organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­anilinium 4-methyl­benzene­sulfonate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 29 October 2011; accepted 8 November 2011; online 12 November 2011)

In the crystal structure of the title salt, C6H7ClN+·C7H7O3S, the cations and anions are linked via N—H⋯O hydrogen bonds into double chains in [101]. Weak inter­molecular C—H⋯π-ring inter­actions link these chains into layers parallel to the ac plane.

Related literature

For background literature concerning mol­ecular–ionic compounds, see: Czupinski et al. (2002[Czupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Swiergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.]); Katrusiak & Szafranski (2006[Katrusiak, A. & Szafranski, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]). For related structures, see: Chanawanno et al. (2009[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). Anal. Sci. 25, 127-128.]); Chantrapromma et al. (2010[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975-o1976.]); Collier et al. (2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]); Fun et al. (2010[Fun, H.-K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o1053-o1054.]); Kobkeatthawin et al. (2009[Kobkeatthawin, T., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o76-o77.]); Li et al. (2005[Li, X.-M., Lu, L.-P., Feng, S.-S., Zhang, H.-M., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, o811-o813.]); Lin, (2010[Lin, J. R. (2010). Acta Cryst. E66, o1557.]); Rahmouni et al. (2010[Rahmouni, H., Smirani, W., Rzaigui, M. & S. Al-Deyab, S. (2010). Acta Cryst. E66, o993.]); Smith et al. (2009[Smith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. E65, o2111.]); Tabatabaee & Noozari, (2011[Tabatabaee, M. & Noozari, N. (2011). Acta Cryst. E67, o1457.]); Wu et al. (2009[Wu, T.-Q., Xia, L., Hu, A.-X. & Ye, J. (2009). Acta Cryst. E65, o368.]); Zhang & Liu (2010[Zhang, Y. & Liu, X. (2010). Acta Cryst. E66, o790.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7ClN+·C7H7O3S

  • Mr = 299.76

  • Triclinic, [P \overline 1]

  • a = 5.7253 (5) Å

  • b = 7.5160 (6) Å

  • c = 15.7642 (13) Å

  • α = 95.166 (6)°

  • β = 96.148 (7)°

  • γ = 92.353 (7)°

  • V = 670.83 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 173 K

  • 0.40 × 0.20 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.843, Tmax = 0.949

  • 5280 measured reflections

  • 3439 independent reflections

  • 3144 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.08

  • 3439 reflections

  • 182 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NC⋯O1i 0.92 (1) 2.02 (1) 2.8579 (16) 151 (2)
N1—H1NC⋯O1 0.92 (1) 2.42 (2) 3.0814 (16) 129 (1)
N1—H1NB⋯O3ii 0.92 (1) 1.88 (1) 2.7940 (15) 175 (2)
N1—H1NA⋯O2iii 0.93 (1) 1.98 (1) 2.8764 (15) 163 (2)
C2—H2ACg2i 0.95 2.91 3.5340 (16) 124
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A variety of pharmaceutical drugs are prepared as salts of benzenesulfonic acid and are known as besylates. Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Czupinski et al., 2002; Katrusiak & Szafranski, 2006). In the title compound, the proton of the sulfonic group of sulfonic acid has been transferred to the N atom of the 4-chloroaniline molecule, leading to the formation of the molecular complex, (I).

Crystal structures of some benzenesulfonate derivatives, viz., 2,4,6-triamino-1,3,5-triazin-1-ium 4-methylbenzenesulfonate monohydrate (Li et al., 2005), ephedrine besylate (Collier et al., 2006), 2-ethyl-6-methylanilinium 4-methylbenzenesulfonate (Wu et al., 2009), 2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylpyridinium 4-methylbenzenesulfonate monohydrate (Chanawanno et al., 2009), (E)-2-[4-(dimethylamino)styryl]-1-methylquinolinium 4-methylbenzenesulfonate monohydrate (Kobkeatthawin et al., 2009), 4-chloroanilinium 2-carboxy-4,5-dichlorobenzoate (Smith et al., 2009), 4-chloroanilinium (4-chlorophenyl)guanidinium dichloride hemihydrates (Zhang & Liu, 2010), 4-chloroanilinium hydrogen oxalate hemihydrates (Rahmouni et al., 2010), 4-(cyanomethyl)anilinium 4-methylbenzene sulfonate monohydrate (Lin, 2010), 1-methyl-2-[(E)-2-(2-thienyl)etheny] quinolinium 4-bromobenzenesulfonate (Fun et al., 2010), (E)-2-[4-(dimethylamino)styryl]-1-methylpyridinium 4-methylbenzenesulfonate monohydrate (Chantrapromma et al., 2010), 2-aminopyrimidin-1-ium 4-methylbenzenesulfonate (Tabatabaee & Noozari, 2011), have been reported. In view of the importance of benzenesulphonic acid, we report herein the crystal structure of the title compound (I).

In the crystal structure of the title salt, C6H7ClN+. C7H7O3S-, (Fig. 1) the cations and anions are linked via N—H···O hydrogen bonds into doubled chains in [101] (Fig. 2). Weak intermolecular C—H···Cg2 π-ring interactions (table 1) link further these chains into layers parallel to the ac plane. [Cg2 = C8—C13 centroid]

Related literature top

For background literature concerning molecular–ionic compounds, see: Czupinski et al. (2002); Katrusiak & Szafranski (2006). For related structures, see: Chanawanno et al. (2009); Chantrapromma et al. (2010); Collier et al. (2006); Fun et al. (2010); Kobkeatthawin et al. (2009); Li et al. (2005); Lin, (2010); Rahmouni et al. (2010); Smith et al. (2009); Tabatabaee & Noozari, (2011); Wu et al. (2009); Zhang & Liu (2010).

Experimental top

4-methylbenzenesulfonic acid monohydrate (1g, 5.25 mmol ) was added to a stirred solution of 4- chloroaniline (0.67 g, 5.25 mmol ) in methanol ( 10 mL). The resulting suspension was dissolved in chloroform (10 ml) and stirred at 323 K for 10 minutes and cooled to room temperature to afford the title compound (I). Single crystals were grown from a mixture of chloroform and methanol by the slow evaporation method (m.p.: 524-532 K).

Refinement top

H1NA, H1NB and H1NC were located by a Fourier map and refined isotropically (for N1, dfix = 0.94 (2)Å; dang = 1.50 (2)Å). All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95 (CH) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18-1.21 (CH) or 1.51 (CH3) times Ueq of the parent atom.

Structure description top

A variety of pharmaceutical drugs are prepared as salts of benzenesulfonic acid and are known as besylates. Recently much attention has been devoted to simple molecular–ionic crystals containing organic cations and anions due to the tunability of their special structural features and their interesting physical properties (Czupinski et al., 2002; Katrusiak & Szafranski, 2006). In the title compound, the proton of the sulfonic group of sulfonic acid has been transferred to the N atom of the 4-chloroaniline molecule, leading to the formation of the molecular complex, (I).

Crystal structures of some benzenesulfonate derivatives, viz., 2,4,6-triamino-1,3,5-triazin-1-ium 4-methylbenzenesulfonate monohydrate (Li et al., 2005), ephedrine besylate (Collier et al., 2006), 2-ethyl-6-methylanilinium 4-methylbenzenesulfonate (Wu et al., 2009), 2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylpyridinium 4-methylbenzenesulfonate monohydrate (Chanawanno et al., 2009), (E)-2-[4-(dimethylamino)styryl]-1-methylquinolinium 4-methylbenzenesulfonate monohydrate (Kobkeatthawin et al., 2009), 4-chloroanilinium 2-carboxy-4,5-dichlorobenzoate (Smith et al., 2009), 4-chloroanilinium (4-chlorophenyl)guanidinium dichloride hemihydrates (Zhang & Liu, 2010), 4-chloroanilinium hydrogen oxalate hemihydrates (Rahmouni et al., 2010), 4-(cyanomethyl)anilinium 4-methylbenzene sulfonate monohydrate (Lin, 2010), 1-methyl-2-[(E)-2-(2-thienyl)etheny] quinolinium 4-bromobenzenesulfonate (Fun et al., 2010), (E)-2-[4-(dimethylamino)styryl]-1-methylpyridinium 4-methylbenzenesulfonate monohydrate (Chantrapromma et al., 2010), 2-aminopyrimidin-1-ium 4-methylbenzenesulfonate (Tabatabaee & Noozari, 2011), have been reported. In view of the importance of benzenesulphonic acid, we report herein the crystal structure of the title compound (I).

In the crystal structure of the title salt, C6H7ClN+. C7H7O3S-, (Fig. 1) the cations and anions are linked via N—H···O hydrogen bonds into doubled chains in [101] (Fig. 2). Weak intermolecular C—H···Cg2 π-ring interactions (table 1) link further these chains into layers parallel to the ac plane. [Cg2 = C8—C13 centroid]

For background literature concerning molecular–ionic compounds, see: Czupinski et al. (2002); Katrusiak & Szafranski (2006). For related structures, see: Chanawanno et al. (2009); Chantrapromma et al. (2010); Collier et al. (2006); Fun et al. (2010); Kobkeatthawin et al. (2009); Li et al. (2005); Lin, (2010); Rahmouni et al. (2010); Smith et al. (2009); Tabatabaee & Noozari, (2011); Wu et al. (2009); Zhang & Liu (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds forming infinite 1-D chains along the c axis.
4-Chloroanilinium 4-methylbenzenesulfonate top
Crystal data top
C6H7ClN+·C7H7O3SZ = 2
Mr = 299.76F(000) = 312
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7253 (5) ÅCell parameters from 2538 reflections
b = 7.5160 (6) Åθ = 3.6–29.9°
c = 15.7642 (13) ŵ = 0.44 mm1
α = 95.166 (6)°T = 173 K
β = 96.148 (7)°Block, colorless
γ = 92.353 (7)°0.40 × 0.20 × 0.12 mm
V = 670.83 (10) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3439 independent reflections
Radiation source: Enhance (Mo) X-ray Source3144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.1500 pixels mm-1θmax = 30.0°, θmin = 3.6°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 99
Tmin = 0.843, Tmax = 0.949l = 2221
5280 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.2844P]
where P = (Fo2 + 2Fc2)/3
3439 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.42 e Å3
6 restraintsΔρmin = 0.45 e Å3
Crystal data top
C6H7ClN+·C7H7O3Sγ = 92.353 (7)°
Mr = 299.76V = 670.83 (10) Å3
Triclinic, P1Z = 2
a = 5.7253 (5) ÅMo Kα radiation
b = 7.5160 (6) ŵ = 0.44 mm1
c = 15.7642 (13) ÅT = 173 K
α = 95.166 (6)°0.40 × 0.20 × 0.12 mm
β = 96.148 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3439 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3144 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.949Rint = 0.017
5280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.42 e Å3
3439 reflectionsΔρmin = 0.45 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64768 (6)0.72752 (4)0.391167 (19)0.01562 (9)
Cl10.20941 (8)0.85567 (6)0.86957 (3)0.03622 (12)
O10.56763 (19)0.89688 (13)0.42702 (6)0.0227 (2)
O20.52819 (19)0.57587 (13)0.42253 (6)0.0231 (2)
O30.90320 (18)0.71964 (16)0.40103 (6)0.0281 (2)
N10.2327 (2)0.74505 (16)0.54631 (7)0.0179 (2)
H1NC0.329 (3)0.8434 (17)0.5411 (11)0.022*
H1NB0.123 (2)0.730 (2)0.4992 (10)0.022*
H1NA0.323 (3)0.6460 (18)0.5467 (11)0.022*
C10.5595 (2)0.71390 (16)0.27970 (8)0.0150 (2)
C20.7106 (2)0.7789 (2)0.22507 (9)0.0219 (3)
H2A0.86380.82640.24700.026*
C30.6356 (3)0.7737 (2)0.13818 (9)0.0277 (3)
H3A0.73850.81820.10070.033*
C40.4120 (3)0.7044 (2)0.10515 (9)0.0255 (3)
C50.2646 (3)0.6388 (2)0.16103 (10)0.0267 (3)
H5A0.11230.58960.13910.032*
C60.3357 (2)0.6439 (2)0.24820 (9)0.0223 (3)
H6A0.23260.60010.28580.027*
C70.3278 (4)0.7036 (3)0.01100 (10)0.0412 (4)
H7A0.20570.60790.00560.062*
H7B0.46010.68350.02270.062*
H7C0.26280.81910.00020.062*
C80.0816 (3)0.82188 (18)0.77464 (9)0.0210 (3)
C90.1916 (2)0.88215 (18)0.70096 (9)0.0211 (3)
H9A0.33530.94070.70210.025*
C100.0887 (2)0.85572 (18)0.62520 (9)0.0191 (3)
H10A0.16140.89610.57390.023*
C110.1203 (2)0.77012 (17)0.62529 (8)0.0161 (2)
C120.2313 (2)0.71189 (17)0.69946 (8)0.0184 (3)
H12A0.37640.65530.69850.022*
C130.1287 (3)0.73699 (19)0.77499 (9)0.0218 (3)
H13A0.20140.69660.82630.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01884 (16)0.01791 (16)0.01046 (14)0.00399 (11)0.00187 (11)0.00159 (11)
Cl10.0423 (2)0.0452 (2)0.02487 (19)0.01334 (18)0.01570 (17)0.00412 (16)
O10.0323 (5)0.0182 (5)0.0174 (5)0.0038 (4)0.0042 (4)0.0023 (4)
O20.0340 (6)0.0194 (5)0.0183 (5)0.0056 (4)0.0089 (4)0.0066 (4)
O30.0191 (5)0.0480 (7)0.0165 (5)0.0067 (4)0.0019 (4)0.0021 (4)
N10.0186 (5)0.0198 (5)0.0155 (5)0.0024 (4)0.0016 (4)0.0022 (4)
C10.0190 (6)0.0143 (5)0.0120 (5)0.0029 (4)0.0017 (4)0.0012 (4)
C20.0200 (6)0.0294 (7)0.0162 (6)0.0022 (5)0.0019 (5)0.0035 (5)
C30.0291 (8)0.0391 (8)0.0164 (6)0.0010 (6)0.0059 (6)0.0079 (6)
C40.0311 (8)0.0308 (8)0.0138 (6)0.0089 (6)0.0019 (5)0.0004 (5)
C50.0219 (7)0.0341 (8)0.0215 (7)0.0002 (6)0.0046 (5)0.0021 (6)
C60.0194 (6)0.0282 (7)0.0193 (6)0.0018 (5)0.0023 (5)0.0030 (5)
C70.0472 (11)0.0604 (12)0.0147 (7)0.0126 (9)0.0049 (7)0.0015 (7)
C80.0243 (7)0.0208 (6)0.0184 (6)0.0018 (5)0.0060 (5)0.0002 (5)
C90.0181 (6)0.0201 (6)0.0254 (7)0.0040 (5)0.0031 (5)0.0013 (5)
C100.0191 (6)0.0195 (6)0.0183 (6)0.0026 (5)0.0017 (5)0.0032 (5)
C110.0179 (6)0.0147 (6)0.0155 (6)0.0005 (4)0.0016 (5)0.0010 (4)
C120.0185 (6)0.0182 (6)0.0185 (6)0.0041 (5)0.0005 (5)0.0022 (5)
C130.0262 (7)0.0230 (7)0.0163 (6)0.0042 (5)0.0003 (5)0.0043 (5)
Geometric parameters (Å, º) top
S1—O21.4565 (10)C5—C61.387 (2)
S1—O11.4572 (10)C5—H5A0.9500
S1—O31.4587 (11)C6—H6A0.9500
S1—C11.7682 (13)C7—H7A0.9800
Cl1—C81.7381 (14)C7—H7B0.9800
N1—C111.4626 (17)C7—H7C0.9800
N1—H1NC0.920 (12)C8—C91.383 (2)
N1—H1NB0.916 (12)C8—C131.385 (2)
N1—H1NA0.925 (12)C9—C101.3894 (19)
C1—C61.3880 (19)C9—H9A0.9500
C1—C21.3892 (18)C10—C111.3817 (18)
C2—C31.3875 (19)C10—H10A0.9500
C2—H2A0.9500C11—C121.3850 (18)
C3—C41.391 (2)C12—C131.3845 (19)
C3—H3A0.9500C12—H12A0.9500
C4—C51.391 (2)C13—H13A0.9500
C4—C71.510 (2)
O2—S1—O1111.46 (6)C5—C6—C1119.09 (13)
O2—S1—O3113.20 (7)C5—C6—H6A120.5
O1—S1—O3113.02 (7)C1—C6—H6A120.5
O2—S1—C1106.02 (6)C4—C7—H7A109.5
O1—S1—C1106.15 (6)C4—C7—H7B109.5
O3—S1—C1106.33 (6)H7A—C7—H7B109.5
C11—N1—H1NC110.2 (11)C4—C7—H7C109.5
C11—N1—H1NB111.0 (11)H7A—C7—H7C109.5
H1NC—N1—H1NB108.1 (13)H7B—C7—H7C109.5
C11—N1—H1NA110.6 (11)C9—C8—C13121.80 (13)
H1NC—N1—H1NA108.1 (13)C9—C8—Cl1119.03 (11)
H1NB—N1—H1NA108.8 (13)C13—C8—Cl1119.16 (11)
C6—C1—C2120.72 (12)C8—C9—C10118.97 (13)
C6—C1—S1119.31 (10)C8—C9—H9A120.5
C2—C1—S1119.93 (10)C10—C9—H9A120.5
C3—C2—C1119.31 (13)C11—C10—C9119.32 (12)
C3—C2—H2A120.3C11—C10—H10A120.3
C1—C2—H2A120.3C9—C10—H10A120.3
C2—C3—C4121.00 (14)C10—C11—C12121.49 (12)
C2—C3—H3A119.5C10—C11—N1119.76 (12)
C4—C3—H3A119.5C12—C11—N1118.71 (12)
C5—C4—C3118.61 (13)C13—C12—C11119.38 (12)
C5—C4—C7120.37 (15)C13—C12—H12A120.3
C3—C4—C7121.01 (15)C11—C12—H12A120.3
C6—C5—C4121.26 (14)C12—C13—C8119.02 (13)
C6—C5—H5A119.4C12—C13—H13A120.5
C4—C5—H5A119.4C8—C13—H13A120.5
O2—S1—C1—C632.26 (12)C4—C5—C6—C10.8 (2)
O1—S1—C1—C686.39 (12)C2—C1—C6—C50.3 (2)
O3—S1—C1—C6153.01 (11)S1—C1—C6—C5177.95 (11)
O2—S1—C1—C2150.07 (11)C13—C8—C9—C100.4 (2)
O1—S1—C1—C291.28 (12)Cl1—C8—C9—C10179.74 (11)
O3—S1—C1—C229.32 (13)C8—C9—C10—C110.0 (2)
C6—C1—C2—C30.1 (2)C9—C10—C11—C120.8 (2)
S1—C1—C2—C3177.49 (11)C9—C10—C11—N1178.68 (12)
C1—C2—C3—C40.1 (2)C10—C11—C12—C131.2 (2)
C2—C3—C4—C50.4 (2)N1—C11—C12—C13179.09 (12)
C2—C3—C4—C7178.22 (15)C11—C12—C13—C80.8 (2)
C3—C4—C5—C60.9 (2)C9—C8—C13—C120.0 (2)
C7—C4—C5—C6177.77 (15)Cl1—C8—C13—C12179.35 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1NC···O1i0.92 (1)2.02 (1)2.8579 (16)151 (2)
N1—H1NC···O10.92 (1)2.42 (2)3.0814 (16)129 (1)
N1—H1NB···O3ii0.92 (1)1.88 (1)2.7940 (15)175 (2)
N1—H1NA···O2iii0.93 (1)1.98 (1)2.8764 (15)163 (2)
C2—H2A···Cg2i0.952.913.5340 (16)124
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H7ClN+·C7H7O3S
Mr299.76
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.7253 (5), 7.5160 (6), 15.7642 (13)
α, β, γ (°)95.166 (6), 96.148 (7), 92.353 (7)
V3)670.83 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.40 × 0.20 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.843, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
5280, 3439, 3144
Rint0.017
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.08
No. of reflections3439
No. of parameters182
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.45

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1NC···O1i0.920 (12)2.019 (12)2.8579 (16)150.9 (15)
N1—H1NC···O10.920 (12)2.423 (16)3.0814 (16)128.6 (13)
N1—H1NB···O3ii0.916 (12)1.880 (12)2.7940 (15)175.2 (15)
N1—H1NA···O2iii0.925 (12)1.978 (12)2.8764 (15)163.3 (15)
C2—H2A···Cg2i0.952.913.5340 (16)124
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

ASP and HSY thank the UoM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). Anal. Sci. 25, 127–128.  CAS Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975–o1976.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCollier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498–505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCzupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Swiergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Web of Science CSD CrossRef CAS Google Scholar
First citationFun, H.-K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o1053–o1054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatrusiak, A. & Szafranski, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKobkeatthawin, T., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o76–o77.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, X.-M., Lu, L.-P., Feng, S.-S., Zhang, H.-M., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, o811–o813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, J. R. (2010). Acta Cryst. E66, o1557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRahmouni, H., Smirani, W., Rzaigui, M. & S. Al-Deyab, S. (2010). Acta Cryst. E66, o993.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. E65, o2111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M. & Noozari, N. (2011). Acta Cryst. E67, o1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, T.-Q., Xia, L., Hu, A.-X. & Ye, J. (2009). Acta Cryst. E65, o368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y. & Liu, X. (2010). Acta Cryst. E66, o790.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds