organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Amino-5-(4-methyl­benzo­yl)-4-(4-methyl­phen­yl)pyrimidin-2(1H)-one

aInorganic Chemistry Department, Howard University, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: ozturk@erciyes.edu.tr

(Received 31 October 2011; accepted 8 November 2011; online 16 November 2011)

In the title compound, C19H17N3O2, the dihedral angles between the pyrimidine ring and the two benzene rings are 34.87 (12) (for the directly-bonded ring) and 69.57 (12)°. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal packing features inter­molecular N–H⋯O hydrogen bonds.

Related literature

For the structures of similar biologically active pyrimidines, see: Akkurt et al. (2003[Akkurt, M., Sarípínar, E., Öztürk, S., Yílmaz, Ç. & Fun, H.-K. (2003). Z. Kristallogr. 218, 488-491.], 2004[Akkurt, M., Öztürk, S., Önal, Z., Altural, B. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1844-o1846.]); Sarípínar et al. (2002[Sarípínar, E., İlhan, I. Ö. & Akçamur, Y. (2002). Heterocycles, 57(8), 1445-1459.]); Yíldírím et al. (2007[Yıldırım, S. Ö., Akkurt, M., Önal, Z. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1712-o1713.]); Önal & Altural (2006[Önal, Z. & Altural, B. (2006). Asian J. Chem. 18, 1061-1064.]); Önal & Yíldírím (2007[Önal, Z. & Yíldírím, İ. (2007). Heterocycl. Commun. 13(2-3), 113-120.]); Yíldírím et al. (2007[Yıldırım, S. Ö., Akkurt, M., Önal, Z. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1712-o1713.]); Öztürk et al. (1997[Öztürk, S., Akkurt, M., Hökelek, T. & Yíldírím, I. (1997). Cryst. Res. Technol. 32, 585-589.], 1999[Öztürk, S., Akkurt, M., Razak, I. A., Fun, H.-K. & Yildirim , İ. (1999). Acta Cryst. C55, 97-99.]). For the pharmacological properties of pyrimidines, see: Burdge (2000[Burdge, E. L. (2000). Pest Manag. Sci. 56, 245-248.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N3O2

  • Mr = 319.36

  • Monoclinic, C 2/c

  • a = 24.105 (4) Å

  • b = 5.9547 (10) Å

  • c = 23.170 (4) Å

  • β = 103.638 (3)°

  • V = 3232.0 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.20 × 0.07 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11340 measured reflections

  • 3296 independent reflections

  • 1803 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.136

  • S = 0.96

  • 3296 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.92 (4) 2.20 (3) 3.041 (3) 152 (3)
N3—H3B⋯O1 0.92 (3) 2.18 (3) 2.704 (3) 116 (2)
N3—H3B⋯O1ii 0.92 (3) 2.21 (3) 2.924 (3) 134 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our X-ray crystal structure analysis of some compounds of biological interest for a better understanding of the effect of structural and conformational change on biological activity, the structure determination of the title compound was undertaken (Akkurt et al., 2003, 2004; Öztürk et al., 1997, 1999; Yíldírím et al., 2007). 4-Aroyl-5-aryl-2,3-dihydro-2,3-furandiones are obtained starting from 1,3-dicarbonyl compounds with oxalyl halides. In general, 2,3-furandiones are considered convenient and versatile synthons in heterocyclic synthesis. The reactions of the substituted 2,3-furandiones with several semicarbazones, ureas and their thioanalogues and oximes, amides, anilides and hydrazines in different solvents and at various temperatures have been studied recently (Sarípínar et al., 2002). Pyrimidines in general have been of much interest for biological and medical reasons, and thus their chemistry has been investigated extensively (Önal & Altural, 2006; Önal & Yíldírím, 2007). Some are frequently encountered in many drugs used for the treatment of hypothyroidism and hypertension, in cancer chemotherapy or HIV infections (Burdge, 2000).

The title compound has a non planar conformation (Fig. 1). All bond lengths and angles are in good agreement with those observed in similar compounds (Öztürk et al., 1997, 1999; Yíldírím et al., 2007). The C—N distances have values in the range 1.322 (3) Å -1.408 (3) Å, shorter than the single-bond length of 1.480 Å and longer than the typical C = N distance of 1.280 Å, indicating partial double-bond character and suggesting conjugation in the heterocycle. In spite of this conjugation the pyrimidine ring is slightly distorted from planarity with a maximum deviation of -0.036 (2) Å for atom C1. The mean planes of the rings A (N1/N2/C1–C4), B (C5–C10) and C (C13–C18) make the following dihedral angles with each other: A/B = 34.87 (12), A/C = 69.57 (12) and B/C = 68.74 (12)°. Intermolecular hydrogen-bonding interactions influence the molecular geometry and crystal structure.

Related literature top

For the structures of similar biologically active pyrimidines, see: Akkurt et al. (2003, 2004); Sarípínar et al. (2002); Yíldírím et al. (2007); Önal & Altural (2006); Önal & Yíldírím (2007); Yíldírím et al. (2007); Öztürk et al. (1997, 1999). For the pharmacological properties of pyrimidines, see: Burdge (2000).

Experimental top

In the FT IR spectrum of 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)-1H-pyrimidin-2-one, the –NH2 absorption band was found to be at 3262 cm-1. The C=O absorption band was observed at 1653 cm-1. In the 1H NMR spectrum of 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)-1H-pyrimidin-2-one has a singlet signal at 7.26 p.p.m. assignable to the NH band on the pyrimidine molecule. Finally, the elemental analysis data along with spectroscopic data confirm the structure of 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)-1H-pyrimidin-2-one.

20 ml of water and 5 ml of acetic acid were added to a solution of 1 g 5-(4-methylbenzoyl)-1-(methyl-4-methylphenylmethylenamino)-4-(4-methylphenyl) -1H-pyrimidin-2-one in 20 ml of ethanol and the mixture was the heated under reflux for 45–50 minutes. With cooling 0.43 g (57%) of 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)-1H-pyrimidin-2-one precipitated and was recrystallized from ethanol; m.p.: 471 K; IR (KBr): υ= 3250 (–NH2), 3036 (aromatic C—H), 2911 (aliphatic C—H), 1680 s (C=O), 1650 s (C=O), 1507–1461 cm-1 (C=C and C=N); 1H NMR (DMSO): δ = 7.71–6.99 (m, 9H, ArH), 7.26 (s, 2H, N—NH2), 2.38 p.p.m. (s, 6H, 2xCH3). Anal. Calcd. for C19H17N3O2: C, 71.45; H, 5.36; N, 13.15. Found: C, 71.19; H, 5.20; N, 12.95.

Refinement top

H atoms bonded to N were freely refined. H atoms bonded to C were refined with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(CH3).

Structure description top

As part of our X-ray crystal structure analysis of some compounds of biological interest for a better understanding of the effect of structural and conformational change on biological activity, the structure determination of the title compound was undertaken (Akkurt et al., 2003, 2004; Öztürk et al., 1997, 1999; Yíldírím et al., 2007). 4-Aroyl-5-aryl-2,3-dihydro-2,3-furandiones are obtained starting from 1,3-dicarbonyl compounds with oxalyl halides. In general, 2,3-furandiones are considered convenient and versatile synthons in heterocyclic synthesis. The reactions of the substituted 2,3-furandiones with several semicarbazones, ureas and their thioanalogues and oximes, amides, anilides and hydrazines in different solvents and at various temperatures have been studied recently (Sarípínar et al., 2002). Pyrimidines in general have been of much interest for biological and medical reasons, and thus their chemistry has been investigated extensively (Önal & Altural, 2006; Önal & Yíldírím, 2007). Some are frequently encountered in many drugs used for the treatment of hypothyroidism and hypertension, in cancer chemotherapy or HIV infections (Burdge, 2000).

The title compound has a non planar conformation (Fig. 1). All bond lengths and angles are in good agreement with those observed in similar compounds (Öztürk et al., 1997, 1999; Yíldírím et al., 2007). The C—N distances have values in the range 1.322 (3) Å -1.408 (3) Å, shorter than the single-bond length of 1.480 Å and longer than the typical C = N distance of 1.280 Å, indicating partial double-bond character and suggesting conjugation in the heterocycle. In spite of this conjugation the pyrimidine ring is slightly distorted from planarity with a maximum deviation of -0.036 (2) Å for atom C1. The mean planes of the rings A (N1/N2/C1–C4), B (C5–C10) and C (C13–C18) make the following dihedral angles with each other: A/B = 34.87 (12), A/C = 69.57 (12) and B/C = 68.74 (12)°. Intermolecular hydrogen-bonding interactions influence the molecular geometry and crystal structure.

For the structures of similar biologically active pyrimidines, see: Akkurt et al. (2003, 2004); Sarípínar et al. (2002); Yíldírím et al. (2007); Önal & Altural (2006); Önal & Yíldírím (2007); Yíldírím et al. (2007); Öztürk et al. (1997, 1999). For the pharmacological properties of pyrimidines, see: Burdge (2000).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
1-Amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)pyrimidin-2(1H)-one top
Crystal data top
C19H17N3O2F(000) = 1344
Mr = 319.36Dx = 1.313 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 924 reflections
a = 24.105 (4) Åθ = 2.2–20.3°
b = 5.9547 (10) ŵ = 0.09 mm1
c = 23.170 (4) ÅT = 150 K
β = 103.638 (3)°Needle, colourless
V = 3232.0 (9) Å30.20 × 0.07 × 0.06 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
1803 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Graphite monochromatorθmax = 26.4°, θmin = 1.7°
φ and ω scansh = 3029
11340 measured reflectionsk = 77
3296 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0602P)2]
where P = (Fo2 + 2Fc2)/3
3296 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H17N3O2V = 3232.0 (9) Å3
Mr = 319.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.105 (4) ŵ = 0.09 mm1
b = 5.9547 (10) ÅT = 150 K
c = 23.170 (4) Å0.20 × 0.07 × 0.06 mm
β = 103.638 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1803 reflections with I > 2σ(I)
11340 measured reflectionsRint = 0.076
3296 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.19 e Å3
3296 reflectionsΔρmin = 0.24 e Å3
227 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03523 (7)0.7379 (3)0.00058 (7)0.0342 (6)
O20.05364 (7)0.0667 (3)0.20377 (7)0.0329 (6)
N10.02184 (8)0.7052 (3)0.09425 (8)0.0252 (7)
N20.08437 (8)0.4603 (3)0.05992 (9)0.0284 (7)
N30.01549 (9)0.8931 (4)0.08508 (11)0.0309 (7)
C10.04687 (10)0.6364 (4)0.04807 (11)0.0269 (8)
C20.09296 (10)0.3510 (4)0.11096 (10)0.0261 (8)
C30.06426 (10)0.4078 (4)0.15619 (10)0.0249 (8)
C40.02914 (10)0.5911 (4)0.14525 (11)0.0267 (8)
C50.13585 (10)0.1684 (4)0.11887 (11)0.0284 (8)
C60.14084 (11)0.0406 (4)0.06986 (12)0.0327 (9)
C70.18031 (11)0.1316 (4)0.07650 (13)0.0380 (9)
C80.21657 (11)0.1806 (4)0.13099 (13)0.0396 (10)
C90.21284 (11)0.0487 (5)0.17919 (14)0.0424 (10)
C100.17293 (11)0.1214 (5)0.17364 (12)0.0368 (9)
C110.25874 (12)0.3723 (5)0.13736 (15)0.0539 (13)
C120.06651 (10)0.2659 (4)0.20998 (11)0.0265 (8)
C130.08538 (10)0.3690 (4)0.26932 (10)0.0244 (8)
C140.07993 (10)0.2486 (4)0.31977 (11)0.0270 (8)
C150.10127 (10)0.3342 (4)0.37568 (11)0.0320 (8)
C160.13005 (11)0.5397 (4)0.38408 (11)0.0318 (9)
C170.13446 (11)0.6601 (4)0.33411 (11)0.0338 (9)
C180.11219 (11)0.5777 (4)0.27750 (11)0.0310 (8)
C190.15660 (13)0.6266 (5)0.44509 (11)0.0462 (10)
H3A0.0032 (13)0.992 (6)0.1138 (15)0.069 (11)*
H3B0.0150 (12)0.941 (5)0.0475 (14)0.062 (10)*
H40.010020.637040.173700.0320*
H60.117550.071410.032620.0392*
H70.182610.216820.043520.0456*
H90.237610.075030.215890.0509*
H100.170720.205730.206810.0442*
H11A0.274840.376690.103230.0809*
H11B0.288640.350410.172470.0809*
H11C0.239510.511390.140430.0809*
H140.061720.109840.315330.0323*
H150.096480.253810.408570.0384*
H170.152720.798770.338720.0405*
H180.115160.662500.244650.0372*
H19A0.158100.787660.444150.0693*
H19B0.134110.580080.472080.0693*
H19C0.194580.567790.458100.0693*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0454 (11)0.0280 (10)0.0284 (10)0.0028 (9)0.0072 (8)0.0049 (8)
O20.0430 (11)0.0207 (10)0.0339 (10)0.0022 (8)0.0071 (9)0.0002 (8)
N10.0298 (11)0.0196 (11)0.0256 (12)0.0011 (9)0.0051 (9)0.0007 (9)
N20.0340 (12)0.0214 (11)0.0291 (12)0.0003 (10)0.0061 (10)0.0002 (9)
N30.0376 (13)0.0215 (12)0.0330 (13)0.0094 (10)0.0069 (11)0.0045 (11)
C10.0306 (14)0.0208 (13)0.0291 (14)0.0036 (11)0.0069 (11)0.0018 (11)
C20.0254 (13)0.0224 (13)0.0294 (14)0.0029 (11)0.0042 (11)0.0013 (11)
C30.0291 (13)0.0196 (12)0.0258 (14)0.0019 (11)0.0059 (11)0.0015 (10)
C40.0306 (14)0.0208 (13)0.0284 (14)0.0018 (11)0.0064 (11)0.0002 (11)
C50.0278 (13)0.0221 (13)0.0368 (15)0.0008 (11)0.0105 (12)0.0028 (12)
C60.0332 (15)0.0253 (14)0.0408 (16)0.0021 (12)0.0111 (13)0.0018 (12)
C70.0404 (16)0.0258 (14)0.0513 (18)0.0018 (13)0.0179 (14)0.0067 (13)
C80.0282 (15)0.0277 (15)0.064 (2)0.0020 (12)0.0131 (14)0.0063 (14)
C90.0325 (16)0.0420 (18)0.0507 (19)0.0086 (14)0.0057 (14)0.0090 (15)
C100.0319 (15)0.0405 (17)0.0379 (16)0.0048 (13)0.0079 (12)0.0002 (13)
C110.0402 (17)0.0351 (18)0.088 (3)0.0102 (14)0.0186 (17)0.0089 (17)
C120.0261 (13)0.0187 (13)0.0346 (15)0.0012 (11)0.0072 (11)0.0007 (11)
C130.0254 (13)0.0204 (13)0.0275 (13)0.0017 (10)0.0067 (10)0.0005 (11)
C140.0274 (13)0.0203 (13)0.0345 (15)0.0019 (11)0.0099 (11)0.0042 (11)
C150.0369 (15)0.0317 (15)0.0297 (14)0.0023 (13)0.0125 (12)0.0046 (12)
C160.0328 (15)0.0323 (15)0.0310 (15)0.0022 (12)0.0087 (12)0.0013 (12)
C170.0402 (16)0.0254 (14)0.0355 (15)0.0062 (12)0.0084 (13)0.0026 (12)
C180.0417 (15)0.0212 (13)0.0300 (14)0.0024 (12)0.0082 (12)0.0035 (12)
C190.0557 (19)0.0499 (19)0.0331 (16)0.0081 (16)0.0106 (14)0.0065 (15)
Geometric parameters (Å, º) top
O1—C11.229 (3)C13—C141.404 (3)
O2—C121.226 (3)C14—C151.374 (3)
N1—N31.420 (3)C15—C161.398 (3)
N1—C11.408 (3)C16—C171.387 (4)
N1—C41.338 (3)C16—C191.500 (4)
N2—C11.369 (3)C17—C181.385 (4)
N2—C21.323 (3)C4—H40.9300
N3—H3A0.92 (4)C6—H60.9300
N3—H3B0.92 (3)C7—H70.9300
C2—C31.426 (3)C9—H90.9300
C2—C51.482 (3)C10—H100.9300
C3—C121.496 (3)C11—H11A0.9600
C3—C41.368 (3)C11—H11B0.9600
C5—C101.397 (4)C11—H11C0.9600
C5—C61.396 (4)C14—H140.9300
C6—C71.383 (4)C15—H150.9300
C7—C81.387 (4)C17—H170.9300
C8—C91.386 (4)C18—H180.9300
C8—C111.512 (4)C19—H19A0.9600
C9—C101.382 (4)C19—H19B0.9600
C12—C131.476 (3)C19—H19C0.9600
C13—C181.393 (3)
N3—N1—C1119.06 (19)C15—C16—C19121.4 (2)
N3—N1—C4118.6 (2)C15—C16—C17118.0 (2)
C1—N1—C4122.2 (2)C17—C16—C19120.6 (2)
C1—N2—C2120.9 (2)C16—C17—C18121.2 (2)
N1—N3—H3B103.7 (19)C13—C18—C17120.6 (2)
H3A—N3—H3B112 (3)N1—C4—H4120.00
N1—N3—H3A102 (2)C3—C4—H4119.00
O1—C1—N1119.3 (2)C5—C6—H6120.00
O1—C1—N2123.8 (2)C7—C6—H6120.00
N1—C1—N2116.8 (2)C6—C7—H7119.00
N2—C2—C5115.4 (2)C8—C7—H7119.00
C3—C2—C5121.9 (2)C8—C9—H9119.00
N2—C2—C3122.7 (2)C10—C9—H9119.00
C2—C3—C12123.4 (2)C5—C10—H10120.00
C2—C3—C4116.1 (2)C9—C10—H10120.00
C4—C3—C12120.3 (2)C8—C11—H11A109.00
N1—C4—C3121.0 (2)C8—C11—H11B109.00
C2—C5—C6119.4 (2)C8—C11—H11C109.00
C2—C5—C10122.5 (2)H11A—C11—H11B109.00
C6—C5—C10118.1 (2)H11A—C11—H11C109.00
C5—C6—C7120.2 (2)H11B—C11—H11C109.00
C6—C7—C8121.8 (3)C13—C14—H14120.00
C7—C8—C9117.9 (2)C15—C14—H14120.00
C7—C8—C11120.8 (3)C14—C15—H15119.00
C9—C8—C11121.3 (3)C16—C15—H15119.00
C8—C9—C10121.1 (3)C16—C17—H17119.00
C5—C10—C9120.9 (3)C18—C17—H17119.00
C3—C12—C13118.9 (2)C13—C18—H18120.00
O2—C12—C13121.7 (2)C17—C18—H18120.00
O2—C12—C3119.4 (2)C16—C19—H19A109.00
C12—C13—C14119.6 (2)C16—C19—H19B109.00
C12—C13—C18121.9 (2)C16—C19—H19C109.00
C14—C13—C18118.3 (2)H19A—C19—H19B109.00
C13—C14—C15120.5 (2)H19A—C19—H19C109.00
C14—C15—C16121.3 (2)H19B—C19—H19C109.00
N3—N1—C1—O11.1 (3)C2—C5—C6—C7179.5 (2)
C4—N1—C1—O1174.6 (2)C10—C5—C6—C72.1 (4)
N3—N1—C1—N2177.4 (2)C2—C5—C10—C9179.3 (3)
C4—N1—C1—N27.0 (3)C6—C5—C10—C90.9 (4)
N3—N1—C4—C3179.5 (2)C5—C6—C7—C81.2 (4)
C1—N1—C4—C33.8 (4)C6—C7—C8—C91.0 (4)
C1—N2—C2—C30.1 (4)C6—C7—C8—C11179.0 (3)
C2—N2—C1—O1176.7 (2)C7—C8—C9—C102.2 (4)
C2—N2—C1—N14.9 (3)C11—C8—C9—C10177.8 (3)
C1—N2—C2—C5178.3 (2)C8—C9—C10—C51.3 (4)
C5—C2—C3—C4174.9 (2)O2—C12—C13—C1410.5 (4)
C5—C2—C3—C1211.4 (4)O2—C12—C13—C18165.1 (2)
N2—C2—C3—C12170.4 (2)C3—C12—C13—C14170.8 (2)
N2—C2—C5—C10143.4 (2)C3—C12—C13—C1813.6 (4)
C3—C2—C5—C6146.7 (2)C12—C13—C14—C15174.9 (2)
N2—C2—C5—C635.0 (3)C18—C13—C14—C150.8 (4)
N2—C2—C3—C43.4 (4)C12—C13—C18—C17173.6 (2)
C3—C2—C5—C1035.0 (4)C14—C13—C18—C172.1 (4)
C12—C3—C4—N1172.6 (2)C13—C14—C15—C161.5 (4)
C2—C3—C12—O253.6 (3)C14—C15—C16—C172.6 (4)
C4—C3—C12—O2119.9 (3)C14—C15—C16—C19176.1 (3)
C4—C3—C12—C1361.4 (3)C15—C16—C17—C181.4 (4)
C2—C3—C12—C13125.2 (3)C19—C16—C17—C18177.3 (3)
C2—C3—C4—N11.3 (3)C16—C17—C18—C131.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.92 (4)2.20 (3)3.041 (3)152 (3)
N3—H3B···O10.92 (3)2.18 (3)2.704 (3)116 (2)
N3—H3B···O1ii0.92 (3)2.21 (3)2.924 (3)134 (2)
C19—H19B···N2iii0.96002.61003.544 (4)166.00
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H17N3O2
Mr319.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)24.105 (4), 5.9547 (10), 23.170 (4)
β (°) 103.638 (3)
V3)3232.0 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.07 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11340, 3296, 1803
Rint0.076
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.136, 0.96
No. of reflections3296
No. of parameters227
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.92 (4)2.20 (3)3.041 (3)152 (3)
N3—H3B···O10.92 (3)2.18 (3)2.704 (3)116 (2)
N3—H3B···O1ii0.92 (3)2.21 (3)2.924 (3)134 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.
 

References

First citationAkkurt, M., Öztürk, S., Önal, Z., Altural, B. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1844–o1846.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Sarípínar, E., Öztürk, S., Yílmaz, Ç. & Fun, H.-K. (2003). Z. Kristallogr. 218, 488–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurdge, E. L. (2000). Pest Manag. Sci. 56, 245–248.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationÖnal, Z. & Altural, B. (2006). Asian J. Chem. 18, 1061–1064.  Google Scholar
First citationÖnal, Z. & Yíldírím, İ. (2007). Heterocycl. Commun. 13(2-3), 113–120.  Google Scholar
First citationÖztürk, S., Akkurt, M., Hökelek, T. & Yíldírím, I. (1997). Cryst. Res. Technol. 32, 585–589.  Google Scholar
First citationÖztürk, S., Akkurt, M., Razak, I. A., Fun, H.-K. & Yildirim , İ. (1999). Acta Cryst. C55, 97–99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarípínar, E., İlhan, I. Ö. & Akçamur, Y. (2002). Heterocycles, 57(8), 1445–1459.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Önal, Z. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1712–o1713.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds