organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(6-Chloro-2,3,4,9-tetra­hydro-1H-carbazol-1-yl­­idene)propane­di­nitrile

aPost Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India, bDepartment of Engineering Chemistry, Christ University, Bangalore 560 029, Karnataka, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 26 September 2011; accepted 4 November 2011; online 12 November 2011)

The mol­ecular conformation of the title compound, C15H10ClN3, is stabilized by an intra­molecular N—H⋯N hydrogen bond with an S(7) ring motif. The crystal packing is controlled by N—H⋯N and C—H⋯N inter­molecular inter­actions. One of the methyl­ene groups of the cyclo­hexene ring is disordered over two positions with refined occupancies of 0.457 (12) and 0.543 (12).

Related literature

For the biological activity of carbazole derivatives, see: Shufen et al. (1995[Shufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigments, 27, 287-296.]); Magnus et al. (1992[Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70-78.]); Abraham (1975[Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.]); Phillipson & Zenk (1980[Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.]); Kirtikar & Basu (1933[Kirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131-2133. Allahabad: Central Council for Research in Ayurveda & Siddha, (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClN3

  • Mr = 267.71

  • Monoclinic, P 21 /n

  • a = 7.5731 (3) Å

  • b = 7.6865 (3) Å

  • c = 22.2867 (8) Å

  • β = 97.437 (2)°

  • V = 1286.41 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.20 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.945, Tmax = 0.953

  • 24123 measured reflections

  • 3828 independent reflections

  • 2569 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.164

  • S = 1.01

  • 3828 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N16 0.94 (3) 2.60 (3) 3.373 (2) 139.5 (19)
N1—H1⋯N16i 0.94 (3) 2.27 (3) 3.099 (3) 147 (2)
C11—H11⋯N18ii 0.93 2.48 3.352 (3) 156
Symmetry codes: (i) -x, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole alkaloids obtained from natural sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals, light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). Against this background and to ascertain the molecular structure and conformation, the crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. One of the C atoms of the cyclohexene ring is disordered with refined occupancies of 0.457 (12) and 0.543 (12). The sum of the bond angles around N1 [359.8°] is in accordance with sp2 hybridization. The bond lengths (C15—N16) 1.145 (3)Å & (C17—N18) 1.144 (3)Å and the bond angles, (C14—C15—N16) 176.9 (2)° & (C14—C17—N18) 178.6 (3)° show linear character of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing reveals that symmetry-related molecules are linked through a network by C—H···N, N—H···N and π···π types of intra and intermolecular interactions. The intramolecular N1—H1···N16 hydrogen bond generates a S(7) ring motif. The molecules at (x, y, z) and (-x - 1, -y - 1, -z) are linked by N1—H1···N16 hydrogen bonds into cyclic centrosymmetric R22(14) dimer. The dimers are linked via inter molecular C11—H11···N18 hydrogen bond, which forms a one dimensional chain running along diagonally in ac-disection.

Related literature top

For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Kirtikar & Basu (1933). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 6-Chloro-1-oxo-1,2,3,4-tetrahydrocarbazole (7.5 mmol), and melanonitrile (7.5 mmol), ammonium acetate (0.57 g, 8.125 mmol) and acetic acid (1.5 ml, 24.75 mmol) in 12.5 ml of toluene was stirred at 105°C for 5 h. On cooling the precipitate that formed was filtered off, washed with hexane (20 ml) and dried at 100°C to give a crude product of 6-chloro-2-(1,2,3,4- tetrahydro-9H-carbazol-1-ylidene)propanedinitrile.The crystals of the title compound suitable for single XRD analysis were obtained by the slow evaporation method by using dichloroethane as solvent at room temperature.

Refinement top

The N-bound H atom was located in a difference Fourier map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. One of the methylene groups of the cyclohexene ring is disordered over two positions with refined occupancies of 0.457 (12) and 0.543 (12).

Structure description top

Carbazole alkaloids obtained from natural sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals, light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). Against this background and to ascertain the molecular structure and conformation, the crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. One of the C atoms of the cyclohexene ring is disordered with refined occupancies of 0.457 (12) and 0.543 (12). The sum of the bond angles around N1 [359.8°] is in accordance with sp2 hybridization. The bond lengths (C15—N16) 1.145 (3)Å & (C17—N18) 1.144 (3)Å and the bond angles, (C14—C15—N16) 176.9 (2)° & (C14—C17—N18) 178.6 (3)° show linear character of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing reveals that symmetry-related molecules are linked through a network by C—H···N, N—H···N and π···π types of intra and intermolecular interactions. The intramolecular N1—H1···N16 hydrogen bond generates a S(7) ring motif. The molecules at (x, y, z) and (-x - 1, -y - 1, -z) are linked by N1—H1···N16 hydrogen bonds into cyclic centrosymmetric R22(14) dimer. The dimers are linked via inter molecular C11—H11···N18 hydrogen bond, which forms a one dimensional chain running along diagonally in ac-disection.

For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Kirtikar & Basu (1933). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-(6-Chloro-2,3,4,9-tetrahydro-1H-carbazol-1-ylidene)propanedinitrile top
Crystal data top
C15H10ClN3F(000) = 552
Mr = 267.71Dx = 1.382 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4023 reflections
a = 7.5731 (3) Åθ = 2.8–30.5°
b = 7.6865 (3) ŵ = 0.29 mm1
c = 22.2867 (8) ÅT = 293 K
β = 97.437 (2)°Block, brown
V = 1286.41 (9) Å30.20 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3828 independent reflections
Radiation source: fine-focus sealed tube2569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 30.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.945, Tmax = 0.953k = 1010
24123 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0867P)2 + 0.2888P]
where P = (Fo2 + 2Fc2)/3
3828 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
C15H10ClN3V = 1286.41 (9) Å3
Mr = 267.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5731 (3) ŵ = 0.29 mm1
b = 7.6865 (3) ÅT = 293 K
c = 22.2867 (8) Å0.20 × 0.19 × 0.17 mm
β = 97.437 (2)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3828 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2569 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.953Rint = 0.031
24123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.42 e Å3
3828 reflectionsΔρmin = 0.30 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.49620 (8)0.90952 (7)0.60857 (3)0.0642 (2)
N10.15258 (19)0.3281 (2)0.46981 (6)0.0405 (3)
H10.102 (3)0.225 (3)0.4828 (11)0.067 (7)*
C20.1477 (2)0.3928 (2)0.41129 (7)0.0390 (4)
C30.0745 (2)0.3114 (2)0.35585 (8)0.0439 (4)
C40.0935 (4)0.4150 (3)0.29963 (9)0.0653 (6)
H4A0.00540.38690.26900.078*0.457 (12)
H4B0.20210.37920.28430.078*0.457 (12)
H4C0.16900.34870.27600.078*0.543 (12)
H4D0.02320.42140.27600.078*0.543 (12)
C60.2437 (3)0.6641 (3)0.35882 (8)0.0513 (5)
H6A0.35950.64470.34580.062*0.457 (12)
H6B0.23350.78660.36820.062*0.457 (12)
H6C0.36880.68230.35550.062*0.543 (12)
H6D0.18910.77690.36280.062*0.543 (12)
C70.2261 (2)0.5572 (2)0.41368 (8)0.0404 (4)
C80.2803 (2)0.5957 (2)0.47570 (8)0.0391 (4)
C90.3633 (2)0.7404 (2)0.50607 (8)0.0443 (4)
H90.39600.83700.48490.053*
C100.3943 (2)0.7335 (2)0.56802 (8)0.0449 (4)
C110.3465 (2)0.5898 (2)0.60126 (8)0.0454 (4)
H110.36990.59110.64330.054*
C120.2654 (2)0.4470 (2)0.57250 (8)0.0437 (4)
H120.23380.35140.59430.052*
C130.2319 (2)0.4504 (2)0.50921 (8)0.0381 (4)
C140.0043 (3)0.1511 (3)0.35074 (8)0.0476 (4)
C150.0238 (3)0.0361 (3)0.40008 (9)0.0498 (5)
N160.0422 (3)0.0613 (2)0.43766 (9)0.0659 (5)
C170.0748 (4)0.0825 (3)0.29288 (11)0.0693 (6)
N180.1317 (4)0.0246 (4)0.24718 (11)0.1157 (10)
C5A0.0989 (7)0.6133 (7)0.3089 (3)0.0420 (16)0.457 (12)
H5A0.11980.66970.27160.050*0.457 (12)
H5B0.01530.65270.31900.050*0.457 (12)
C5B0.159 (2)0.5788 (15)0.3049 (4)0.223 (8)0.543 (12)
H5C0.06100.65390.28940.268*0.543 (12)
H5D0.24470.58600.27610.268*0.543 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0680 (4)0.0576 (3)0.0639 (4)0.0096 (2)0.0027 (3)0.0157 (2)
N10.0444 (8)0.0407 (7)0.0364 (7)0.0022 (6)0.0051 (6)0.0000 (6)
C20.0390 (8)0.0434 (9)0.0349 (8)0.0031 (7)0.0055 (6)0.0003 (7)
C30.0438 (9)0.0498 (10)0.0381 (9)0.0080 (8)0.0052 (7)0.0042 (7)
C40.0973 (18)0.0617 (13)0.0363 (10)0.0043 (12)0.0063 (10)0.0000 (9)
C60.0610 (11)0.0502 (11)0.0442 (10)0.0033 (9)0.0124 (9)0.0077 (8)
C70.0411 (9)0.0429 (9)0.0377 (8)0.0044 (7)0.0072 (7)0.0016 (7)
C80.0365 (8)0.0415 (9)0.0395 (9)0.0038 (7)0.0057 (7)0.0010 (7)
C90.0436 (9)0.0422 (9)0.0470 (10)0.0018 (7)0.0058 (7)0.0016 (7)
C100.0415 (9)0.0449 (9)0.0476 (10)0.0011 (7)0.0025 (7)0.0079 (8)
C110.0431 (9)0.0549 (10)0.0372 (9)0.0034 (8)0.0020 (7)0.0021 (8)
C120.0445 (9)0.0498 (10)0.0372 (9)0.0004 (8)0.0062 (7)0.0034 (7)
C130.0341 (8)0.0410 (8)0.0392 (9)0.0023 (6)0.0053 (6)0.0003 (7)
C140.0495 (10)0.0526 (10)0.0400 (9)0.0051 (8)0.0028 (7)0.0096 (8)
C150.0501 (11)0.0473 (10)0.0514 (11)0.0014 (8)0.0040 (8)0.0144 (9)
N160.0836 (14)0.0497 (10)0.0637 (12)0.0114 (9)0.0072 (10)0.0025 (9)
C170.0872 (16)0.0681 (15)0.0516 (12)0.0068 (12)0.0053 (11)0.0163 (11)
N180.159 (3)0.124 (2)0.0595 (14)0.030 (2)0.0041 (15)0.0360 (15)
C5A0.047 (3)0.040 (3)0.040 (3)0.018 (2)0.0090 (18)0.0046 (18)
C5B0.362 (17)0.242 (13)0.047 (4)0.241 (13)0.046 (7)0.048 (6)
Geometric parameters (Å, º) top
Cl1—C101.7498 (18)C6—H6D0.9700
N1—C131.371 (2)C7—C81.421 (2)
N1—C21.392 (2)C8—C91.407 (2)
N1—H10.94 (3)C8—C131.418 (2)
C2—C71.395 (2)C9—C101.371 (3)
C2—C31.431 (2)C9—H90.9300
C3—C141.368 (3)C10—C111.404 (3)
C3—C41.507 (3)C11—C121.375 (3)
C4—C5B1.354 (9)C11—H110.9300
C4—C5A1.538 (6)C12—C131.401 (2)
C4—H4A0.9700C12—H120.9300
C4—H4B0.9700C14—C171.431 (3)
C4—H4C0.9700C14—C151.433 (3)
C4—H4D0.9700C15—N161.145 (3)
C6—C71.493 (2)C17—N181.144 (3)
C6—C5A1.509 (7)C5A—H5A0.9700
C6—C5B1.443 (8)C5A—H5B0.9700
C6—H6A0.9700C5B—H5C0.9700
C6—H6B0.9700C5B—H5D0.9700
C6—H6C0.9700
C13—N1—C2108.16 (14)C7—C6—H6D109.5
C13—N1—H1122.9 (15)C5A—C6—H6D91.2
C2—N1—H1128.7 (15)C5B—C6—H6D109.5
N1—C2—C7109.17 (15)H6A—C6—H6D125.2
N1—C2—C3127.82 (16)H6B—C6—H6D20.8
C7—C2—C3123.01 (16)H6C—C6—H6D108.1
C14—C3—C2125.59 (17)C2—C7—C8107.08 (15)
C14—C3—C4119.64 (17)C2—C7—C6123.36 (16)
C2—C3—C4114.75 (17)C8—C7—C6129.57 (17)
C5B—C4—C3119.5 (4)C9—C8—C13119.94 (15)
C5B—C4—C5A20.5 (8)C9—C8—C7133.40 (16)
C3—C4—C5A114.5 (3)C13—C8—C7106.66 (15)
C5B—C4—H4A120.7C10—C9—C8117.49 (16)
C3—C4—H4A108.6C10—C9—H9121.3
C5A—C4—H4A108.6C8—C9—H9121.3
C5B—C4—H4B88.6C9—C10—C11122.64 (17)
C3—C4—H4B108.6C9—C10—Cl1119.80 (15)
C5A—C4—H4B108.6C11—C10—Cl1117.56 (14)
H4A—C4—H4B107.6C12—C11—C10120.82 (17)
C5B—C4—H4C107.4C12—C11—H11119.6
C3—C4—H4C107.4C10—C11—H11119.6
C5A—C4—H4C125.9C11—C12—C13117.80 (16)
H4A—C4—H4C87.5C11—C12—H12121.1
H4B—C4—H4C22.3C13—C12—H12121.1
C5B—C4—H4D107.4N1—C13—C12129.75 (16)
C3—C4—H4D107.4N1—C13—C8108.94 (15)
C5A—C4—H4D91.7C12—C13—C8121.31 (16)
H4A—C4—H4D20.4C3—C14—C17120.97 (19)
H4B—C4—H4D125.3C3—C14—C15125.38 (16)
H4C—C4—H4D107.0C17—C14—C15113.64 (19)
C7—C6—C5A109.1 (3)N16—C15—C14176.9 (2)
C7—C6—C5B110.8 (3)N18—C17—C14178.6 (3)
C5A—C6—C5B21.2 (8)C6—C5A—C4111.1 (3)
C7—C6—H6A109.9C6—C5A—H5A109.4
C5A—C6—H6A109.9C4—C5A—H5A109.4
C5B—C6—H6A90.1C6—C5A—H5B109.4
C7—C6—H6B109.9C4—C5A—H5B109.4
C5A—C6—H6B109.9H5A—C5A—H5B108.0
C5B—C6—H6B125.5C4—C5B—C6127.8 (6)
H6A—C6—H6B108.3C4—C5B—H5C105.3
C7—C6—H6C109.5C6—C5B—H5C105.3
C5A—C6—H6C127.2C4—C5B—H5D105.3
C5B—C6—H6C109.5C6—C5B—H5D105.3
H6A—C6—H6C21.5H5C—C5B—H5D106.0
H6B—C6—H6C89.0
C13—N1—C2—C70.50 (19)Cl1—C10—C11—C12179.78 (14)
C13—N1—C2—C3178.87 (16)C10—C11—C12—C130.2 (3)
N1—C2—C3—C140.5 (3)C2—N1—C13—C12179.17 (17)
C7—C2—C3—C14179.80 (17)C2—N1—C13—C80.47 (18)
N1—C2—C3—C4178.92 (18)C11—C12—C13—N1179.40 (17)
C7—C2—C3—C41.8 (3)C11—C12—C13—C80.2 (2)
C14—C3—C4—C5B175.1 (9)C9—C8—C13—N1179.52 (14)
C2—C3—C4—C5B6.4 (9)C7—C8—C13—N10.26 (18)
C14—C3—C4—C5A152.7 (3)C9—C8—C13—C120.2 (2)
C2—C3—C4—C5A28.8 (3)C7—C8—C13—C12179.41 (15)
N1—C2—C7—C80.33 (19)C2—C3—C14—C17179.43 (19)
C3—C2—C7—C8179.07 (15)C4—C3—C14—C172.2 (3)
N1—C2—C7—C6179.84 (16)C2—C3—C14—C151.2 (3)
C3—C2—C7—C60.8 (3)C4—C3—C14—C15177.1 (2)
C5A—C6—C7—C226.1 (3)C3—C14—C15—N16173 (4)
C5B—C6—C7—C23.7 (8)C17—C14—C15—N166 (4)
C5A—C6—C7—C8153.6 (2)C3—C14—C17—N18172 (14)
C5B—C6—C7—C8176.1 (8)C15—C14—C17—N187 (14)
C2—C7—C8—C9179.07 (17)C7—C6—C5A—C450.9 (4)
C6—C7—C8—C90.7 (3)C5B—C6—C5A—C447.5 (11)
C2—C7—C8—C130.05 (18)C5B—C4—C5A—C653.9 (13)
C6—C7—C8—C13179.86 (18)C3—C4—C5A—C655.0 (4)
C13—C8—C9—C100.1 (2)C3—C4—C5B—C611 (2)
C7—C8—C9—C10179.11 (17)C5A—C4—C5B—C692 (2)
C8—C9—C10—C110.1 (3)C7—C6—C5B—C49.1 (19)
C8—C9—C10—Cl1179.71 (12)C5A—C6—C5B—C499 (2)
C9—C10—C11—C120.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N160.94 (3)2.60 (3)3.373 (2)139.5 (19)
N1—H1···N16i0.94 (3)2.27 (3)3.099 (3)147 (2)
C11—H11···N18ii0.932.483.352 (3)156
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10ClN3
Mr267.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.5731 (3), 7.6865 (3), 22.2867 (8)
β (°) 97.437 (2)
V3)1286.41 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.945, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
24123, 3828, 2569
Rint0.031
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.164, 1.01
No. of reflections3828
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.30

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N160.94 (3)2.60 (3)3.373 (2)139.5 (19)
N1—H1···N16i0.94 (3)2.27 (3)3.099 (3)147 (2)
C11—H11···N18ii0.932.483.352 (3)155.7
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Indian Institute of Science, Bangalore, India, for the data collection.

References

First citationAbraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131–2133. Allahabad: Central Council for Research in Ayurveda & Siddha, (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.  Google Scholar
First citationMagnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationPhillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.  Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigments, 27, 287-296.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds