | 106.66 (15) |
C5B—C4—H4A | 120.7 | C10—C9—C8 | 117.49 (16) |
C3—C4—H4A | 108.6 | C10—C9—H9 | 121.3 |
C5A—C4—H4A | 108.6 | C8—C9—H9 | 121.3 |
C5B—C4—H4B | 88.6 | C9—C10—C11 | 122.64 (17) |
C3—C4—H4B | 108.6 | C9—C10—Cl1 | 119.80 (15) |
C5A—C4—H4B | 108.6 | C11—C10—Cl1 | 117.56 (14) |
H4A—C4—H4B | 107.6 | C12—C11—C10 | 120.82 (17) |
C5B—C4—H4C | 107.4 | C12—C11—H11 | 119.6 |
C3—C4—H4C | 107.4 | C10—C11—H11 | 119.6 |
C5A—C4—H4C | 125.9 | C11—C12—C13 | 117.80 (16) |
H4A—C4—H4C | 87.5 | C11—C12—H12 | 121.1 |
H4B—C4—H4C | 22.3 | C13—C12—H12 | 121.1 |
C5B—C4—H4D | 107.4 | N1—C13—C12 | 129.75 (16) |
C3—C4—H4D | 107.4 | N1—C13—C8 | 108.94 (15) |
C5A—C4—H4D | 91.7 | C12—C13—C8 | 121.31 (16) |
H4A—C4—H4D | 20.4 | C3—C14—C17 | 120.97 (19) |
H4B—C4—H4D | 125.3 | C3—C14—C15 | 125.38 (16) |
H4C—C4—H4D | 107.0 | C17—C14—C15 | 113.64 (19) |
C7—C6—C5A | 109.1 (3) | N16—C15—C14 | 176.9 (2) |
C7—C6—C5B | 110.8 (3) | N18—C17—C14 | 178.6 (3) |
C5A—C6—C5B | 21.2 (8) | C6—C5A—C4 | 111.1 (3) |
C7—C6—H6A | 109.9 | C6—C5A—H5A | 109.4 |
C5A—C6—H6A | 109.9 | C4—C5A—H5A | 109.4 |
C5B—C6—H6A | 90.1 | C6—C5A—H5B | 109.4 |
C7—C6—H6B | 109.9 | C4—C5A—H5B | 109.4 |
C5A—C6—H6B | 109.9 | H5A—C5A—H5B | 108.0 |
C5B—C6—H6B | 125.5 | C4—C5B—C6 | 127.8 (6) |
H6A—C6—H6B | 108.3 | C4—C5B—H5C | 105.3 |
C7—C6—H6C | 109.5 | C6—C5B—H5C | 105.3 |
C5A—C6—H6C | 127.2 | C4—C5B—H5D | 105.3 |
C5B—C6—H6C | 109.5 | C6—C5B—H5D | 105.3 |
H6A—C6—H6C | 21.5 | H5C—C5B—H5D | 106.0 |
H6B—C6—H6C | 89.0 | ||
C13—N1—C2—C7 | 0.50 (19) | Cl1—C10—C11—C12 | 179.78 (14) |
C13—N1—C2—C3 | −178.87 (16) | C10—C11—C12—C13 | −0.2 (3) |
N1—C2—C3—C14 | −0.5 (3) | C2—N1—C13—C12 | 179.17 (17) |
C7—C2—C3—C14 | −179.80 (17) | C2—N1—C13—C8 | −0.47 (18) |
N1—C2—C3—C4 | −178.92 (18) | C11—C12—C13—N1 | −179.40 (17) |
C7—C2—C3—C4 | 1.8 (3) | C11—C12—C13—C8 | 0.2 (2) |
C14—C3—C4—C5B | 175.1 (9) | C9—C8—C13—N1 | 179.52 (14) |
C2—C3—C4—C5B | −6.4 (9) | C7—C8—C13—N1 | 0.26 (18) |
C14—C3—C4—C5A | 152.7 (3) | C9—C8—C13—C12 | −0.2 (2) |
C2—C3—C4—C5A | −28.8 (3) | C7—C8—C13—C12 | −179.41 (15) |
N1—C2—C7—C8 | −0.33 (19) | C2—C3—C14—C17 | 179.43 (19) |
C3—C2—C7—C8 | 179.07 (15) | C4—C3—C14—C17 | −2.2 (3) |
N1—C2—C7—C6 | 179.84 (16) | C2—C3—C14—C15 | −1.2 (3) |
C3—C2—C7—C6 | −0.8 (3) | C4—C3—C14—C15 | 177.1 (2) |
C5A—C6—C7—C2 | 26.1 (3) | C3—C14—C15—N16 | −173 (4) |
C5B—C6—C7—C2 | 3.7 (8) | C17—C14—C15—N16 | 6 (4) |
C5A—C6—C7—C8 | −153.6 (2) | C3—C14—C17—N18 | 172 (14) |
C5B—C6—C7—C8 | −176.1 (8) | C15—C14—C17—N18 | −7 (14) |
C2—C7—C8—C9 | −179.07 (17) | C7—C6—C5A—C4 | −50.9 (4) |
C6—C7—C8—C9 | 0.7 (3) | C5B—C6—C5A—C4 | 47.5 (11) |
C2—C7—C8—C13 | 0.05 (18) | C5B—C4—C5A—C6 | −53.9 (13) |
C6—C7—C8—C13 | 179.86 (18) | C3—C4—C5A—C6 | 55.0 (4) |
C13—C8—C9—C10 | 0.1 (2) | C3—C4—C5B—C6 | 11 (2) |
C7—C8—C9—C10 | 179.11 (17) | C5A—C4—C5B—C6 | 92 (2) |
C8—C9—C10—C11 | −0.1 (3) | C7—C6—C5B—C4 | −9.1 (19) |
C8—C9—C10—Cl1 | −179.71 (12) | C5A—C6—C5B—C4 | −99 (2) |
C9—C10—C11—C12 | 0.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N16 | 0.94 (3) | 2.60 (3) | 3.373 (2) | 139.5 (19) |
N1—H1···N16i | 0.94 (3) | 2.27 (3) | 3.099 (3) | 147 (2) |
C11—H11···N18ii | 0.93 | 2.48 | 3.352 (3) | 156 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H10ClN3 |
Mr | 267.71 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.5731 (3), 7.6865 (3), 22.2867 (8) |
β (°) | 97.437 (2) |
V (Å3) | 1286.41 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.20 × 0.19 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.945, 0.953 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24123, 3828, 2569 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.164, 1.01 |
No. of reflections | 3828 |
No. of parameters | 186 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.30 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N16 | 0.94 (3) | 2.60 (3) | 3.373 (2) | 139.5 (19) |
N1—H1···N16i | 0.94 (3) | 2.27 (3) | 3.099 (3) | 147 (2) |
C11—H11···N18ii | 0.93 | 2.48 | 3.352 (3) | 155.7 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors thank Indian Institute of Science, Bangalore, India, for the data collection.
References
Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131–2133. Allahabad: Central Council for Research in Ayurveda & Siddha, (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India. Google Scholar
Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78. CSD CrossRef CAS Web of Science Google Scholar
Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press. Google Scholar
Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigments, 27, 287-296. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbazole alkaloids obtained from natural sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals, light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). Against this background and to ascertain the molecular structure and conformation, the crystal structure determination of the title compound has been carried out.
The ORTEP plot of the molecule is shown in Fig. 1. One of the C atoms of the cyclohexene ring is disordered with refined occupancies of 0.457 (12) and 0.543 (12). The sum of the bond angles around N1 [359.8°] is in accordance with sp2 hybridization. The bond lengths (C15—N16) 1.145 (3)Å & (C17—N18) 1.144 (3)Å and the bond angles, (C14—C15—N16) 176.9 (2)° & (C14—C17—N18) 178.6 (3)° show linear character of the cyano group, a feature observed in carbonitrile compounds.
The crystal packing reveals that symmetry-related molecules are linked through a network by C—H···N, N—H···N and π···π types of intra and intermolecular interactions. The intramolecular N1—H1···N16 hydrogen bond generates a S(7) ring motif. The molecules at (x, y, z) and (-x - 1, -y - 1, -z) are linked by N1—H1···N16 hydrogen bonds into cyclic centrosymmetric R22(14) dimer. The dimers are linked via inter molecular C11—H11···N18 hydrogen bond, which forms a one dimensional chain running along diagonally in ac-disection.