organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Formyl­phen­yl)-4-meth­­oxy-N-(4-meth­­oxy­phenyl­sulfon­yl)benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: elmostapha1@ymail.com

(Received 1 November 2011; accepted 8 November 2011; online 12 November 2011)

In the title compound, C21H19NO7S2, the dihedral angles between the formyl­phenyl ring and the two meth­oxy­phenyl rings are 33.87 (9) and 41.00 (10)°. The S atoms have a distorted tetra­hedral geometry and the N atom shows a trigonally planar [r.m.s. deviation = 0.0437 (13) Å] coordination. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Abbassi et al. (2011a[Abbassi, N., Rakib, E. M. & Zouihri, H. (2011a). Acta Cryst. E67, o1354.],b[Abbassi, N., Rakib, E. M. & Zouihri, H. (2011b). Acta Cryst. E67, o1561.]). For the biological activity of sulfonamides, see: Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]); Lopez et al. (2010[Lopez, M., Bornaghi, L. F., Innocenti, A., Vullo, D., Charman, S. A., Supuran, C. T. & Poulsen, S.-A. (2010). J. Med. Chem. 53, 2913-2915.]); Zuercher et al. (2010[Zuercher, W. J., Buckholz, R. G., Campobasso, N., Collins, J. L., Galardi, C. M., Gampe, R. T., Hyatt, S. M., Merrihew, S. L., Moore, J. T., Oplinger, J. A., Reid, P. R., Spearing, P. K., Stanley, T. B., Stewart, E. L. & Willson, T. M. (2010). J. Med. Chem. 53, 3412-3414.]). For the synthesis of 7-eth­oxy-N-alkyl­indazole derivatives, see: Abbassi et al. (2011c[Abbassi, N., Rakib, E. M., Hannioui, A., Alaoui, M., Benchidmi, M., Essassi, E. M. & Geffken, D. (2011c). Heterocycles, 83, 891-900.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19NO7S2

  • Mr = 461.49

  • Monoclinic, P 21 /c

  • a = 9.0559 (3) Å

  • b = 25.8904 (10) Å

  • c = 9.3844 (3) Å

  • β = 103.423 (2)°

  • V = 2140.17 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 37297 measured reflections

  • 7971 independent reflections

  • 4874 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.01

  • 7971 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O4i 0.93 2.54 3.346 (2) 145
C16—H16⋯O2ii 0.93 2.45 3.237 (3) 143
C19—H19B⋯O6iii 0.96 2.59 3.455 (3) 151
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y, z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides constitute an important class of drugs (Lopez et al., 2010; Zuercher et al., 2010). They possess various types of pharmacological activities such as antibacterial, hypoglycemic, anti-inflammatory, and antitumor agents (Soledade et al., 2006; Lee & Lee, 2002).

In former papers, we reported the crystal structures of N-(7-ethoxy-1H-indazol-4-yl)-4-methylbenzenesulfonamide (Abbassi et al., 2011a) and N-[7-ethoxy-1-(prop-2-en-1-yl)-1H-indazol-4-yl]-4-methylbenzenesulfonamide (Abbassi et al., 2011b). In this communication, the crystal structure of N-(2-formylphenyl)-4-methoxy-N-[(4-methoxyphenyl)sulfonyl]benzenesulfonamide is reported.

In the title compound, C21H19NO7S2, the C—S—N—S torsion angles are 83.22 (11)° and 110.03 (10)°, respectively. The dihedral angles between the two methoxyphenyl rings and the formylphenyl ring are 33.87 (9)° and 41.00 (10)°, respectively. The S atoms have a distorted tetrahedral geometry [maximum deviation: O—S—O = 119.93 (11)° and 120.36 (9)°, respectively].

In the crystal, molecules are connected by intermolecular C—H···O hydrogen contacts.

Related literature top

For related structures, see: Abbassi et al. (2011a,b). For the biological activity of sulfonamides, see: Soledade et al. (2006); Lee & Lee (2002); Lopez et al. (2010); Zuercher et al. (2010). For the synthesis of 7-ethoxy-N-alkylindazole derivatives, see: Abbassi et al. (2011c).

Experimental top

A mixture of 2-nitrobenzaldehyde (1.22 mmol) and anhydrous SnCl2(1.1 g, 6.1 mmol) in 25 mL of absolute ethanol was stirred for 1 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonylchloride (0.26 g, 1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 3:7).

Refinement top

The H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.93Å and Uiso(H) = 1.2 Ueq(C) for CH, and C—H = 0.97 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups. The methyl groups were allowed to rotate but not to tip.

Structure description top

Sulfonamides constitute an important class of drugs (Lopez et al., 2010; Zuercher et al., 2010). They possess various types of pharmacological activities such as antibacterial, hypoglycemic, anti-inflammatory, and antitumor agents (Soledade et al., 2006; Lee & Lee, 2002).

In former papers, we reported the crystal structures of N-(7-ethoxy-1H-indazol-4-yl)-4-methylbenzenesulfonamide (Abbassi et al., 2011a) and N-[7-ethoxy-1-(prop-2-en-1-yl)-1H-indazol-4-yl]-4-methylbenzenesulfonamide (Abbassi et al., 2011b). In this communication, the crystal structure of N-(2-formylphenyl)-4-methoxy-N-[(4-methoxyphenyl)sulfonyl]benzenesulfonamide is reported.

In the title compound, C21H19NO7S2, the C—S—N—S torsion angles are 83.22 (11)° and 110.03 (10)°, respectively. The dihedral angles between the two methoxyphenyl rings and the formylphenyl ring are 33.87 (9)° and 41.00 (10)°, respectively. The S atoms have a distorted tetrahedral geometry [maximum deviation: O—S—O = 119.93 (11)° and 120.36 (9)°, respectively].

In the crystal, molecules are connected by intermolecular C—H···O hydrogen contacts.

For related structures, see: Abbassi et al. (2011a,b). For the biological activity of sulfonamides, see: Soledade et al. (2006); Lee & Lee (2002); Lopez et al. (2010); Zuercher et al. (2010). For the synthesis of 7-ethoxy-N-alkylindazole derivatives, see: Abbassi et al. (2011c).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the C—H···O contacts as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
N-(2-Formylphenyl)-4-methoxy-N-(4- methoxyphenylsulfonyl)benzenesulfonamide top
Crystal data top
C21H19NO7S2F(000) = 960
Mr = 461.49Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 312 reflections
a = 9.0559 (3) Åθ = 1.7–25.7°
b = 25.8904 (10) ŵ = 0.29 mm1
c = 9.3844 (3) ÅT = 296 K
β = 103.423 (2)°Prism, colourless
V = 2140.17 (13) Å30.24 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
4874 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 32.9°, θmin = 2.3°
ω and φ scansh = 1213
37297 measured reflectionsk = 3939
7971 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.4769P]
where P = (Fo2 + 2Fc2)/3
7971 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C21H19NO7S2V = 2140.17 (13) Å3
Mr = 461.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0559 (3) ŵ = 0.29 mm1
b = 25.8904 (10) ÅT = 296 K
c = 9.3844 (3) Å0.24 × 0.22 × 0.17 mm
β = 103.423 (2)°
Data collection top
Bruker APEXII CCD detector
diffractometer
4874 reflections with I > 2σ(I)
37297 measured reflectionsRint = 0.034
7971 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.01Δρmax = 0.40 e Å3
7971 reflectionsΔρmin = 0.35 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23459 (18)0.05482 (6)0.69043 (16)0.0410 (3)
C100.98208 (19)0.20588 (7)0.8526 (2)0.0511 (4)
C110.9883 (2)0.17237 (8)0.9684 (2)0.0542 (4)
C120.8887 (2)0.13105 (7)0.95227 (19)0.0493 (4)
C130.49327 (18)0.11558 (6)0.97998 (16)0.0399 (3)
C140.4509 (2)0.07804 (8)1.0687 (2)0.0598 (5)
C150.4479 (3)0.09089 (11)1.2108 (3)0.0805 (7)
C160.4896 (3)0.13955 (11)1.2651 (2)0.0784 (7)
C170.5319 (2)0.17627 (9)1.1779 (2)0.0619 (5)
C180.53257 (19)0.16520 (6)1.03307 (17)0.0429 (3)
C190.0364 (4)0.12570 (9)0.6201 (3)0.0954 (9)
C20.1276 (2)0.04938 (7)0.7745 (2)0.0504 (4)
C201.1943 (3)0.25456 (10)0.9822 (3)0.0869 (8)
C210.5676 (2)0.20678 (6)0.9385 (2)0.0495 (4)
C30.0517 (2)0.00361 (8)0.7722 (2)0.0571 (4)
C40.0820 (2)0.03719 (7)0.68792 (19)0.0510 (4)
C50.1864 (2)0.03151 (7)0.6021 (2)0.0534 (4)
C60.2627 (2)0.01458 (7)0.60319 (19)0.0493 (4)
C70.78442 (18)0.12355 (6)0.82118 (18)0.0421 (3)
C80.7775 (2)0.15749 (7)0.7051 (2)0.0523 (4)
C90.8763 (2)0.19839 (8)0.7211 (2)0.0571 (4)
H111.05890.17751.05650.065*
H120.89220.10841.02980.059*
H140.42500.04491.03310.072*
H150.41730.06641.27060.097*
H160.48900.14741.36160.094*
H170.56050.20891.21570.074*
H19A0.01290.11870.51680.143*
H19B0.02350.15430.63930.143*
H19C0.14220.13400.65250.143*
H20.10780.07670.83170.060*
H20A1.15260.26291.06450.130*
H20B1.25880.28220.96520.130*
H20C1.25240.22331.00220.130*
H210.56200.19940.84050.059*
H30.02050.00010.82760.069*
H50.20500.05870.54390.064*
H60.33280.01860.54560.059*
H80.70650.15250.61720.063*
H90.87230.22120.64380.068*
N10.49649 (15)0.10284 (5)0.83139 (14)0.0396 (3)
O10.25834 (15)0.15158 (5)0.75974 (15)0.0561 (3)
O20.38046 (18)0.12125 (6)0.56618 (14)0.0652 (4)
O30.61869 (16)0.05349 (6)0.66024 (17)0.0710 (4)
O40.70366 (16)0.03916 (5)0.92655 (19)0.0692 (4)
O50.00311 (19)0.08133 (6)0.69663 (17)0.0741 (4)
O61.07395 (16)0.24749 (5)0.85529 (19)0.0709 (4)
O70.6029 (2)0.24957 (6)0.98157 (19)0.0891 (5)
S10.33626 (5)0.112283 (15)0.69957 (4)0.04289 (11)
S20.65454 (5)0.073091 (15)0.80534 (5)0.04803 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0403 (8)0.0443 (8)0.0376 (7)0.0003 (6)0.0078 (6)0.0025 (6)
C100.0407 (9)0.0420 (8)0.0727 (12)0.0003 (7)0.0179 (8)0.0061 (8)
C110.0462 (9)0.0587 (10)0.0539 (10)0.0005 (8)0.0040 (8)0.0094 (8)
C120.0489 (9)0.0522 (9)0.0473 (9)0.0040 (7)0.0123 (7)0.0042 (7)
C130.0432 (8)0.0401 (7)0.0380 (7)0.0025 (6)0.0125 (6)0.0025 (6)
C140.0700 (13)0.0521 (10)0.0626 (12)0.0008 (9)0.0264 (10)0.0140 (8)
C150.0957 (18)0.0942 (18)0.0599 (13)0.0078 (14)0.0347 (12)0.0329 (12)
C160.0986 (18)0.1002 (18)0.0400 (10)0.0142 (15)0.0232 (11)0.0050 (11)
C170.0735 (13)0.0689 (12)0.0412 (9)0.0103 (10)0.0093 (9)0.0091 (8)
C180.0461 (9)0.0443 (8)0.0377 (8)0.0041 (6)0.0082 (6)0.0023 (6)
C190.121 (2)0.0553 (13)0.0980 (19)0.0222 (14)0.0004 (17)0.0040 (13)
C20.0469 (9)0.0545 (10)0.0524 (9)0.0013 (7)0.0170 (7)0.0080 (7)
C200.0526 (13)0.0722 (15)0.131 (2)0.0136 (11)0.0115 (13)0.0302 (14)
C210.0553 (10)0.0393 (8)0.0530 (9)0.0014 (7)0.0106 (8)0.0028 (7)
C30.0516 (10)0.0657 (11)0.0570 (11)0.0075 (8)0.0184 (8)0.0001 (8)
C40.0508 (10)0.0497 (9)0.0463 (9)0.0068 (7)0.0017 (7)0.0048 (7)
C50.0579 (11)0.0492 (9)0.0503 (10)0.0008 (8)0.0069 (8)0.0101 (7)
C60.0511 (9)0.0533 (9)0.0451 (9)0.0009 (7)0.0145 (7)0.0077 (7)
C70.0396 (8)0.0424 (8)0.0465 (8)0.0006 (6)0.0145 (6)0.0027 (6)
C80.0448 (9)0.0634 (11)0.0466 (9)0.0049 (8)0.0063 (7)0.0064 (8)
C90.0496 (10)0.0588 (11)0.0630 (11)0.0042 (8)0.0134 (8)0.0159 (9)
N10.0400 (7)0.0402 (6)0.0407 (7)0.0009 (5)0.0135 (5)0.0059 (5)
O10.0575 (7)0.0436 (6)0.0652 (8)0.0136 (5)0.0105 (6)0.0017 (5)
O20.0867 (10)0.0678 (9)0.0444 (7)0.0073 (7)0.0221 (7)0.0097 (6)
O30.0611 (8)0.0730 (9)0.0863 (10)0.0102 (7)0.0317 (7)0.0431 (8)
O40.0605 (8)0.0425 (7)0.1075 (12)0.0113 (6)0.0258 (8)0.0203 (7)
O50.0837 (11)0.0611 (9)0.0737 (9)0.0243 (8)0.0108 (8)0.0015 (7)
O60.0547 (8)0.0496 (7)0.1075 (12)0.0100 (6)0.0172 (8)0.0060 (7)
O70.1287 (15)0.0457 (8)0.0824 (11)0.0226 (9)0.0034 (10)0.0064 (7)
S10.0497 (2)0.0397 (2)0.0399 (2)0.00237 (16)0.01165 (16)0.00260 (14)
S20.0449 (2)0.0373 (2)0.0661 (3)0.00037 (16)0.02144 (19)0.00810 (17)
Geometric parameters (Å, º) top
C1—C21.391 (2)C20—H20C0.9600
C1—C61.385 (2)C20—H20B0.9600
C10—C91.389 (3)C20—H20A0.9600
C10—C111.381 (3)C20—O61.427 (3)
C10—O61.358 (2)C21—H210.9300
C11—H110.9300C21—O71.197 (2)
C12—H120.9300C3—H30.9300
C12—C111.385 (3)C4—C51.385 (3)
C13—N11.4398 (19)C4—C31.385 (3)
C13—C181.394 (2)C4—O51.360 (2)
C13—C141.391 (2)C5—H50.9300
C14—H140.9300C6—H60.9300
C14—C151.380 (3)C6—C51.378 (3)
C15—H150.9300C7—C81.389 (2)
C15—C161.378 (4)C7—C121.380 (2)
C16—H160.9300C8—H80.9300
C17—H170.9300C8—C91.371 (3)
C17—C161.366 (3)C9—H90.9300
C18—C211.476 (2)S1—C11.7412 (16)
C18—C171.390 (2)S1—N11.6919 (14)
C19—H19C0.9600S1—O11.4272 (12)
C19—H19B0.9600S1—O21.4190 (13)
C19—H19A0.9600S2—C71.7411 (16)
C19—O51.424 (3)S2—N11.6923 (13)
C2—H20.9300S2—O41.4242 (15)
C2—C31.368 (3)S2—O31.4184 (14)
C2—C1—S1119.24 (13)O6—C20—H20B109.5
C6—C1—S1120.27 (12)O6—C20—H20A109.5
C6—C1—C2120.47 (16)C18—C21—H21118.3
C11—C10—C9120.32 (16)O7—C21—H21118.3
O6—C10—C9114.88 (17)O7—C21—C18123.38 (17)
O6—C10—C11124.80 (18)C4—C3—H3119.8
C12—C11—H11120.2C2—C3—H3119.8
C10—C11—H11120.2C2—C3—C4120.30 (16)
C10—C11—C12119.51 (17)C3—C4—C5120.25 (16)
C11—C12—H12120.0O5—C4—C5124.27 (18)
C7—C12—H12120.0O5—C4—C3115.49 (17)
C7—C12—C11119.99 (16)C4—C5—H5120.1
C18—C13—N1119.76 (13)C6—C5—H5120.1
C14—C13—N1119.37 (15)C6—C5—C4119.77 (16)
C14—C13—C18120.87 (16)C1—C6—H6120.2
C13—C14—H14120.7C5—C6—H6120.2
C15—C14—H14120.7C5—C6—C1119.69 (16)
C15—C14—C13118.7 (2)C8—C7—S2120.07 (13)
C14—C15—H15119.6C12—C7—S2119.40 (13)
C16—C15—H15119.6C12—C7—C8120.44 (16)
C16—C15—C14120.81 (19)C7—C8—H8120.2
C15—C16—H16119.8C9—C8—H8120.2
C17—C16—H16119.8C9—C8—C7119.53 (17)
C17—C16—C15120.36 (19)C10—C9—H9119.9
C18—C17—H17119.7C8—C9—H9119.9
C16—C17—H17119.7C8—C9—C10120.20 (17)
C16—C17—C18120.5 (2)S1—N1—S2124.80 (8)
C13—C18—C21122.02 (14)C13—N1—S2116.88 (10)
C17—C18—C21119.19 (16)C13—N1—S1117.92 (10)
C17—C18—C13118.73 (16)C4—O5—C19118.16 (19)
H19B—C19—H19C109.5C10—O6—C20117.59 (19)
H19A—C19—H19C109.5N1—S1—C1105.45 (7)
O5—C19—H19C109.5O1—S1—C1108.92 (8)
H19A—C19—H19B109.5O2—S1—C1110.53 (8)
O5—C19—H19B109.5O1—S1—N1103.45 (7)
O5—C19—H19A109.5O2—S1—N1107.39 (8)
C1—C2—H2120.3O2—S1—O1119.93 (8)
C3—C2—H2120.3N1—S2—C7102.91 (7)
C3—C2—C1119.50 (16)O4—S2—C7108.37 (9)
H20B—C20—H20C109.5O3—S2—C7110.48 (9)
H20A—C20—H20C109.5O4—S2—N1106.45 (8)
O6—C20—H20C109.5O3—S2—N1106.78 (8)
H20A—C20—H20B109.5O3—S2—O4120.37 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4i0.932.543.346 (2)145
C16—H16···O2ii0.932.453.237 (3)143
C19—H19B···O6iii0.962.593.455 (3)151
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H19NO7S2
Mr461.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.0559 (3), 25.8904 (10), 9.3844 (3)
β (°) 103.423 (2)
V3)2140.17 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.24 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
37297, 7971, 4874
Rint0.034
(sin θ/λ)max1)0.763
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.01
No. of reflections7971
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4i0.93002.54003.346 (2)145.00
C16—H16···O2ii0.93002.45003.237 (3)143.00
C19—H19B···O6iii0.96002.59003.455 (3)151.00
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Rakib, E. M., Hannioui, A., Alaoui, M., Benchidmi, M., Essassi, E. M. & Geffken, D. (2011c). Heterocycles, 83, 891–900.  CAS Google Scholar
First citationAbbassi, N., Rakib, E. M. & Zouihri, H. (2011a). Acta Cryst. E67, o1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbbassi, N., Rakib, E. M. & Zouihri, H. (2011b). Acta Cryst. E67, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationLopez, M., Bornaghi, L. F., Innocenti, A., Vullo, D., Charman, S. A., Supuran, C. T. & Poulsen, S.-A. (2010). J. Med. Chem. 53, 2913–2915.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuercher, W. J., Buckholz, R. G., Campobasso, N., Collins, J. L., Galardi, C. M., Gampe, R. T., Hyatt, S. M., Merrihew, S. L., Moore, J. T., Oplinger, J. A., Reid, P. R., Spearing, P. K., Stanley, T. B., Stewart, E. L. & Willson, T. M. (2010). J. Med. Chem. 53, 3412–3414.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds