metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)(nitrato-κO)(nitrato-κ2O,O′)zinc

aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com

(Received 5 November 2011; accepted 22 November 2011; online 30 November 2011)

In the title compound, [Zn(NO3)2(C12H12N2)(H2O)], the ZnII atom is six-coordinated in a distorted octa­hedral geometry by two N atoms from a chelating 4,4′-dimethyl-2,2′-bipyridine ligand, one water O atom, one O atom from a monodentate nitrate anion and two O atoms from a chelating nitrate anion. In the crystal, there are aromatic ππ contacts between the pyridine rings [centroid–centroid distances = 3.9577 (13) Å] and inter­molecular O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.]); Alizadeh et al. (2010[Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.]); Amani et al. (2009[Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.]); Bellusci et al. (2008[Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114-3122.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]); Kalateh et al. (2008[Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.], 2010[Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.]); Sakamoto et al. (2004[Sakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352-m353.]); Sofetis et al. (2006[Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389-3395.]); Willett et al. (2001[Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342-4352.]); Yoshikawa et al. (2003[Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155-m156.]); Yousefi et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NO3)2(C12H12N2)(H2O)]

  • Mr = 391.66

  • Monoclinic, P 21 /n

  • a = 10.9266 (5) Å

  • b = 8.5717 (3) Å

  • c = 16.8073 (7) Å

  • β = 97.873 (4)°

  • V = 1559.33 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 120 K

  • 0.5 × 0.4 × 0.31 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.460, Tmax = 0.596

  • 16739 measured reflections

  • 4193 independent reflections

  • 3596 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.084

  • S = 1.08

  • 4193 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.1157 (16)
Zn1—N2 2.0727 (17)
Zn1—O1 2.0965 (15)
Zn1—O2 2.5143 (16)
Zn1—O4 2.0340 (15)
Zn1—O7 2.0752 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4i 0.85 (3) 1.90 (3) 2.724 (2) 163 (3)
O7—H7B⋯O3ii 0.87 (4) 1.94 (4) 2.799 (2) 174 (3)
C5—H5⋯O2iii 0.93 2.53 3.420 (2) 161
C8—H8⋯O2iii 0.93 2.36 3.230 (2) 156
C11—H11⋯O6iv 0.93 2.44 3.284 (3) 151
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), iridium (Yoshikawa et al., 2003), cadmium (Kalateh et al., 2010) and zinc (Alizadeh et al., 2010). Here, we report the synthesis and structure of the title compound.

In the molecule of the title compound, (Fig. 1), the ZnII atom is six-coordinated in a distorted octahedral configurations by two N atoms from the chelating 4,4'-dimethyl-2,2'-bipyridine, one O atom from water, one O atom from mono dentate nitrate anion and two O atoms from the chelating nitrate anion. The Zn—O and Zn—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 2 & Fig. 2) link the molecules, in which they may be effective in the stabilization of the structure. There are also aromatic π-π contacts between the pyridine rings, Cg3···Cg4i [symmetry cods: (i) 1-X,-Y,-Z, where Cg3 and Cg4 are centroids of the rings (N1/C1—C3/C5—C6) and (N2/C7—C9/C11—C12), respectively] further stabilize the structure, with centroid-centroid distances of 3.9577 (13) Å.

Related literature top

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Sakamoto et al. (2004); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).

Experimental top

For the preparation of the title compound, a solution of 4,4'-dimethyl-2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of Zn(NO3)2.6H2O (0.33 g, 1.10 mmol) in acetonitrile (10 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield 0.33 g, 76.6%).

Refinement top

H atoms bonded to C were positioned geometrically, with C—H=0.93Å for aromatics H and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq. H atoms bonded to O were freely refined.

Structure description top

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), iridium (Yoshikawa et al., 2003), cadmium (Kalateh et al., 2010) and zinc (Alizadeh et al., 2010). Here, we report the synthesis and structure of the title compound.

In the molecule of the title compound, (Fig. 1), the ZnII atom is six-coordinated in a distorted octahedral configurations by two N atoms from the chelating 4,4'-dimethyl-2,2'-bipyridine, one O atom from water, one O atom from mono dentate nitrate anion and two O atoms from the chelating nitrate anion. The Zn—O and Zn—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 2 & Fig. 2) link the molecules, in which they may be effective in the stabilization of the structure. There are also aromatic π-π contacts between the pyridine rings, Cg3···Cg4i [symmetry cods: (i) 1-X,-Y,-Z, where Cg3 and Cg4 are centroids of the rings (N1/C1—C3/C5—C6) and (N2/C7—C9/C11—C12), respectively] further stabilize the structure, with centroid-centroid distances of 3.9577 (13) Å.

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Sakamoto et al. (2004); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for title compound.
Aqua(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')(nitrato- κO)(nitrato-κ2O,O')zinc top
Crystal data top
[Zn(NO3)2(C12H12N2)(H2O)]F(000) = 800
Mr = 391.66Dx = 1.668 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16739 reflections
a = 10.9266 (5) Åθ = 2.1–29.2°
b = 8.5717 (3) ŵ = 1.62 mm1
c = 16.8073 (7) ÅT = 120 K
β = 97.873 (4)°Prism, colorless
V = 1559.33 (11) Å30.5 × 0.4 × 0.31 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.460, Tmax = 0.596k = 1111
16739 measured reflectionsl = 2023
4193 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.5925P]
where P = (Fo2 + 2Fc2)/3
4193 reflections(Δ/σ)max = 0.011
227 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Zn(NO3)2(C12H12N2)(H2O)]V = 1559.33 (11) Å3
Mr = 391.66Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9266 (5) ŵ = 1.62 mm1
b = 8.5717 (3) ÅT = 120 K
c = 16.8073 (7) Å0.5 × 0.4 × 0.31 mm
β = 97.873 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4193 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3596 reflections with I > 2σ(I)
Tmin = 0.460, Tmax = 0.596Rint = 0.054
16739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.50 e Å3
4193 reflectionsΔρmin = 0.65 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66295 (19)0.0759 (2)0.21188 (13)0.0223 (4)
H10.65980.13970.25630.027*
C20.77558 (18)0.0545 (3)0.18405 (13)0.0235 (4)
H20.84650.10180.21020.028*
C30.78166 (17)0.0388 (2)0.11638 (12)0.0193 (4)
C40.90160 (18)0.0652 (3)0.08374 (15)0.0266 (4)
H4A0.95140.13790.11750.032*
H4B0.9450.03190.08260.032*
H4C0.88490.10660.03030.032*
C50.67277 (17)0.1087 (2)0.08084 (12)0.0180 (4)
H50.67320.17160.03580.022*
C60.56307 (16)0.0844 (2)0.11273 (11)0.0154 (3)
C70.44364 (16)0.1594 (2)0.07909 (11)0.0157 (3)
C80.43269 (17)0.2639 (2)0.01571 (11)0.0178 (4)
H80.50130.28790.00920.021*
C90.31873 (18)0.3335 (2)0.01087 (12)0.0188 (4)
C100.3034 (2)0.4469 (3)0.07953 (14)0.0275 (4)
H10C0.25310.53290.06680.033*
H10B0.3830.48490.08860.033*
H10A0.26430.39560.12710.033*
C110.21939 (18)0.2944 (3)0.02924 (12)0.0220 (4)
H110.14230.33960.01420.026*
C120.23656 (17)0.1886 (3)0.09121 (12)0.0227 (4)
H120.16930.1630.11710.027*
N10.55839 (15)0.0081 (2)0.17723 (10)0.0179 (3)
N20.34579 (14)0.1203 (2)0.11628 (10)0.0180 (3)
N30.39927 (16)0.3475 (2)0.16842 (11)0.0222 (3)
N40.44300 (15)0.0611 (2)0.36776 (10)0.0202 (3)
O10.41779 (13)0.27826 (17)0.23681 (8)0.0216 (3)
O20.36572 (15)0.2656 (2)0.10800 (9)0.0288 (3)
O30.41477 (16)0.4902 (2)0.16496 (11)0.0316 (4)
O40.37061 (13)0.10009 (18)0.30217 (9)0.0224 (3)
O50.50246 (15)0.06073 (19)0.36678 (10)0.0287 (3)
O60.44574 (16)0.1479 (2)0.42578 (10)0.0360 (4)
O70.19144 (14)0.0920 (2)0.20178 (10)0.0242 (3)
H7A0.169 (3)0.185 (4)0.1905 (18)0.036 (8)*
H7B0.156 (4)0.067 (4)0.243 (2)0.058 (11)*
Zn10.37859 (2)0.04435 (3)0.207009 (13)0.01710 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (9)0.0263 (11)0.0217 (10)0.0027 (7)0.0022 (7)0.0054 (8)
C20.0149 (8)0.0291 (11)0.0259 (10)0.0042 (8)0.0002 (7)0.0003 (8)
C30.0117 (8)0.0217 (9)0.0246 (9)0.0021 (7)0.0031 (7)0.0059 (8)
C40.0132 (8)0.0314 (12)0.0360 (12)0.0009 (8)0.0064 (8)0.0022 (9)
C50.0152 (8)0.0191 (9)0.0203 (9)0.0015 (7)0.0046 (7)0.0011 (7)
C60.0133 (8)0.0175 (9)0.0157 (8)0.0017 (6)0.0025 (6)0.0032 (6)
C70.0106 (8)0.0210 (9)0.0158 (8)0.0002 (6)0.0024 (6)0.0025 (7)
C80.0152 (8)0.0207 (9)0.0182 (9)0.0006 (7)0.0047 (6)0.0011 (7)
C90.0185 (9)0.0212 (10)0.0164 (9)0.0008 (7)0.0009 (7)0.0019 (7)
C100.0268 (10)0.0263 (11)0.0283 (11)0.0032 (9)0.0003 (8)0.0058 (9)
C110.0142 (8)0.0295 (11)0.0215 (9)0.0022 (8)0.0006 (7)0.0022 (8)
C120.0106 (8)0.0368 (12)0.0209 (9)0.0003 (8)0.0026 (7)0.0007 (8)
N10.0139 (7)0.0210 (8)0.0189 (8)0.0010 (6)0.0026 (6)0.0005 (6)
N20.0112 (7)0.0250 (9)0.0178 (8)0.0015 (6)0.0024 (5)0.0008 (6)
N30.0190 (8)0.0264 (9)0.0232 (9)0.0038 (7)0.0099 (6)0.0031 (7)
N40.0160 (7)0.0248 (9)0.0189 (8)0.0005 (6)0.0006 (6)0.0003 (6)
O10.0255 (7)0.0218 (7)0.0182 (7)0.0021 (6)0.0055 (5)0.0024 (5)
O20.0269 (8)0.0409 (10)0.0195 (7)0.0022 (7)0.0063 (6)0.0033 (6)
O30.0360 (9)0.0257 (8)0.0370 (9)0.0029 (7)0.0185 (7)0.0095 (7)
O40.0209 (7)0.0262 (7)0.0185 (7)0.0056 (6)0.0029 (5)0.0013 (6)
O50.0281 (8)0.0273 (8)0.0299 (8)0.0102 (6)0.0011 (6)0.0023 (6)
O60.0388 (9)0.0395 (10)0.0257 (8)0.0091 (8)0.0103 (7)0.0133 (7)
O70.0182 (7)0.0229 (8)0.0333 (9)0.0056 (6)0.0102 (6)0.0052 (6)
Zn10.01435 (11)0.02035 (12)0.01732 (12)0.00208 (9)0.00476 (7)0.00014 (9)
Geometric parameters (Å, º) top
C1—N11.342 (3)C10—H10B0.96
C1—C21.387 (3)C10—H10A0.96
C1—H10.93C11—C121.374 (3)
C2—C31.399 (3)C11—H110.93
C2—H20.93C12—N21.344 (2)
C3—C51.392 (3)C12—H120.93
C3—C41.506 (3)Zn1—N12.1157 (16)
C4—H4A0.96Zn1—N22.0727 (17)
C4—H4B0.96N3—O31.238 (3)
C4—H4C0.96N3—O21.248 (2)
C5—C61.394 (3)N3—O11.285 (2)
C5—H50.93N4—O61.223 (2)
C6—N11.350 (3)N4—O51.231 (2)
C6—C71.494 (2)N4—O41.309 (2)
C7—N21.352 (2)Zn1—O12.0965 (15)
C7—C81.385 (3)Zn1—O22.5143 (16)
C8—C91.397 (3)Zn1—O42.0340 (15)
C8—H80.93Zn1—O72.0752 (15)
C9—C111.395 (3)O7—H7A0.84 (3)
C9—C101.501 (3)O7—H7B0.87 (4)
C10—H10C0.96
N1—C1—C2122.57 (19)H10B—C10—H10A109.5
N1—C1—H1118.7C12—C11—C9119.35 (18)
C2—C1—H1118.7C12—C11—H11120.3
C1—C2—C3119.52 (18)C9—C11—H11120.3
C1—C2—H2120.2N2—C12—C11123.24 (18)
C3—C2—H2120.2N2—C12—H12118.4
C5—C3—C2117.51 (17)C11—C12—H12118.4
C5—C3—C4120.95 (19)C1—N1—C6118.65 (17)
C2—C3—C4121.53 (18)C1—N1—Zn1126.65 (14)
C3—C4—H4A109.5C6—N1—Zn1114.51 (12)
C3—C4—H4B109.5C12—N2—C7118.13 (18)
H4A—C4—H4B109.5C12—N2—Zn1125.71 (14)
C3—C4—H4C109.5C7—N2—Zn1116.15 (13)
H4A—C4—H4C109.5O3—N3—O2123.01 (19)
H4B—C4—H4C109.5O3—N3—O1119.53 (18)
C3—C5—C6120.01 (18)O2—N3—O1117.46 (18)
C3—C5—H5120O6—N4—O5124.81 (17)
C6—C5—H5120O6—N4—O4117.51 (17)
N1—C6—C5121.72 (17)O5—N4—O4117.68 (17)
N1—C6—C7115.43 (16)N3—O1—Zn1103.06 (12)
C5—C6—C7122.85 (18)N4—O4—Zn1114.88 (12)
N2—C7—C8121.69 (17)Zn1—O7—H7A116 (2)
N2—C7—C6115.03 (17)Zn1—O7—H7B118 (2)
C8—C7—C6123.26 (17)H7A—O7—H7B105 (3)
C7—C8—C9120.09 (17)O4—Zn1—N298.18 (7)
C7—C8—H8120O4—Zn1—O790.28 (6)
C9—C8—H8120N2—Zn1—O791.88 (6)
C11—C9—C8117.48 (18)O4—Zn1—O1115.06 (6)
C11—C9—C10120.98 (18)N2—Zn1—O1146.72 (6)
C8—C9—C10121.54 (18)O7—Zn1—O189.42 (6)
C9—C10—H10C109.5O4—Zn1—N1103.76 (6)
C9—C10—H10B109.5N2—Zn1—N178.38 (6)
H10C—C10—H10B109.5O7—Zn1—N1163.82 (7)
C9—C10—H10A109.5O1—Zn1—N191.77 (6)
H10C—C10—H10A109.5
N1—C1—C2—C31.2 (3)C6—C7—N2—Zn13.6 (2)
C1—C2—C3—C51.2 (3)O3—N3—O1—Zn1179.98 (15)
C1—C2—C3—C4179.8 (2)O2—N3—O1—Zn10.18 (19)
C2—C3—C5—C60.1 (3)O6—N4—O4—Zn1176.91 (15)
C4—C3—C5—C6179.08 (19)O5—N4—O4—Zn13.7 (2)
C3—C5—C6—N11.1 (3)N4—O4—Zn1—N2147.48 (13)
C3—C5—C6—C7178.21 (18)N4—O4—Zn1—O7120.58 (14)
N1—C6—C7—N22.1 (2)N4—O4—Zn1—O131.09 (15)
C5—C6—C7—N2178.61 (18)N4—O4—Zn1—N167.52 (14)
N1—C6—C7—C8176.59 (18)C12—N2—Zn1—O473.10 (18)
C5—C6—C7—C82.7 (3)C7—N2—Zn1—O4107.81 (14)
N2—C7—C8—C90.7 (3)C12—N2—Zn1—O717.46 (18)
C6—C7—C8—C9177.87 (18)C7—N2—Zn1—O7161.64 (15)
C7—C8—C9—C110.7 (3)C12—N2—Zn1—O1109.26 (19)
C7—C8—C9—C10179.82 (19)C7—N2—Zn1—O169.83 (18)
C8—C9—C11—C121.3 (3)C12—N2—Zn1—N1175.56 (18)
C10—C9—C11—C12179.2 (2)C7—N2—Zn1—N15.34 (14)
C9—C11—C12—N20.6 (3)N3—O1—Zn1—O4170.58 (10)
C2—C1—N1—C60.0 (3)N3—O1—Zn1—N212.00 (17)
C2—C1—N1—Zn1174.67 (16)N3—O1—Zn1—O780.55 (12)
C5—C6—N1—C11.1 (3)N3—O1—Zn1—N183.32 (12)
C7—C6—N1—C1178.23 (17)C1—N1—Zn1—O483.06 (18)
C5—C6—N1—Zn1174.17 (14)C6—N1—Zn1—O4102.12 (14)
C7—C6—N1—Zn16.5 (2)C1—N1—Zn1—N2178.76 (19)
C11—C12—N2—C70.8 (3)C6—N1—Zn1—N26.43 (14)
C11—C12—N2—Zn1178.30 (16)C1—N1—Zn1—O7127.3 (2)
C8—C7—N2—C121.4 (3)C6—N1—Zn1—O747.5 (3)
C6—C7—N2—C12177.27 (17)C1—N1—Zn1—O133.29 (18)
C8—C7—N2—Zn1177.75 (14)C6—N1—Zn1—O1141.52 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4i0.85 (3)1.90 (3)2.724 (2)163 (3)
O7—H7B···O3ii0.87 (4)1.94 (4)2.799 (2)174 (3)
C5—H5···O2iii0.932.533.420 (2)161
C8—H8···O2iii0.932.363.230 (2)156
C11—H11···O6iv0.932.443.284 (3)151
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(NO3)2(C12H12N2)(H2O)]
Mr391.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.9266 (5), 8.5717 (3), 16.8073 (7)
β (°) 97.873 (4)
V3)1559.33 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.5 × 0.4 × 0.31
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.460, 0.596
No. of measured, independent and
observed [I > 2σ(I)] reflections
16739, 4193, 3596
Rint0.054
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.084, 1.08
No. of reflections4193
No. of parameters227
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.65

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.1157 (16)Zn1—O22.5143 (16)
Zn1—N22.0727 (17)Zn1—O42.0340 (15)
Zn1—O12.0965 (15)Zn1—O72.0752 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4i0.85 (3)1.90 (3)2.724 (2)163 (3)
O7—H7B···O3ii0.87 (4)1.94 (4)2.799 (2)174 (3)
C5—H5···O2iii0.932.533.420 (2)161
C8—H8···O2iii0.932.363.230 (2)156
C11—H11···O6iv0.932.443.284 (3)151
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x1/2, y1/2, z1/2.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch for financial support.

References

First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.  Web of Science CSD CrossRef CAS Google Scholar
First citationBellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114–3122.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352–m353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.  Web of Science CSD CrossRef CAS Google Scholar
First citationWillett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155–m156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds