organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph with Z = 4 of (E)-2,4-dihy­dr­oxy­aceto­phenone 2,4-di­nitro­phenyl­hydrazone N,N-di­methyl­formamide monosolvate

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: hhf_2222@yahoo.com.cn

(Received 26 October 2011; accepted 22 November 2011; online 25 November 2011)

The title compound, C14H12N4O6·C3H7NO, is a monoclinic polymorph of an already published structure [Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]). Acta Cryst. C60, 103–106]. In the previously reported structure, the compound crystallized in the triclinic space group P[\overline{1}] (Z = 2), whereas the structure reported here is monoclinic (P21/n, Z = 4). In both forms, two intra­molecular hydrogen bonds result in the formation of a fairly planar hydrazone skeleton (r.m.s. deviations for all non-H atoms = 0.127 Å for the monoclinic from and 0.131 Å for the triclinic form) and each mol­ecule is hydrogen bonded to one solvent mol­ecule. The principal difference between the two forms lies in the different orientation of the two mol­ecules. In the monoclinic form, the two mol­ecules are almost coplanar [dihedral angle = 3.27 (2)°], whereas in the triclinic form the two mol­ecules are almost mutulally perpendicular (dihedral angle = 85.3°).

Related literature

For the biological activity of Schiff bases, see: Khan et al. (2009[Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795-7801.]); Gerdemann et al. (2002[Gerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183-191.]); Mallikarjun & Sangamesh (1997[Mallikarjun, S. Y. & Sangamesh, A. P. (1997). Transition Met. Chem. 22, 220-224.]); Solomon & Lowery (1993[Solomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575-1581.]). For the crystal structure of the triclinic polymorph, see: Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O6·C3H7NO

  • Mr = 405.37

  • Monoclinic, P 21 /n

  • a = 6.7546 (6) Å

  • b = 20.9647 (18) Å

  • c = 13.3508 (13) Å

  • β = 99.772 (1)°

  • V = 1863.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.43 × 0.28 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.973

  • 9407 measured reflections

  • 3280 independent reflections

  • 1642 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 0.88

  • 3280 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.82 2.547 (2) 146
O2—H2A⋯O7 0.82 1.81 2.611 (3) 164
N2—H2⋯O3 0.86 1.94 2.584 (3) 130

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff bases containing the CN bond have been receiving considerable attention for many years, primarily due to a wide range of biological properties including antifungal, antibacterial, herbicidal, antiproliferative, cytotoxic, anticonvulsant and anticancer activities (Khan et al., 2009; Gerdemann et al., 2002; Mallikarjun & Sangamesh, 1997; Solomon & Lowery, 1993). The title compound, (I), is a monoclinic polymorph of the previously reported crystal structure which crystallizes in the triclinic space group P1 (Baughman et al., 2004). The relative arrangement of the molecules observed in the current structure is different from that previously reported.

The molecular structure of (I) is shown in Fig. 1. It crystallizes in the space group P21/n, with four molecules in each unit cell. The azomethine double bond adopts an E configuration. The solvent molecule and Schiff base molecule are linked by O—H···N hydrogen bond. The planes of the solvent molecule and adjacent benzene ring linked by hydrogen bond are almost parallel. The dihedral angle is 0.209 (127). One N—H···O, one O—H···N and one O—H···O hydrogen bonds link the molecules, forming a two-dimensional network. Whereas in (II) the dihedral angle between the planes of the solvent molecule and adjacent benzene ring linked by O—H···N hydrogen bond is 86.619 (143). Besides above three kind of hydrogen bonds, intermolecular O5···O5i interaction (symmetry code i: 1 - x, 1 - y, 1 - z) link the molecules into a three-dimensional network.

Related literature top

For the biological activity of Schiff bases, see: Khan et al. (2009); Gerdemann et al. (2002); Mallikarjun & Sangamesh (1997); Solomon & Lowery (1993). For the crystal structure of the triclinic polymorph, see: Baughman et al. (2004).

Experimental top

The synthesis of title compound I was carried out by refluxing a mixture of 2,4-dihydroxyacetophenone (0.76 g, 5 mmol) and 2,4-dinitrophenylhydrazine (0.99 g, 5 mmol) with concentrated sulfuric acid (5 mL) in ethanol (20 mL) for 2 h. After cooling and filtration the crystalline product was collected, washed with hexane and dried to afford the title compound in 85% yield.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å, O—H 0.82Å, N—H = 0.86Å), and refined as riding with Uiso(H) = 1.2Ueq or 1.5Ueq (methyl H atoms).

Structure description top

The Schiff bases containing the CN bond have been receiving considerable attention for many years, primarily due to a wide range of biological properties including antifungal, antibacterial, herbicidal, antiproliferative, cytotoxic, anticonvulsant and anticancer activities (Khan et al., 2009; Gerdemann et al., 2002; Mallikarjun & Sangamesh, 1997; Solomon & Lowery, 1993). The title compound, (I), is a monoclinic polymorph of the previously reported crystal structure which crystallizes in the triclinic space group P1 (Baughman et al., 2004). The relative arrangement of the molecules observed in the current structure is different from that previously reported.

The molecular structure of (I) is shown in Fig. 1. It crystallizes in the space group P21/n, with four molecules in each unit cell. The azomethine double bond adopts an E configuration. The solvent molecule and Schiff base molecule are linked by O—H···N hydrogen bond. The planes of the solvent molecule and adjacent benzene ring linked by hydrogen bond are almost parallel. The dihedral angle is 0.209 (127). One N—H···O, one O—H···N and one O—H···O hydrogen bonds link the molecules, forming a two-dimensional network. Whereas in (II) the dihedral angle between the planes of the solvent molecule and adjacent benzene ring linked by O—H···N hydrogen bond is 86.619 (143). Besides above three kind of hydrogen bonds, intermolecular O5···O5i interaction (symmetry code i: 1 - x, 1 - y, 1 - z) link the molecules into a three-dimensional network.

For the biological activity of Schiff bases, see: Khan et al. (2009); Gerdemann et al. (2002); Mallikarjun & Sangamesh (1997); Solomon & Lowery (1993). For the crystal structure of the triclinic polymorph, see: Baughman et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
4-{(1E)-1-[2-(2,4-dinitrophenyl)hydrazin-1-ylidene]ethyl}benzene-1,3-diol N,N-dimethylformamide monosolvate top
Crystal data top
C14H12N4O6·C3H7NOF(000) = 848
Mr = 405.37Dx = 1.445 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1386 reflections
a = 6.7546 (6) Åθ = 3.0–21.9°
b = 20.9647 (18) ŵ = 0.11 mm1
c = 13.3508 (13) ÅT = 298 K
β = 99.772 (1)°Block, brown
V = 1863.2 (3) Å30.43 × 0.28 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3280 independent reflections
Radiation source: fine-focus sealed tube1642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.953, Tmax = 0.973k = 1724
9407 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0687P)2]
where P = (Fo2 + 2Fc2)/3
3280 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H12N4O6·C3H7NOV = 1863.2 (3) Å3
Mr = 405.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7546 (6) ŵ = 0.11 mm1
b = 20.9647 (18) ÅT = 298 K
c = 13.3508 (13) Å0.43 × 0.28 × 0.24 mm
β = 99.772 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1642 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.973Rint = 0.058
9407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 0.88Δρmax = 0.25 e Å3
3280 reflectionsΔρmin = 0.23 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7588 (3)0.58432 (9)0.54589 (14)0.0446 (5)
N20.7718 (3)0.63470 (9)0.61267 (15)0.0479 (6)
H20.79490.62720.67690.058*
N30.7472 (4)0.73692 (13)0.75436 (18)0.0709 (7)
N40.6738 (4)0.88617 (12)0.4785 (2)0.0705 (7)
N50.8095 (4)0.11311 (11)0.45642 (17)0.0620 (7)
O10.6979 (3)0.54234 (8)0.36429 (12)0.0644 (6)
H10.71140.56920.40960.097*
O20.7018 (3)0.32319 (8)0.30681 (14)0.0683 (6)
H2A0.71410.28880.33650.102*
O30.7879 (4)0.68408 (10)0.79108 (14)0.0790 (7)
O40.7151 (5)0.78168 (11)0.80637 (17)0.1192 (11)
O50.6748 (4)0.92791 (10)0.5426 (2)0.0961 (8)
O60.6526 (4)0.89703 (10)0.3875 (2)0.0934 (8)
O70.7736 (4)0.20700 (9)0.37332 (18)0.0801 (7)
C10.8138 (4)0.51378 (13)0.69559 (18)0.0575 (7)
H1A0.91270.54300.72930.086*
H1B0.86150.47080.70740.086*
H1C0.69090.51900.72170.086*
C20.7768 (4)0.52710 (12)0.58373 (18)0.0422 (6)
C30.7571 (4)0.47439 (11)0.51209 (18)0.0409 (6)
C40.7195 (4)0.48320 (11)0.40614 (19)0.0454 (7)
C50.7022 (4)0.43264 (12)0.34011 (19)0.0507 (7)
H50.67730.44010.27040.061*
C60.7211 (4)0.37116 (12)0.37582 (19)0.0491 (7)
C70.7566 (4)0.36059 (11)0.47885 (19)0.0507 (7)
H70.76880.31910.50390.061*
C80.7739 (4)0.41082 (12)0.54402 (19)0.0488 (7)
H80.79820.40250.61340.059*
C90.7493 (4)0.69475 (11)0.58042 (19)0.0448 (7)
C100.7384 (4)0.74617 (12)0.64741 (19)0.0500 (7)
C110.7124 (4)0.80809 (12)0.6129 (2)0.0557 (8)
H110.70380.84110.65850.067*
C120.6994 (4)0.82073 (12)0.5123 (2)0.0540 (7)
C130.7114 (4)0.77217 (13)0.4441 (2)0.0576 (8)
H130.70310.78140.37530.069*
C140.7354 (4)0.71070 (12)0.4767 (2)0.0531 (7)
H140.74290.67850.42970.064*
C150.8017 (4)0.17571 (14)0.4520 (3)0.0641 (8)
H150.81880.19790.51320.077*
C160.7826 (6)0.07595 (15)0.3644 (2)0.0991 (12)
H16A0.72870.10260.30780.149*
H16B0.69130.04150.36970.149*
H16C0.90970.05900.35430.149*
C170.8457 (5)0.07943 (14)0.5520 (2)0.0817 (10)
H17A0.87180.10960.60670.123*
H17B0.95980.05190.55390.123*
H17C0.72970.05440.55880.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0514 (14)0.0378 (12)0.0452 (12)0.0018 (10)0.0102 (11)0.0009 (10)
N20.0622 (16)0.0410 (13)0.0408 (12)0.0006 (11)0.0091 (11)0.0022 (10)
N30.105 (2)0.0534 (16)0.0547 (16)0.0029 (15)0.0131 (15)0.0086 (14)
N40.0691 (19)0.0478 (16)0.096 (2)0.0019 (13)0.0174 (17)0.0128 (16)
N50.0782 (19)0.0438 (14)0.0644 (16)0.0041 (13)0.0128 (14)0.0072 (12)
O10.1061 (17)0.0411 (11)0.0449 (11)0.0005 (10)0.0097 (11)0.0061 (9)
O20.1046 (17)0.0450 (11)0.0560 (12)0.0050 (11)0.0153 (11)0.0062 (9)
O30.124 (2)0.0610 (14)0.0511 (13)0.0039 (13)0.0134 (12)0.0014 (10)
O40.229 (3)0.0657 (15)0.0651 (16)0.0233 (17)0.0323 (18)0.0183 (12)
O50.126 (2)0.0439 (12)0.121 (2)0.0026 (13)0.0292 (17)0.0012 (13)
O60.124 (2)0.0651 (15)0.0915 (17)0.0042 (13)0.0190 (16)0.0273 (14)
O70.0996 (19)0.0539 (13)0.0869 (17)0.0088 (12)0.0155 (14)0.0077 (12)
C10.073 (2)0.0522 (16)0.0456 (16)0.0012 (15)0.0062 (14)0.0007 (13)
C20.0428 (17)0.0412 (15)0.0430 (15)0.0024 (12)0.0088 (12)0.0017 (12)
C30.0412 (16)0.0381 (14)0.0440 (15)0.0007 (12)0.0091 (12)0.0033 (12)
C40.0507 (18)0.0378 (15)0.0485 (16)0.0007 (13)0.0105 (13)0.0052 (13)
C50.064 (2)0.0439 (16)0.0432 (16)0.0016 (14)0.0078 (14)0.0007 (13)
C60.0557 (19)0.0429 (16)0.0496 (17)0.0043 (13)0.0115 (14)0.0054 (13)
C70.0612 (19)0.0375 (15)0.0540 (17)0.0019 (13)0.0119 (14)0.0046 (13)
C80.0597 (19)0.0451 (16)0.0424 (15)0.0030 (13)0.0112 (13)0.0067 (13)
C90.0456 (17)0.0384 (15)0.0509 (16)0.0031 (12)0.0092 (13)0.0007 (13)
C100.0584 (19)0.0451 (16)0.0466 (16)0.0010 (13)0.0088 (13)0.0037 (13)
C110.059 (2)0.0449 (17)0.0644 (19)0.0024 (14)0.0144 (15)0.0097 (14)
C120.0520 (19)0.0393 (16)0.071 (2)0.0034 (13)0.0125 (15)0.0059 (14)
C130.064 (2)0.0564 (19)0.0527 (17)0.0011 (15)0.0102 (15)0.0083 (14)
C140.065 (2)0.0456 (16)0.0485 (17)0.0003 (14)0.0101 (14)0.0017 (13)
C150.064 (2)0.050 (2)0.080 (2)0.0019 (16)0.0179 (18)0.0065 (17)
C160.143 (4)0.067 (2)0.080 (2)0.010 (2)0.001 (2)0.0239 (19)
C170.097 (3)0.065 (2)0.086 (2)0.0105 (19)0.020 (2)0.0072 (18)
Geometric parameters (Å, º) top
N1—C21.299 (3)C3—C41.406 (3)
N1—N21.375 (2)C4—C51.371 (3)
N2—C91.331 (3)C5—C61.373 (3)
N2—H20.8600C5—H50.9300
N3—O41.209 (3)C6—C71.374 (3)
N3—O31.224 (3)C7—C81.358 (3)
N3—C101.432 (3)C7—H70.9300
N4—O61.220 (3)C8—H80.9300
N4—O51.223 (3)C9—C101.411 (3)
N4—C121.445 (3)C9—C141.412 (3)
N5—C151.314 (3)C10—C111.379 (3)
N5—C171.442 (3)C11—C121.357 (4)
N5—C161.440 (3)C11—H110.9300
O1—C41.358 (3)C12—C131.378 (4)
O1—H10.8200C13—C141.361 (3)
O2—C61.355 (3)C13—H130.9300
O2—H2A0.8200C14—H140.9300
O7—C151.226 (3)C15—H150.9300
C1—C21.498 (3)C16—H16A0.9600
C1—H1A0.9600C16—H16B0.9600
C1—H1B0.9600C16—H16C0.9600
C1—H1C0.9600C17—H17A0.9600
C2—C31.453 (3)C17—H17B0.9600
C3—C81.398 (3)C17—H17C0.9600
C2—N1—N2117.74 (19)C6—C7—H7120.1
C9—N2—N1121.7 (2)C7—C8—C3123.4 (2)
C9—N2—H2119.1C7—C8—H8118.3
N1—N2—H2119.1C3—C8—H8118.3
O4—N3—O3121.5 (2)N2—C9—C10122.2 (2)
O4—N3—C10119.1 (3)N2—C9—C14121.8 (2)
O3—N3—C10119.4 (2)C10—C9—C14116.0 (2)
O6—N4—O5123.3 (3)C11—C10—C9121.7 (2)
O6—N4—C12118.4 (3)C11—C10—N3116.2 (2)
O5—N4—C12118.4 (3)C9—C10—N3122.1 (2)
C15—N5—C17121.9 (3)C12—C11—C10119.8 (3)
C15—N5—C16120.3 (3)C12—C11—H11120.1
C17—N5—C16117.9 (2)C10—C11—H11120.1
C4—O1—H1109.5C11—C12—C13120.6 (2)
C6—O2—H2A109.5C11—C12—N4118.6 (3)
C2—C1—H1A109.5C13—C12—N4120.8 (3)
C2—C1—H1B109.5C14—C13—C12120.3 (3)
H1A—C1—H1B109.5C14—C13—H13119.8
C2—C1—H1C109.5C12—C13—H13119.8
H1A—C1—H1C109.5C13—C14—C9121.5 (2)
H1B—C1—H1C109.5C13—C14—H14119.2
N1—C2—C3117.0 (2)C9—C14—H14119.2
N1—C2—C1123.3 (2)O7—C15—N5124.9 (3)
C3—C2—C1119.7 (2)O7—C15—H15117.6
C8—C3—C4115.0 (2)N5—C15—H15117.6
C8—C3—C2122.1 (2)N5—C16—H16A109.5
C4—C3—C2122.9 (2)N5—C16—H16B109.5
O1—C4—C5116.7 (2)H16A—C16—H16B109.5
O1—C4—C3121.5 (2)N5—C16—H16C109.5
C5—C4—C3121.8 (2)H16A—C16—H16C109.5
C4—C5—C6120.7 (2)H16B—C16—H16C109.5
C4—C5—H5119.7N5—C17—H17A109.5
C6—C5—H5119.7N5—C17—H17B109.5
O2—C6—C5117.9 (2)H17A—C17—H17B109.5
O2—C6—C7122.8 (2)N5—C17—H17C109.5
C5—C6—C7119.3 (2)H17A—C17—H17C109.5
C8—C7—C6119.9 (2)H17B—C17—H17C109.5
C8—C7—H7120.1
C2—N1—N2—C9178.1 (2)C14—C9—C10—C111.0 (4)
N2—N1—C2—C3178.3 (2)N2—C9—C10—N31.1 (4)
N2—N1—C2—C11.0 (4)C14—C9—C10—N3179.0 (3)
N1—C2—C3—C8179.9 (2)O4—N3—C10—C116.1 (4)
C1—C2—C3—C80.8 (4)O3—N3—C10—C11173.5 (3)
N1—C2—C3—C40.2 (4)O4—N3—C10—C9172.0 (3)
C1—C2—C3—C4179.1 (2)O3—N3—C10—C98.4 (4)
C8—C3—C4—O1179.4 (2)C9—C10—C11—C120.9 (4)
C2—C3—C4—O10.5 (4)N3—C10—C11—C12179.0 (3)
C8—C3—C4—C50.3 (4)C10—C11—C12—C130.2 (4)
C2—C3—C4—C5179.8 (2)C10—C11—C12—N4179.5 (3)
O1—C4—C5—C6179.8 (2)O6—N4—C12—C11176.6 (3)
C3—C4—C5—C60.0 (4)O5—N4—C12—C113.5 (4)
C4—C5—C6—O2179.8 (2)O6—N4—C12—C133.8 (4)
C4—C5—C6—C70.4 (4)O5—N4—C12—C13176.1 (3)
O2—C6—C7—C8179.8 (2)C11—C12—C13—C140.4 (4)
C5—C6—C7—C80.5 (4)N4—C12—C13—C14180.0 (3)
C6—C7—C8—C30.1 (4)C12—C13—C14—C90.2 (4)
C4—C3—C8—C70.3 (4)N2—C9—C14—C13179.6 (2)
C2—C3—C8—C7179.8 (2)C10—C9—C14—C130.5 (4)
N1—N2—C9—C10172.3 (2)C17—N5—C15—O7179.2 (3)
N1—N2—C9—C147.8 (4)C16—N5—C15—O70.5 (5)
N2—C9—C10—C11179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.547 (2)146
O2—H2A···O70.821.812.611 (3)164
N2—H2···O30.861.942.584 (3)130

Experimental details

Crystal data
Chemical formulaC14H12N4O6·C3H7NO
Mr405.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.7546 (6), 20.9647 (18), 13.3508 (13)
β (°) 99.772 (1)
V3)1863.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.43 × 0.28 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
9407, 3280, 1642
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 0.88
No. of reflections3280
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.8201.8232.547 (2)146
O2—H2A···O70.8201.8122.611 (3)164
N2—H2···O30.8601.9442.584 (3)130
 

Acknowledgements

This work was carried out under the sponsorship of the project of ShanXi Scientific Technology (20110321044).

References

First citationBaughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183–191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMallikarjun, S. Y. & Sangamesh, A. P. (1997). Transition Met. Chem. 22, 220–224.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575–1581.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds