organic compounds
1-Amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)pyrimidin-2(1H)-one
aInorganic Chemistry Department, Howard University, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: ozturk@erciyes.edu.tr
In the title compound, C19H17N3O2, the dihedral angles between the pyrimidine ring and the two benzene rings are 34.87 (12) (for the directly-bonded ring) and 69.57 (12)°. An intramolecular N—H⋯O hydrogen bond occurs. The crystal packing features intermolecular N–H⋯O hydrogen bonds.
Related literature
For the structures of similar biologically active pyrimidines, see: Akkurt et al. (2003, 2004); Sarípínar et al. (2002); Yíldírím et al. (2007); Önal & Altural (2006); Önal & Yíldírím (2007); Yíldírím et al. (2007); Öztürk et al. (1997, 1999). For the pharmacological properties of pyrimidines, see: Burdge (2000).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536811047301/bt5701sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811047301/bt5701Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811047301/bt5701Isup3.cml
In the FT IR spectrum of 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)-1H-pyrimidin-2-one, the –NH2 absorption band was found to be at 3262 cm-1. The C=O absorption band was observed at 1653 cm-1. In the 1H NMR spectrum of 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)-1H-pyrimidin-2-one has a singlet signal at 7.26 p.p.m. assignable to the NH band on the pyrimidine molecule. Finally, the elemental analysis data along with spectroscopic data confirm the structure of 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)-1H-pyrimidin-2-one.
20 ml of water and 5 ml of acetic acid were added to a solution of 1 g 5-(4-methylbenzoyl)-1-(methyl-4-methylphenylmethylenamino)-4-(4-methylphenyl) -1H-pyrimidin-2-one in 20 ml of ethanol and the mixture was the heated under reflux for 45–50 minutes. With cooling 0.43 g (57%) of 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)-1H-pyrimidin-2-one precipitated and was recrystallized from ethanol; m.p.: 471 K; IR (KBr): υ= 3250 (–NH2), 3036 (aromatic C—H), 2911 (aliphatic C—H), 1680 s (C=O), 1650 s (C=O), 1507–1461 cm-1 (C=C and C=N); 1H NMR (DMSO): δ = 7.71–6.99 (m, 9H, ArH), 7.26 (s, 2H, N—NH2), 2.38 p.p.m. (s, 6H, 2xCH3). Anal. Calcd. for C19H17N3O2: C, 71.45; H, 5.36; N, 13.15. Found: C, 71.19; H, 5.20; N, 12.95.
H atoms bonded to N were freely refined. H atoms bonded to C were refined with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(CH3).
As part of our X-ray
analysis of some compounds of biological interest for a better understanding of the effect of structural and conformational change on biological activity, the of the title compound was undertaken (Akkurt et al., 2003, 2004; Öztürk et al., 1997, 1999; Yíldírím et al., 2007). 4-Aroyl-5-aryl-2,3-dihydro-2,3-furandiones are obtained starting from 1,3-dicarbonyl compounds with oxalyl halides. In general, 2,3-furandiones are considered convenient and versatile synthons in heterocyclic synthesis. The reactions of the substituted 2,3-furandiones with several ureas and their thioanalogues and and in different solvents and at various temperatures have been studied recently (Sarípínar et al., 2002). Pyrimidines in general have been of much interest for biological and medical reasons, and thus their chemistry has been investigated extensively (Önal & Altural, 2006; Önal & Yíldírím, 2007). Some are frequently encountered in many drugs used for the treatment of hypothyroidism and hypertension, in cancer chemotherapy or HIV infections (Burdge, 2000).The title compound has a non planar conformation (Fig. 1). All bond lengths and angles are in good agreement with those observed in similar compounds (Öztürk et al., 1997, 1999; Yíldírím et al., 2007). The C—N distances have values in the range 1.322 (3) Å -1.408 (3) Å, shorter than the single-bond length of 1.480 Å and longer than the typical C = N distance of 1.280 Å, indicating partial double-bond character and suggesting conjugation in the heterocycle. In spite of this conjugation the pyrimidine ring is slightly distorted from planarity with a maximum deviation of -0.036 (2) Å for atom C1. The mean planes of the rings A (N1/N2/C1–C4), B (C5–C10) and C (C13–C18) make the following dihedral angles with each other: A/B = 34.87 (12), A/C = 69.57 (12) and B/C = 68.74 (12)°. Intermolecular hydrogen-bonding interactions influence the molecular geometry and crystal structure.
For the structures of similar biologically active pyrimidines, see: Akkurt et al. (2003, 2004); Sarípínar et al. (2002); Yíldírím et al. (2007); Önal & Altural (2006); Önal & Yíldírím (2007); Yíldírím et al. (2007); Öztürk et al. (1997, 1999). For the pharmacological properties of pyrimidines, see: Burdge (2000).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. A view of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. |
C19H17N3O2 | F(000) = 1344 |
Mr = 319.36 | Dx = 1.313 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 924 reflections |
a = 24.105 (4) Å | θ = 2.2–20.3° |
b = 5.9547 (10) Å | µ = 0.09 mm−1 |
c = 23.170 (4) Å | T = 150 K |
β = 103.638 (3)° | Needle, colourless |
V = 3232.0 (9) Å3 | 0.20 × 0.07 × 0.06 mm |
Z = 8 |
Bruker APEXII CCD diffractometer | 1803 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.076 |
Graphite monochromator | θmax = 26.4°, θmin = 1.7° |
φ and ω scans | h = −30→29 |
11340 measured reflections | k = −7→7 |
3296 independent reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0602P)2] where P = (Fo2 + 2Fc2)/3 |
3296 reflections | (Δ/σ)max < 0.001 |
227 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C19H17N3O2 | V = 3232.0 (9) Å3 |
Mr = 319.36 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.105 (4) Å | µ = 0.09 mm−1 |
b = 5.9547 (10) Å | T = 150 K |
c = 23.170 (4) Å | 0.20 × 0.07 × 0.06 mm |
β = 103.638 (3)° |
Bruker APEXII CCD diffractometer | 1803 reflections with I > 2σ(I) |
11340 measured reflections | Rint = 0.076 |
3296 independent reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.96 | Δρmax = 0.19 e Å−3 |
3296 reflections | Δρmin = −0.24 e Å−3 |
227 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.03523 (7) | 0.7379 (3) | 0.00058 (7) | 0.0342 (6) | |
O2 | 0.05364 (7) | 0.0667 (3) | 0.20377 (7) | 0.0329 (6) | |
N1 | 0.02184 (8) | 0.7052 (3) | 0.09425 (8) | 0.0252 (7) | |
N2 | 0.08437 (8) | 0.4603 (3) | 0.05992 (9) | 0.0284 (7) | |
N3 | −0.01549 (9) | 0.8931 (4) | 0.08508 (11) | 0.0309 (7) | |
C1 | 0.04687 (10) | 0.6364 (4) | 0.04807 (11) | 0.0269 (8) | |
C2 | 0.09296 (10) | 0.3510 (4) | 0.11096 (10) | 0.0261 (8) | |
C3 | 0.06426 (10) | 0.4078 (4) | 0.15619 (10) | 0.0249 (8) | |
C4 | 0.02914 (10) | 0.5911 (4) | 0.14525 (11) | 0.0267 (8) | |
C5 | 0.13585 (10) | 0.1684 (4) | 0.11887 (11) | 0.0284 (8) | |
C6 | 0.14084 (11) | 0.0406 (4) | 0.06986 (12) | 0.0327 (9) | |
C7 | 0.18031 (11) | −0.1316 (4) | 0.07650 (13) | 0.0380 (9) | |
C8 | 0.21657 (11) | −0.1806 (4) | 0.13099 (13) | 0.0396 (10) | |
C9 | 0.21284 (11) | −0.0487 (5) | 0.17919 (14) | 0.0424 (10) | |
C10 | 0.17293 (11) | 0.1214 (5) | 0.17364 (12) | 0.0368 (9) | |
C11 | 0.25874 (12) | −0.3723 (5) | 0.13736 (15) | 0.0539 (13) | |
C12 | 0.06651 (10) | 0.2659 (4) | 0.20998 (11) | 0.0265 (8) | |
C13 | 0.08538 (10) | 0.3690 (4) | 0.26932 (10) | 0.0244 (8) | |
C14 | 0.07993 (10) | 0.2486 (4) | 0.31977 (11) | 0.0270 (8) | |
C15 | 0.10127 (10) | 0.3342 (4) | 0.37568 (11) | 0.0320 (8) | |
C16 | 0.13005 (11) | 0.5397 (4) | 0.38408 (11) | 0.0318 (9) | |
C17 | 0.13446 (11) | 0.6601 (4) | 0.33411 (11) | 0.0338 (9) | |
C18 | 0.11219 (11) | 0.5777 (4) | 0.27750 (11) | 0.0310 (8) | |
C19 | 0.15660 (13) | 0.6266 (5) | 0.44509 (11) | 0.0462 (10) | |
H3A | 0.0032 (13) | 0.992 (6) | 0.1138 (15) | 0.069 (11)* | |
H3B | −0.0150 (12) | 0.941 (5) | 0.0475 (14) | 0.062 (10)* | |
H4 | 0.01002 | 0.63704 | 0.17370 | 0.0320* | |
H6 | 0.11755 | 0.07141 | 0.03262 | 0.0392* | |
H7 | 0.18261 | −0.21682 | 0.04352 | 0.0456* | |
H9 | 0.23761 | −0.07503 | 0.21589 | 0.0509* | |
H10 | 0.17072 | 0.20573 | 0.20681 | 0.0442* | |
H11A | 0.27484 | −0.37669 | 0.10323 | 0.0809* | |
H11B | 0.28864 | −0.35041 | 0.17247 | 0.0809* | |
H11C | 0.23951 | −0.51139 | 0.14043 | 0.0809* | |
H14 | 0.06172 | 0.10984 | 0.31533 | 0.0323* | |
H15 | 0.09648 | 0.25381 | 0.40857 | 0.0384* | |
H17 | 0.15272 | 0.79877 | 0.33872 | 0.0405* | |
H18 | 0.11516 | 0.66250 | 0.24465 | 0.0372* | |
H19A | 0.15810 | 0.78766 | 0.44415 | 0.0693* | |
H19B | 0.13411 | 0.58008 | 0.47208 | 0.0693* | |
H19C | 0.19458 | 0.56779 | 0.45810 | 0.0693* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0454 (11) | 0.0280 (10) | 0.0284 (10) | 0.0028 (9) | 0.0072 (8) | 0.0049 (8) |
O2 | 0.0430 (11) | 0.0207 (10) | 0.0339 (10) | −0.0022 (8) | 0.0071 (9) | −0.0002 (8) |
N1 | 0.0298 (11) | 0.0196 (11) | 0.0256 (12) | 0.0011 (9) | 0.0051 (9) | −0.0007 (9) |
N2 | 0.0340 (12) | 0.0214 (11) | 0.0291 (12) | 0.0003 (10) | 0.0061 (10) | 0.0002 (9) |
N3 | 0.0376 (13) | 0.0215 (12) | 0.0330 (13) | 0.0094 (10) | 0.0069 (11) | 0.0045 (11) |
C1 | 0.0306 (14) | 0.0208 (13) | 0.0291 (14) | −0.0036 (11) | 0.0069 (11) | −0.0018 (11) |
C2 | 0.0254 (13) | 0.0224 (13) | 0.0294 (14) | −0.0029 (11) | 0.0042 (11) | −0.0013 (11) |
C3 | 0.0291 (13) | 0.0196 (12) | 0.0258 (14) | −0.0019 (11) | 0.0059 (11) | −0.0015 (10) |
C4 | 0.0306 (14) | 0.0208 (13) | 0.0284 (14) | −0.0018 (11) | 0.0064 (11) | 0.0002 (11) |
C5 | 0.0278 (13) | 0.0221 (13) | 0.0368 (15) | −0.0008 (11) | 0.0105 (12) | 0.0028 (12) |
C6 | 0.0332 (15) | 0.0253 (14) | 0.0408 (16) | 0.0021 (12) | 0.0111 (13) | 0.0018 (12) |
C7 | 0.0404 (16) | 0.0258 (14) | 0.0513 (18) | −0.0018 (13) | 0.0179 (14) | −0.0067 (13) |
C8 | 0.0282 (15) | 0.0277 (15) | 0.064 (2) | 0.0020 (12) | 0.0131 (14) | 0.0063 (14) |
C9 | 0.0325 (16) | 0.0420 (18) | 0.0507 (19) | 0.0086 (14) | 0.0057 (14) | 0.0090 (15) |
C10 | 0.0319 (15) | 0.0405 (17) | 0.0379 (16) | 0.0048 (13) | 0.0079 (12) | −0.0002 (13) |
C11 | 0.0402 (17) | 0.0351 (18) | 0.088 (3) | 0.0102 (14) | 0.0186 (17) | 0.0089 (17) |
C12 | 0.0261 (13) | 0.0187 (13) | 0.0346 (15) | 0.0012 (11) | 0.0072 (11) | 0.0007 (11) |
C13 | 0.0254 (13) | 0.0204 (13) | 0.0275 (13) | 0.0017 (10) | 0.0067 (10) | 0.0005 (11) |
C14 | 0.0274 (13) | 0.0203 (13) | 0.0345 (15) | 0.0019 (11) | 0.0099 (11) | 0.0042 (11) |
C15 | 0.0369 (15) | 0.0317 (15) | 0.0297 (14) | 0.0023 (13) | 0.0125 (12) | 0.0046 (12) |
C16 | 0.0328 (15) | 0.0323 (15) | 0.0310 (15) | 0.0022 (12) | 0.0087 (12) | −0.0013 (12) |
C17 | 0.0402 (16) | 0.0254 (14) | 0.0355 (15) | −0.0062 (12) | 0.0084 (13) | −0.0026 (12) |
C18 | 0.0417 (15) | 0.0212 (13) | 0.0300 (14) | −0.0024 (12) | 0.0082 (12) | 0.0035 (12) |
C19 | 0.0557 (19) | 0.0499 (19) | 0.0331 (16) | −0.0081 (16) | 0.0106 (14) | −0.0065 (15) |
O1—C1 | 1.229 (3) | C13—C14 | 1.404 (3) |
O2—C12 | 1.226 (3) | C14—C15 | 1.374 (3) |
N1—N3 | 1.420 (3) | C15—C16 | 1.398 (3) |
N1—C1 | 1.408 (3) | C16—C17 | 1.387 (4) |
N1—C4 | 1.338 (3) | C16—C19 | 1.500 (4) |
N2—C1 | 1.369 (3) | C17—C18 | 1.385 (4) |
N2—C2 | 1.323 (3) | C4—H4 | 0.9300 |
N3—H3A | 0.92 (4) | C6—H6 | 0.9300 |
N3—H3B | 0.92 (3) | C7—H7 | 0.9300 |
C2—C3 | 1.426 (3) | C9—H9 | 0.9300 |
C2—C5 | 1.482 (3) | C10—H10 | 0.9300 |
C3—C12 | 1.496 (3) | C11—H11A | 0.9600 |
C3—C4 | 1.368 (3) | C11—H11B | 0.9600 |
C5—C10 | 1.397 (4) | C11—H11C | 0.9600 |
C5—C6 | 1.396 (4) | C14—H14 | 0.9300 |
C6—C7 | 1.383 (4) | C15—H15 | 0.9300 |
C7—C8 | 1.387 (4) | C17—H17 | 0.9300 |
C8—C9 | 1.386 (4) | C18—H18 | 0.9300 |
C8—C11 | 1.512 (4) | C19—H19A | 0.9600 |
C9—C10 | 1.382 (4) | C19—H19B | 0.9600 |
C12—C13 | 1.476 (3) | C19—H19C | 0.9600 |
C13—C18 | 1.393 (3) | ||
N3—N1—C1 | 119.06 (19) | C15—C16—C19 | 121.4 (2) |
N3—N1—C4 | 118.6 (2) | C15—C16—C17 | 118.0 (2) |
C1—N1—C4 | 122.2 (2) | C17—C16—C19 | 120.6 (2) |
C1—N2—C2 | 120.9 (2) | C16—C17—C18 | 121.2 (2) |
N1—N3—H3B | 103.7 (19) | C13—C18—C17 | 120.6 (2) |
H3A—N3—H3B | 112 (3) | N1—C4—H4 | 120.00 |
N1—N3—H3A | 102 (2) | C3—C4—H4 | 119.00 |
O1—C1—N1 | 119.3 (2) | C5—C6—H6 | 120.00 |
O1—C1—N2 | 123.8 (2) | C7—C6—H6 | 120.00 |
N1—C1—N2 | 116.8 (2) | C6—C7—H7 | 119.00 |
N2—C2—C5 | 115.4 (2) | C8—C7—H7 | 119.00 |
C3—C2—C5 | 121.9 (2) | C8—C9—H9 | 119.00 |
N2—C2—C3 | 122.7 (2) | C10—C9—H9 | 119.00 |
C2—C3—C12 | 123.4 (2) | C5—C10—H10 | 120.00 |
C2—C3—C4 | 116.1 (2) | C9—C10—H10 | 120.00 |
C4—C3—C12 | 120.3 (2) | C8—C11—H11A | 109.00 |
N1—C4—C3 | 121.0 (2) | C8—C11—H11B | 109.00 |
C2—C5—C6 | 119.4 (2) | C8—C11—H11C | 109.00 |
C2—C5—C10 | 122.5 (2) | H11A—C11—H11B | 109.00 |
C6—C5—C10 | 118.1 (2) | H11A—C11—H11C | 109.00 |
C5—C6—C7 | 120.2 (2) | H11B—C11—H11C | 109.00 |
C6—C7—C8 | 121.8 (3) | C13—C14—H14 | 120.00 |
C7—C8—C9 | 117.9 (2) | C15—C14—H14 | 120.00 |
C7—C8—C11 | 120.8 (3) | C14—C15—H15 | 119.00 |
C9—C8—C11 | 121.3 (3) | C16—C15—H15 | 119.00 |
C8—C9—C10 | 121.1 (3) | C16—C17—H17 | 119.00 |
C5—C10—C9 | 120.9 (3) | C18—C17—H17 | 119.00 |
C3—C12—C13 | 118.9 (2) | C13—C18—H18 | 120.00 |
O2—C12—C13 | 121.7 (2) | C17—C18—H18 | 120.00 |
O2—C12—C3 | 119.4 (2) | C16—C19—H19A | 109.00 |
C12—C13—C14 | 119.6 (2) | C16—C19—H19B | 109.00 |
C12—C13—C18 | 121.9 (2) | C16—C19—H19C | 109.00 |
C14—C13—C18 | 118.3 (2) | H19A—C19—H19B | 109.00 |
C13—C14—C15 | 120.5 (2) | H19A—C19—H19C | 109.00 |
C14—C15—C16 | 121.3 (2) | H19B—C19—H19C | 109.00 |
N3—N1—C1—O1 | −1.1 (3) | C2—C5—C6—C7 | −179.5 (2) |
C4—N1—C1—O1 | 174.6 (2) | C10—C5—C6—C7 | 2.1 (4) |
N3—N1—C1—N2 | 177.4 (2) | C2—C5—C10—C9 | −179.3 (3) |
C4—N1—C1—N2 | −7.0 (3) | C6—C5—C10—C9 | −0.9 (4) |
N3—N1—C4—C3 | 179.5 (2) | C5—C6—C7—C8 | −1.2 (4) |
C1—N1—C4—C3 | 3.8 (4) | C6—C7—C8—C9 | −1.0 (4) |
C1—N2—C2—C3 | 0.1 (4) | C6—C7—C8—C11 | 179.0 (3) |
C2—N2—C1—O1 | −176.7 (2) | C7—C8—C9—C10 | 2.2 (4) |
C2—N2—C1—N1 | 4.9 (3) | C11—C8—C9—C10 | −177.8 (3) |
C1—N2—C2—C5 | −178.3 (2) | C8—C9—C10—C5 | −1.3 (4) |
C5—C2—C3—C4 | 174.9 (2) | O2—C12—C13—C14 | −10.5 (4) |
C5—C2—C3—C12 | −11.4 (4) | O2—C12—C13—C18 | 165.1 (2) |
N2—C2—C3—C12 | 170.4 (2) | C3—C12—C13—C14 | 170.8 (2) |
N2—C2—C5—C10 | 143.4 (2) | C3—C12—C13—C18 | −13.6 (4) |
C3—C2—C5—C6 | 146.7 (2) | C12—C13—C14—C15 | 174.9 (2) |
N2—C2—C5—C6 | −35.0 (3) | C18—C13—C14—C15 | −0.8 (4) |
N2—C2—C3—C4 | −3.4 (4) | C12—C13—C18—C17 | −173.6 (2) |
C3—C2—C5—C10 | −35.0 (4) | C14—C13—C18—C17 | 2.1 (4) |
C12—C3—C4—N1 | −172.6 (2) | C13—C14—C15—C16 | −1.5 (4) |
C2—C3—C12—O2 | −53.6 (3) | C14—C15—C16—C17 | 2.6 (4) |
C4—C3—C12—O2 | 119.9 (3) | C14—C15—C16—C19 | −176.1 (3) |
C4—C3—C12—C13 | −61.4 (3) | C15—C16—C17—C18 | −1.4 (4) |
C2—C3—C12—C13 | 125.2 (3) | C19—C16—C17—C18 | 177.3 (3) |
C2—C3—C4—N1 | 1.3 (3) | C16—C17—C18—C13 | −1.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O2i | 0.92 (4) | 2.20 (3) | 3.041 (3) | 152 (3) |
N3—H3B···O1 | 0.92 (3) | 2.18 (3) | 2.704 (3) | 116 (2) |
N3—H3B···O1ii | 0.92 (3) | 2.21 (3) | 2.924 (3) | 134 (2) |
C19—H19B···N2iii | 0.9600 | 2.6100 | 3.544 (4) | 166.00 |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+2, −z; (iii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C19H17N3O2 |
Mr | 319.36 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 150 |
a, b, c (Å) | 24.105 (4), 5.9547 (10), 23.170 (4) |
β (°) | 103.638 (3) |
V (Å3) | 3232.0 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.20 × 0.07 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11340, 3296, 1803 |
Rint | 0.076 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.136, 0.96 |
No. of reflections | 3296 |
No. of parameters | 227 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.24 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O2i | 0.92 (4) | 2.20 (3) | 3.041 (3) | 152 (3) |
N3—H3B···O1 | 0.92 (3) | 2.18 (3) | 2.704 (3) | 116 (2) |
N3—H3B···O1ii | 0.92 (3) | 2.21 (3) | 2.924 (3) | 134 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+2, −z. |
References
Akkurt, M., Öztürk, S., Önal, Z., Altural, B. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1844–o1846. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Sarípínar, E., Öztürk, S., Yílmaz, Ç. & Fun, H.-K. (2003). Z. Kristallogr. 218, 488–491. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burdge, E. L. (2000). Pest Manag. Sci. 56, 245–248. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Önal, Z. & Altural, B. (2006). Asian J. Chem. 18, 1061–1064. Google Scholar
Önal, Z. & Yíldírím, İ. (2007). Heterocycl. Commun. 13(2-3), 113–120. Google Scholar
Öztürk, S., Akkurt, M., Hökelek, T. & Yíldírím, I. (1997). Cryst. Res. Technol. 32, 585–589. Google Scholar
Öztürk, S., Akkurt, M., Razak, I. A., Fun, H.-K. & Yildirim , İ. (1999). Acta Cryst. C55, 97–99. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarípínar, E., İlhan, I. Ö. & Akçamur, Y. (2002). Heterocycles, 57(8), 1445–1459. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yıldırım, S. Ö., Akkurt, M., Önal, Z. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1712–o1713. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our X-ray crystal structure analysis of some compounds of biological interest for a better understanding of the effect of structural and conformational change on biological activity, the structure determination of the title compound was undertaken (Akkurt et al., 2003, 2004; Öztürk et al., 1997, 1999; Yíldírím et al., 2007). 4-Aroyl-5-aryl-2,3-dihydro-2,3-furandiones are obtained starting from 1,3-dicarbonyl compounds with oxalyl halides. In general, 2,3-furandiones are considered convenient and versatile synthons in heterocyclic synthesis. The reactions of the substituted 2,3-furandiones with several semicarbazones, ureas and their thioanalogues and oximes, amides, anilides and hydrazines in different solvents and at various temperatures have been studied recently (Sarípínar et al., 2002). Pyrimidines in general have been of much interest for biological and medical reasons, and thus their chemistry has been investigated extensively (Önal & Altural, 2006; Önal & Yíldírím, 2007). Some are frequently encountered in many drugs used for the treatment of hypothyroidism and hypertension, in cancer chemotherapy or HIV infections (Burdge, 2000).
The title compound has a non planar conformation (Fig. 1). All bond lengths and angles are in good agreement with those observed in similar compounds (Öztürk et al., 1997, 1999; Yíldírím et al., 2007). The C—N distances have values in the range 1.322 (3) Å -1.408 (3) Å, shorter than the single-bond length of 1.480 Å and longer than the typical C = N distance of 1.280 Å, indicating partial double-bond character and suggesting conjugation in the heterocycle. In spite of this conjugation the pyrimidine ring is slightly distorted from planarity with a maximum deviation of -0.036 (2) Å for atom C1. The mean planes of the rings A (N1/N2/C1–C4), B (C5–C10) and C (C13–C18) make the following dihedral angles with each other: A/B = 34.87 (12), A/C = 69.57 (12) and B/C = 68.74 (12)°. Intermolecular hydrogen-bonding interactions influence the molecular geometry and crystal structure.