organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[7-Eth­­oxy-2-(prop-2-en-1-yl)-2H-indazol-6-yl]-4-methyl­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: elmostapha1@ymail.com

(Received 30 October 2011; accepted 31 October 2011; online 5 November 2011)

In the title compound, C19H21N3O3S, the C—SO2—NH—C torsion angle is 66.20 (9)°. The dihedral angle between the benzene ring and the essentially planar indazole ring system [r.m.s. deviation = 0.0361 (1) Å] is 72.97 (6)°. The S atom has a distorted tetra­hedral geometry [maximum deviation = O—S—O = 119.30 (6)°]. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds. In addition, weak C—H⋯O inter­actions may stabilize the crystal packing.

Related literature

For related structures, see: Abbassi et al. (2011a[Abbassi, N., Rakib, E. M. & Zouihri, H. (2011a). Acta Cryst. E67, o1354.],b[Abbassi, N., Rakib, E. M. & Zouihri, H. (2011b). Acta Cryst. E67, o1561.]). For the biological activity of sulfonamides, see: Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]). For the synthesis of 7-eth­oxy-N-alkyl­indazole derivatives, see: Abbassi et al. (2011c[Abbassi, N., Rakib, E. M., Hannioui, A., Alaoui, M., Benchidmi, M., Essassi, E. M. & Geffken, D. (2011c). Heterocycles, 83, 891-900.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N3O3S

  • Mr = 371.45

  • Monoclinic, P 21 /c

  • a = 10.1459 (7) Å

  • b = 9.9506 (7) Å

  • c = 18.3720 (13) Å

  • β = 95.097 (3)°

  • V = 1847.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.32 × 0.31 × 0.24 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 20488 measured reflections

  • 4034 independent reflections

  • 3693 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.06

  • 4034 reflections

  • 238 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 2.21 3.0199 (15) 159
C8—H8⋯O2ii 0.93 2.44 3.1270 (17) 131
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Various sulfonamides are widely used as anti-hypertensive (Soledade et al., 2006; Lee & Lee, 2002). In former papers, we reported the crystal structures of N-(7-ethoxy-1H-indazol-4-yl)-4-methylbenzenesulfonamide (Abbassi et al., 2011a) and N-[7-ethoxy-1-(prop-2-en-1-yl)-1H-indazol-4-yl]-4-methylbenzenesulfonamide (Abbassi et al., 2011b). In this communication, the crystal structure of N-[7-ethoxy-2-(prop-2-en-1-yl)-2H-indazol-6-yl]-4-methylbenzenesulfonamide is reported.

In the title compound, C19H21N3O3S, the C—SO2—NH—C torsion angle is 66.20 (9)°. The dihedral angle between the aromatic ring and the indazol system is 72.97 (6)°. The S atom has a distorted tetrahedral geometry [maximum deviation: O—S—O = 119.3 (6)°] (Fig. 1).

Two neighbouring molecules generate a hydrogen-bonded dimer about a center of inversion through a pair of intermolecular N—H···O interactions (Figs. 2 and 3).

Related literature top

For related structures, see: Abbassi et al. (2011a,b). For the biological activity of sulfonamides, see: Soledade et al. (2006); Lee & Lee (2002). For the synthesis of 7-ethoxy-N-alkylindazole derivatives, see: Abbassi et al. (2011c).

Experimental top

A mixture of 2-allyl-6-nitro-2H-indazole [Abbassi et al., 2011c] (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 mL of absolute ethanol was heated at 60 °C for 2 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methylbenzenesulfonyl chloride (0.26 g, 1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 1:9).

Refinement top

The H atoms bound to C were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.93Å for CH groups with Uiso(H) = 1.2 Ueq(C,N), and 0.97 Å for CH3 groups, and the coordinates for the H atom bonded to N were taken from a difference map, and the atom was refined using a riding model.

Structure description top

Various sulfonamides are widely used as anti-hypertensive (Soledade et al., 2006; Lee & Lee, 2002). In former papers, we reported the crystal structures of N-(7-ethoxy-1H-indazol-4-yl)-4-methylbenzenesulfonamide (Abbassi et al., 2011a) and N-[7-ethoxy-1-(prop-2-en-1-yl)-1H-indazol-4-yl]-4-methylbenzenesulfonamide (Abbassi et al., 2011b). In this communication, the crystal structure of N-[7-ethoxy-2-(prop-2-en-1-yl)-2H-indazol-6-yl]-4-methylbenzenesulfonamide is reported.

In the title compound, C19H21N3O3S, the C—SO2—NH—C torsion angle is 66.20 (9)°. The dihedral angle between the aromatic ring and the indazol system is 72.97 (6)°. The S atom has a distorted tetrahedral geometry [maximum deviation: O—S—O = 119.3 (6)°] (Fig. 1).

Two neighbouring molecules generate a hydrogen-bonded dimer about a center of inversion through a pair of intermolecular N—H···O interactions (Figs. 2 and 3).

For related structures, see: Abbassi et al. (2011a,b). For the biological activity of sulfonamides, see: Soledade et al. (2006); Lee & Lee (2002). For the synthesis of 7-ethoxy-N-alkylindazole derivatives, see: Abbassi et al. (2011c).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the N—H···O bonded dimers of the title compound.
[Figure 3] Fig. 3. Partial packing view showing N—H···O and C-H···O hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted for clarity.
N-[7-Ethoxy-2-(prop-2-en-1-yl)-2H-indazol-6-yl]-4- methylbenzenesulfonamide top
Crystal data top
C19H21N3O3SF(000) = 784
Mr = 371.45Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 243 reflections
a = 10.1459 (7) Åθ = 2.3–27.2°
b = 9.9506 (7) ŵ = 0.20 mm1
c = 18.3720 (13) ÅT = 296 K
β = 95.097 (3)°Prism, colourless
V = 1847.5 (2) Å30.32 × 0.31 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
3693 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.0°, θmin = 2.0°
ω and φ scansh = 1212
20488 measured reflectionsk = 1212
4034 independent reflectionsl = 2223
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.8814P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4034 reflectionsΔρmax = 0.69 e Å3
238 parametersΔρmin = 0.39 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0206 (15)
Crystal data top
C19H21N3O3SV = 1847.5 (2) Å3
Mr = 371.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1459 (7) ŵ = 0.20 mm1
b = 9.9506 (7) ÅT = 296 K
c = 18.3720 (13) Å0.32 × 0.31 × 0.24 mm
β = 95.097 (3)°
Data collection top
Bruker APEXII CCD detector
diffractometer
3693 reflections with I > 2σ(I)
20488 measured reflectionsRint = 0.031
4034 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.69 e Å3
4034 reflectionsΔρmin = 0.39 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.76485 (15)0.66788 (16)0.17902 (8)0.0312 (3)
C100.93118 (13)0.91852 (15)0.08185 (7)0.0252 (3)
C110.79381 (13)0.94222 (14)0.07596 (7)0.0216 (3)
C120.71089 (12)0.83505 (13)0.05612 (7)0.0207 (3)
C130.98070 (14)1.04447 (16)0.09800 (8)0.0296 (3)
C140.5674 (2)0.8996 (2)0.29302 (10)0.0556 (6)
C150.50380 (15)0.94048 (18)0.09413 (10)0.0373 (4)
C160.36049 (15)0.90887 (17)0.09383 (10)0.0354 (4)
C170.88027 (17)1.27272 (16)0.11789 (10)0.0375 (4)
C180.86633 (18)1.2985 (2)0.19860 (12)0.0523 (5)
C190.8539 (2)1.2068 (3)0.24945 (12)0.0708 (7)
C20.73094 (17)0.75204 (19)0.23458 (9)0.0389 (4)
C30.60421 (17)0.80532 (16)0.23408 (8)0.0335 (3)
C40.51129 (15)0.77163 (14)0.17715 (8)0.0283 (3)
C50.54257 (13)0.68865 (14)0.12097 (8)0.0244 (3)
C60.67012 (13)0.63684 (13)0.12255 (7)0.0211 (3)
C70.76898 (13)0.71167 (13)0.04258 (7)0.0208 (3)
C80.90547 (13)0.68843 (14)0.05067 (8)0.0256 (3)
C90.98638 (14)0.78904 (15)0.06954 (8)0.0284 (3)
H10.84990.63280.17970.037*
H131.06781.06510.10570.036*
H14A0.52160.97590.27110.083*
H14B0.64610.92910.32140.083*
H14C0.51090.85380.32420.083*
H15A0.52980.93530.14360.045*
H15B0.52081.03100.07610.045*
H16A0.34290.82240.11580.053*
H16B0.30940.97610.12110.053*
H16C0.33680.90770.04440.053*
H17A0.96281.31160.09690.045*
H17B0.80851.31710.09580.045*
H180.86661.38770.21370.063*
H19A0.85321.11630.23670.085*
H19B0.84581.23180.29840.085*
H1N0.60490.61370.03940.026*
H20.79400.77310.27280.047*
H40.42590.80570.17680.034*
H50.47950.66780.08280.029*
H80.94000.60250.04290.031*
H91.07560.77320.07420.034*
N10.68677 (11)0.60110 (11)0.02548 (6)0.0216 (2)
N20.76199 (11)1.07276 (12)0.08760 (7)0.0254 (3)
N30.87862 (12)1.13021 (12)0.10026 (7)0.0275 (3)
O10.57901 (9)0.84573 (10)0.04824 (5)0.0253 (2)
O20.84526 (10)0.49024 (11)0.06679 (6)0.0292 (2)
O30.61092 (10)0.41953 (10)0.04911 (6)0.0286 (2)
S10.70831 (3)0.52451 (3)0.053468 (17)0.02072 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0241 (7)0.0381 (8)0.0310 (7)0.0053 (6)0.0010 (6)0.0003 (6)
C100.0198 (6)0.0297 (7)0.0264 (6)0.0003 (5)0.0042 (5)0.0030 (5)
C110.0198 (6)0.0234 (6)0.0218 (6)0.0011 (5)0.0027 (5)0.0019 (5)
C120.0169 (6)0.0233 (6)0.0221 (6)0.0018 (5)0.0038 (5)0.0004 (5)
C130.0210 (7)0.0338 (8)0.0343 (7)0.0038 (6)0.0038 (5)0.0060 (6)
C140.0765 (14)0.0595 (12)0.0305 (8)0.0257 (11)0.0018 (9)0.0124 (8)
C150.0246 (7)0.0411 (9)0.0460 (9)0.0066 (6)0.0024 (6)0.0175 (7)
C160.0217 (7)0.0376 (8)0.0463 (9)0.0036 (6)0.0010 (6)0.0049 (7)
C170.0338 (8)0.0267 (8)0.0519 (10)0.0066 (6)0.0024 (7)0.0104 (7)
C180.0383 (10)0.0547 (12)0.0637 (13)0.0004 (8)0.0034 (9)0.0353 (10)
C190.0733 (16)0.099 (2)0.0401 (11)0.0078 (14)0.0022 (10)0.0231 (12)
C20.0410 (9)0.0466 (10)0.0272 (7)0.0060 (7)0.0072 (6)0.0061 (7)
C30.0465 (9)0.0310 (8)0.0236 (7)0.0083 (7)0.0064 (6)0.0012 (6)
C40.0294 (7)0.0253 (7)0.0312 (7)0.0078 (6)0.0079 (6)0.0042 (6)
C50.0220 (6)0.0225 (6)0.0284 (7)0.0020 (5)0.0016 (5)0.0012 (5)
C60.0222 (6)0.0191 (6)0.0225 (6)0.0017 (5)0.0044 (5)0.0023 (5)
C70.0204 (6)0.0214 (6)0.0210 (6)0.0013 (5)0.0044 (5)0.0006 (5)
C80.0223 (7)0.0264 (7)0.0287 (7)0.0071 (5)0.0064 (5)0.0026 (5)
C90.0189 (6)0.0338 (8)0.0333 (7)0.0045 (5)0.0071 (5)0.0046 (6)
N10.0201 (5)0.0204 (5)0.0242 (5)0.0014 (4)0.0022 (4)0.0021 (4)
N20.0225 (6)0.0233 (6)0.0306 (6)0.0027 (4)0.0036 (4)0.0047 (5)
N30.0249 (6)0.0261 (6)0.0317 (6)0.0052 (5)0.0024 (5)0.0063 (5)
O10.0169 (5)0.0249 (5)0.0346 (5)0.0035 (4)0.0052 (4)0.0079 (4)
O20.0237 (5)0.0299 (5)0.0345 (5)0.0111 (4)0.0053 (4)0.0055 (4)
O30.0317 (5)0.0183 (5)0.0362 (5)0.0026 (4)0.0045 (4)0.0027 (4)
S10.02049 (18)0.01647 (17)0.02557 (18)0.00367 (11)0.00417 (12)0.00238 (11)
Geometric parameters (Å, º) top
C1—H10.9300C19—H19B0.9300
C1—C21.387 (2)C19—H19A0.9300
C10—C91.415 (2)C19—C181.304 (4)
C10—C131.392 (2)C2—H20.9300
C11—C101.4271 (18)C3—C141.505 (2)
C11—C121.4257 (18)C3—C21.390 (2)
C11—N21.3509 (18)C4—H40.9300
C12—O11.3626 (15)C4—C31.386 (2)
C13—H130.9300C5—H50.9300
C13—N31.340 (2)C5—C41.381 (2)
C14—H14C0.9600C6—C51.3910 (18)
C14—H14B0.9600C6—C11.385 (2)
C14—H14A0.9600C7—N11.4323 (17)
C15—H15B0.9700C7—C81.4247 (18)
C15—H15A0.9700C7—C121.3749 (18)
C15—C161.488 (2)C8—H80.9300
C15—O11.4380 (17)C8—C91.359 (2)
C16—H16C0.9600C9—H90.9300
C16—H16B0.9600N1—H1N0.8562
C16—H16A0.9600N2—N31.3528 (16)
C17—H17B0.9700S1—C61.7600 (13)
C17—H17A0.9700S1—N11.6358 (11)
C17—C181.499 (3)S1—O31.4352 (10)
C17—N31.4549 (19)S1—O21.4305 (10)
C18—H180.9300
C2—C1—H1120.5H19A—C19—H19B120.0
C6—C1—H1120.5C18—C19—H19B120.0
C6—C1—C2119.01 (14)C18—C19—H19A120.0
C9—C10—C11120.91 (13)C3—C2—H2119.5
C13—C10—C11103.93 (12)C1—C2—H2119.5
C13—C10—C9135.12 (13)C1—C2—C3121.00 (14)
C12—C11—C10119.89 (12)C2—C3—C14121.45 (16)
N2—C11—C10111.60 (12)C4—C3—C14119.87 (15)
N2—C11—C12128.43 (12)C4—C3—C2118.67 (14)
C7—C12—C11117.44 (12)C3—C4—H4119.2
O1—C12—C11125.18 (12)C5—C4—H4119.2
O1—C12—C7117.36 (12)C5—C4—C3121.52 (13)
C10—C13—H13126.6C6—C5—H5120.6
N3—C13—H13126.6C4—C5—H5120.6
N3—C13—C10106.70 (12)C4—C5—C6118.77 (13)
H14B—C14—H14C109.5C5—C6—S1118.97 (10)
H14A—C14—H14C109.5C1—C6—S1119.95 (11)
C3—C14—H14C109.5C1—C6—C5121.02 (13)
H14A—C14—H14B109.5C8—C7—N1119.24 (12)
C3—C14—H14B109.5C12—C7—N1118.49 (11)
C3—C14—H14A109.5C12—C7—C8122.08 (12)
H15A—C15—H15B108.3C7—C8—H8119.3
C16—C15—H15B109.9C9—C8—H8119.3
O1—C15—H15B109.9C9—C8—C7121.45 (13)
C16—C15—H15A109.9C10—C9—H9120.9
O1—C15—H15A109.9C8—C9—H9120.9
O1—C15—C16109.09 (13)C8—C9—C10118.16 (12)
H16B—C16—H16C109.5S1—N1—H1N112.5
H16A—C16—H16C109.5C7—N1—H1N112.9
C15—C16—H16C109.5C7—N1—S1121.19 (9)
H16A—C16—H16B109.5C11—N2—N3103.48 (11)
C15—C16—H16B109.5N2—N3—C17118.53 (12)
C15—C16—H16A109.5C13—N3—C17127.12 (13)
H17A—C17—H17B107.8C13—N3—N2114.27 (12)
C18—C17—H17B109.1C12—O1—C15117.63 (11)
N3—C17—H17B109.1N1—S1—C6108.84 (6)
C18—C17—H17A109.1O3—S1—C6107.93 (6)
N3—C17—H17A109.1O2—S1—C6107.50 (6)
N3—C17—C18112.65 (15)O3—S1—N1104.63 (6)
C17—C18—H18117.2O2—S1—N1108.30 (6)
C19—C18—H18117.2O2—S1—O3119.30 (6)
C19—C18—C17125.68 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.213.0199 (15)159
C8—H8···O2ii0.932.443.1270 (17)131
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H21N3O3S
Mr371.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.1459 (7), 9.9506 (7), 18.3720 (13)
β (°) 95.097 (3)
V3)1847.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.32 × 0.31 × 0.24
Data collection
DiffractometerBruker APEXII CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20488, 4034, 3693
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.06
No. of reflections4034
No. of parameters238
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.86002.21003.0199 (15)159.00
C8—H8···O2ii0.93002.44003.1270 (17)131.00
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Rakib, E. M., Hannioui, A., Alaoui, M., Benchidmi, M., Essassi, E. M. & Geffken, D. (2011c). Heterocycles, 83, 891–900.  CAS Google Scholar
First citationAbbassi, N., Rakib, E. M. & Zouihri, H. (2011a). Acta Cryst. E67, o1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbbassi, N., Rakib, E. M. & Zouihri, H. (2011b). Acta Cryst. E67, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds