organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­amino­pyridinium 6-carb­­oxy­pyridine-2-carboxyl­ate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDrug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran, cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran, and dDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di Messina, 98166 Messina, Italy
*Correspondence e-mail: aforoumadi@yahoo.com

(Received 4 November 2011; accepted 10 November 2011; online 16 November 2011)

The asymmetric unit of the title proton-transfer compound, C5H8N3+·C7H4NO4, consists of one mono-deprotonated pyridine-2,6-dicarb­oxy­lic acid as anion and one protonated 2,3-diamino­pyridine as cation. The crystal packing shows extensive O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds. Thre are also several ππ inter­actions between the anions and also between the cations [centriod–centroid distances = 3.6634 (7), 3.7269 (7), 3.6705 (7) and 3.4164 (7) Å].

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008b[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008b). J. Iran. Chem. Soc. 5, 184-227.]). For related structures, see: Aghabozorg et al. (2008a[Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008a). Acta Cryst. E64, o1045-o1046.], 2011a[Aghabozorg, H., Foroughian, M., Foroumadi, A., Bruno, G. & Amiri Rudbari, H. (2011a). Acta Cryst. E67, o932-o933.],b[Aghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011b). Acta Cryst. E67, o54.]); Sharif et al. (2010[Sharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H4NO4

  • Mr = 276.26

  • Triclinic, [P \overline 1]

  • a = 6.9138 (1) Å

  • b = 8.3364 (2) Å

  • c = 11.2358 (2) Å

  • α = 81.448 (1)°

  • β = 73.831 (1)°

  • γ = 82.486 (1)°

  • V = 612.33 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.706, Tmax = 0.746

  • 34839 measured reflections

  • 2654 independent reflections

  • 2348 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.107

  • S = 1.07

  • 2654 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H⋯O1i 0.86 1.94 2.7872 (12) 167
N2—H2B⋯O3ii 0.87 (2) 2.329 (19) 3.1108 (14) 150.0 (15)
N3—H3A⋯O2i 0.86 2.03 2.8674 (14) 163
N3—H3B⋯O2 0.86 2.17 2.9427 (14) 149
O4—H1⋯O1iii 0.89 (2) 1.75 (2) 2.5673 (12) 151.9 (18)
N2—H2A⋯O2 0.868 (19) 2.32 (2) 3.1290 (15) 156.0 (16)
N2—H2A⋯N1 0.868 (19) 2.491 (18) 3.0999 (14) 127.8 (15)
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridinedicarboxylic acids are present in many natural products, such as vitamins, coenzymes, and alkaloids. Pyridine-2,6-dicarboxylic acid has been used to synthesize several proton transfer compounds in which pyridine-2,6-dicarboxylic acid acts as a monoacidic fragment (Aghabozorg et al. 2008b).In this regards, several organic bases were used such as propane-1,2-diamine (Aghabozorg et al. 2008a), N1,N1-dimethylpropane-1,2-diamine (Aghabozorg et al. 2011a), 2-amino-4-methylpyridinie (Sharif et al. 2010) and 2-amino-4-methylpyridine (Aghabozorg et al., 2011b).

The structure of the title compounds contains one deprotonated pyridine-2,6-dicarboxylic acid as anion and one protonated 2,3-diaminopyridine as cation (Fig.1). The cations and anions are linked by several O—H···O, N—H···O and N—H···N hydrogen bonds with D···A distances ranging from 2.5673 (12) Å to 3.1290 (15) Å (Table.1 & Fig. 2). Furthermore, there are several π-π interactions which formed between (py-2,6-dcH)- anions and also between (dapyH)+ cations with centriod-to-centroid distances = 3.6634 (7), 3.7269 (7), 3.6705 (7), 3.4164 (7) Å (Fig. 3). These hydrogen bonds and π-π interactions play important role in the stabilization of crystal packing.

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008b). For related structures, see: Aghabozorg et al. (2008a, 2011a,b); Sharif et al. (2010).

Experimental top

The solution of pyridine-2,6-dicarboxylic acid (0.334 g, 2 mmol) in 7 ml water was added to solution of 2,3-diaminopyridine (0.218 g, 2 mmol) in 4 ml water in 1:1 molar ratios. The reaction mixture was stirred for 3hrs at room temprature. The colorless crystals of the title compound appeared after slow evaporation of solvent at room temperature.

Refinement top

The hydrogen atoms attached to O4, N2 were found in difference Fourier map and refined isotropically. The other H-atoms were included at calculated positions and treated as riding atoms: N—H = 0.86 Å for NH and NH2, C—H = 0.98 Å for aromatic CH hydrogen atoms. These H-atoms were refined with Uiso(H) = 1.2 × Ueq(parent atom).

Structure description top

Pyridinedicarboxylic acids are present in many natural products, such as vitamins, coenzymes, and alkaloids. Pyridine-2,6-dicarboxylic acid has been used to synthesize several proton transfer compounds in which pyridine-2,6-dicarboxylic acid acts as a monoacidic fragment (Aghabozorg et al. 2008b).In this regards, several organic bases were used such as propane-1,2-diamine (Aghabozorg et al. 2008a), N1,N1-dimethylpropane-1,2-diamine (Aghabozorg et al. 2011a), 2-amino-4-methylpyridinie (Sharif et al. 2010) and 2-amino-4-methylpyridine (Aghabozorg et al., 2011b).

The structure of the title compounds contains one deprotonated pyridine-2,6-dicarboxylic acid as anion and one protonated 2,3-diaminopyridine as cation (Fig.1). The cations and anions are linked by several O—H···O, N—H···O and N—H···N hydrogen bonds with D···A distances ranging from 2.5673 (12) Å to 3.1290 (15) Å (Table.1 & Fig. 2). Furthermore, there are several π-π interactions which formed between (py-2,6-dcH)- anions and also between (dapyH)+ cations with centriod-to-centroid distances = 3.6634 (7), 3.7269 (7), 3.6705 (7), 3.4164 (7) Å (Fig. 3). These hydrogen bonds and π-π interactions play important role in the stabilization of crystal packing.

For background to proton-transfer compounds, see: Aghabozorg et al. (2008b). For related structures, see: Aghabozorg et al. (2008a, 2011a,b); Sharif et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound showing hydrogen bonding interactions as blue dashed lines.
[Figure 3] Fig. 3. The packing diagram of the title compound showing π-π interactions between (py-2,6-dcH)- anions and between (dapyH)+ cations.
2,3-Diaminopyridinium 6-carboxypyridine-2-carboxylate top
Crystal data top
C5H8N3+·C7H4NO4Z = 2
Mr = 276.26F(000) = 288
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9138 (1) ÅCell parameters from 9842 reflections
b = 8.3364 (2) Åθ = 2.9–30.0°
c = 11.2358 (2) ŵ = 0.12 mm1
α = 81.448 (1)°T = 296 K
β = 73.831 (1)°Irregular, colorless
γ = 82.486 (1)°0.24 × 0.20 × 0.12 mm
V = 612.33 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2654 independent reflections
Radiation source: fine-focus sealed tube2348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.706, Tmax = 0.746k = 1010
34839 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.060P)2 + 0.1194P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2654 reflectionsΔρmax = 0.30 e Å3
194 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00070 (17)
Crystal data top
C5H8N3+·C7H4NO4γ = 82.486 (1)°
Mr = 276.26V = 612.33 (2) Å3
Triclinic, P1Z = 2
a = 6.9138 (1) ÅMo Kα radiation
b = 8.3364 (2) ŵ = 0.12 mm1
c = 11.2358 (2) ÅT = 296 K
α = 81.448 (1)°0.24 × 0.20 × 0.12 mm
β = 73.831 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2654 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2348 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.746Rint = 0.025
34839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.30 e Å3
2654 reflectionsΔρmin = 0.17 e Å3
194 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.64901 (16)0.46889 (11)0.60916 (9)0.0508 (3)
O20.91253 (17)0.01029 (10)0.21751 (8)0.0479 (3)
O10.91229 (15)0.25266 (10)0.32864 (8)0.0419 (2)
O40.83898 (16)0.45238 (11)0.41533 (8)0.0480 (3)
C80.72493 (16)0.42375 (14)0.08478 (10)0.0310 (2)
N40.85753 (15)0.42597 (12)0.13478 (9)0.0352 (2)
H0.91150.37420.19860.042*
N10.79718 (13)0.13922 (10)0.42873 (8)0.0271 (2)
C90.81096 (17)0.33895 (14)0.02186 (10)0.0314 (2)
C100.8247 (2)0.59072 (16)0.15453 (11)0.0400 (3)
H100.86050.64510.23490.048*
N30.84405 (18)0.17690 (13)0.01308 (10)0.0451 (3)
H3A0.89470.12940.07930.054*
H3B0.81480.11990.05880.054*
C110.7393 (2)0.67446 (15)0.05574 (12)0.0417 (3)
H110.71300.78720.06750.050*
C120.69064 (19)0.58993 (15)0.06456 (11)0.0379 (3)
H120.63360.64810.13240.045*
C70.73268 (17)0.39063 (13)0.52423 (10)0.0319 (3)
C60.72505 (16)0.20977 (13)0.53341 (10)0.0276 (2)
C20.79375 (15)0.02216 (12)0.43816 (9)0.0262 (2)
C10.87808 (17)0.10003 (13)0.31804 (10)0.0299 (2)
C30.71865 (17)0.11635 (13)0.55079 (10)0.0307 (2)
H30.72010.22860.55410.037*
C40.64189 (18)0.04065 (14)0.65777 (11)0.0350 (3)
H40.58890.10070.73400.042*
C50.64532 (18)0.12568 (14)0.64934 (10)0.0332 (3)
H50.59530.18020.71970.040*
N20.67215 (18)0.33369 (15)0.20004 (10)0.0402 (3)
H2A0.755 (3)0.253 (2)0.2184 (16)0.057 (5)*
H2B0.625 (3)0.397 (2)0.2583 (17)0.057 (5)*
H10.840 (3)0.560 (2)0.4101 (17)0.067 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0713 (7)0.0303 (5)0.0412 (5)0.0035 (4)0.0066 (4)0.0163 (4)
O20.0818 (7)0.0281 (4)0.0250 (4)0.0055 (4)0.0045 (4)0.0033 (3)
O10.0636 (6)0.0200 (4)0.0345 (5)0.0030 (4)0.0009 (4)0.0068 (3)
O40.0736 (7)0.0227 (4)0.0374 (5)0.0120 (4)0.0082 (4)0.0080 (3)
C80.0314 (5)0.0338 (6)0.0267 (5)0.0006 (4)0.0060 (4)0.0059 (4)
N40.0408 (5)0.0369 (5)0.0247 (5)0.0027 (4)0.0051 (4)0.0064 (4)
N10.0332 (5)0.0206 (4)0.0257 (4)0.0017 (3)0.0049 (3)0.0040 (3)
C90.0327 (5)0.0319 (6)0.0285 (5)0.0003 (4)0.0071 (4)0.0054 (4)
C100.0457 (7)0.0385 (6)0.0311 (6)0.0024 (5)0.0092 (5)0.0028 (5)
N30.0653 (7)0.0318 (5)0.0317 (5)0.0031 (5)0.0038 (5)0.0069 (4)
C110.0500 (7)0.0299 (6)0.0420 (7)0.0053 (5)0.0121 (5)0.0025 (5)
C120.0430 (6)0.0356 (6)0.0331 (6)0.0044 (5)0.0069 (5)0.0110 (5)
C70.0378 (6)0.0252 (5)0.0312 (5)0.0023 (4)0.0046 (4)0.0076 (4)
C60.0303 (5)0.0233 (5)0.0283 (5)0.0015 (4)0.0050 (4)0.0058 (4)
C20.0303 (5)0.0211 (5)0.0267 (5)0.0005 (4)0.0072 (4)0.0035 (4)
C10.0384 (6)0.0220 (5)0.0280 (5)0.0016 (4)0.0064 (4)0.0046 (4)
C30.0384 (6)0.0209 (5)0.0309 (5)0.0033 (4)0.0073 (4)0.0008 (4)
C40.0421 (6)0.0314 (6)0.0269 (5)0.0057 (5)0.0030 (4)0.0011 (4)
C50.0395 (6)0.0313 (6)0.0257 (5)0.0022 (4)0.0017 (4)0.0077 (4)
N20.0489 (6)0.0394 (6)0.0263 (5)0.0006 (5)0.0022 (4)0.0043 (4)
Geometric parameters (Å, º) top
O3—C71.2041 (14)N3—H3A0.8600
O2—C11.2401 (14)N3—H3B0.8600
O1—C11.2574 (13)C11—C121.4008 (18)
O4—C71.3088 (14)C11—H110.9300
O4—H10.89 (2)C12—H120.9300
C8—C121.3702 (17)C7—C61.5028 (15)
C8—N21.3760 (15)C6—C51.3862 (15)
C8—C91.4262 (15)C2—C31.3903 (14)
N4—C91.3414 (14)C2—C11.5185 (14)
N4—C101.3575 (16)C3—C41.3811 (16)
N4—H0.8600C3—H30.9300
N1—C61.3343 (14)C4—C51.3786 (16)
N1—C21.3365 (13)C4—H40.9300
C9—N31.3338 (15)C5—H50.9300
C10—C111.3512 (18)N2—H2A0.868 (19)
C10—H100.9300N2—H2B0.87 (2)
C7—O4—H1112.4 (12)O3—C7—C6122.78 (10)
C12—C8—N2124.24 (10)O4—C7—C6112.99 (9)
C12—C8—C9117.42 (10)N1—C6—C5123.76 (10)
N2—C8—C9118.25 (10)N1—C6—C7117.67 (9)
C9—N4—C10124.00 (10)C5—C6—C7118.57 (10)
C9—N4—H118.0N1—C2—C3122.83 (9)
C10—N4—H118.0N1—C2—C1116.38 (9)
C6—N1—C2117.28 (9)C3—C2—C1120.79 (9)
N3—C9—N4119.21 (10)O2—C1—O1124.63 (10)
N3—C9—C8122.31 (10)O2—C1—C2118.57 (9)
N4—C9—C8118.47 (10)O1—C1—C2116.78 (9)
C11—C10—N4119.02 (11)C4—C3—C2118.99 (10)
C11—C10—H10120.5C4—C3—H3120.5
N4—C10—H10120.5C2—C3—H3120.5
C9—N3—H3A120.0C5—C4—C3118.73 (10)
C9—N3—H3B120.0C5—C4—H4120.6
H3A—N3—H3B120.0C3—C4—H4120.6
C10—C11—C12119.37 (11)C4—C5—C6118.40 (10)
C10—C11—H11120.3C4—C5—H5120.8
C12—C11—H11120.3C6—C5—H5120.8
C8—C12—C11121.69 (11)C8—N2—H2A118.7 (12)
C8—C12—H12119.2C8—N2—H2B110.6 (12)
C11—C12—H12119.2H2A—N2—H2B113.8 (16)
O3—C7—O4124.23 (10)
C10—N4—C9—N3178.04 (12)O3—C7—C6—C510.12 (18)
C10—N4—C9—C81.15 (17)O4—C7—C6—C5169.81 (11)
C12—C8—C9—N3177.65 (11)C6—N1—C2—C30.21 (16)
N2—C8—C9—N30.97 (17)C6—N1—C2—C1179.54 (9)
C12—C8—C9—N41.52 (16)N1—C2—C1—O211.91 (15)
N2—C8—C9—N4178.20 (10)C3—C2—C1—O2168.34 (11)
C9—N4—C10—C110.31 (19)N1—C2—C1—O1166.52 (10)
N4—C10—C11—C121.3 (2)C3—C2—C1—O113.22 (16)
N2—C8—C12—C11176.99 (12)N1—C2—C3—C40.76 (17)
C9—C8—C12—C110.54 (18)C1—C2—C3—C4179.51 (10)
C10—C11—C12—C80.9 (2)C2—C3—C4—C50.98 (17)
C2—N1—C6—C50.96 (16)C3—C4—C5—C60.29 (18)
C2—N1—C6—C7178.62 (9)N1—C6—C5—C40.71 (18)
O3—C7—C6—N1170.28 (12)C7—C6—C5—C4178.86 (10)
O4—C7—C6—N19.79 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H···O1i0.861.942.7872 (12)167
N2—H2B···O3ii0.87 (2)2.329 (19)3.1108 (14)150.0 (15)
N3—H3A···O2i0.862.032.8674 (14)163
N3—H3B···O20.862.172.9427 (14)149
O4—H1···O1iii0.89 (2)1.75 (2)2.5673 (12)151.9 (18)
N2—H2A···O20.868 (19)2.32 (2)3.1290 (15)156.0 (16)
N2—H2A···N10.868 (19)2.491 (18)3.0999 (14)127.8 (15)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H4NO4
Mr276.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9138 (1), 8.3364 (2), 11.2358 (2)
α, β, γ (°)81.448 (1), 73.831 (1), 82.486 (1)
V3)612.33 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.706, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
34839, 2654, 2348
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.107, 1.07
No. of reflections2654
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H···O1i0.861.942.7872 (12)166.9
N2—H2B···O3ii0.87 (2)2.329 (19)3.1108 (14)150.0 (15)
N3—H3A···O2i0.86002.03002.8674 (14)163.00
N3—H3B···O20.86002.17002.9427 (14)149.00
O4—H1···O1iii0.89 (2)1.75 (2)2.5673 (12)151.9 (18)
N2—H2A···O20.868 (19)2.32 (2)3.1290 (15)156.0 (16)
N2—H2A···N10.868 (19)2.491 (18)3.0999 (14)127.8 (15)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAghabozorg, H., Foroughian, M., Foroumadi, A., Bruno, G. & Amiri Rudbari, H. (2011a). Acta Cryst. E67, o932–o933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008a). Acta Cryst. E64, o1045–o1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008b). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011b). Acta Cryst. E67, o54.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds