organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N-(3-methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 November 2011; accepted 8 November 2011; online 12 November 2011)

In the mol­ecular structure of the title compound, C14H12ClNO, the meta-Cl atom in the benzoyl ring is positioned syn to the C=O bond, while the meta-methyl group in the aniline ring is positioned anti to the N—H bond. The two aromatic rings make a dihedral angle of 77.4 (1)°. In the crystal, the molecules are linked by N—H⋯O hydrogen bonds, forming C(4) chains propagating in [010].

Related literature

For preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o949.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]) and on N-chloro-amides, see: Gowda & Weiss (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Orthorhombic, P b c n

  • a = 9.4032 (3) Å

  • b = 10.0963 (2) Å

  • c = 25.9904 (7) Å

  • V = 2467.46 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.38 × 0.24 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.921, Tmax = 0.988

  • 39014 measured reflections

  • 3440 independent reflections

  • 1666 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.191

  • S = 1.02

  • 3440 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.10 2.938 (3) 163
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2008; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylamides (Gowda & Weiss, 1994), in the present work, the crystal structure of 3-Chloro-N-(3-methylphenyl)benzamide (I) has been determined (Fig.1).

In (I), the meta-Cl atom in the benzoyl ring is positioned syn to the C=O bond, while the meta-methyl group in the anilino ring is positioned anti to the N—H bond, the N—H and C=O bonds in the C—NH—C(O)—C segment being anti to each other. Further, the two aromatic rings make the dihedral angle of 77.4 (1)°, compared to the values of 9.1 (2)° and 7.3 (3)° in the two independent molecules of 3-chloro-N-(3-chlorophenyl)benzamide (Gowda et al., 2008).

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the b-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2008); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloro-amides, see: Gowda & Weiss (1994).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Plate like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Structure description top

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2008; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylamides (Gowda & Weiss, 1994), in the present work, the crystal structure of 3-Chloro-N-(3-methylphenyl)benzamide (I) has been determined (Fig.1).

In (I), the meta-Cl atom in the benzoyl ring is positioned syn to the C=O bond, while the meta-methyl group in the anilino ring is positioned anti to the N—H bond, the N—H and C=O bonds in the C—NH—C(O)—C segment being anti to each other. Further, the two aromatic rings make the dihedral angle of 77.4 (1)°, compared to the values of 9.1 (2)° and 7.3 (3)° in the two independent molecules of 3-chloro-N-(3-chlorophenyl)benzamide (Gowda et al., 2008).

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the b-axis. Part of the crystal structure is shown in Fig. 2.

For preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2008); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloro-amides, see: Gowda & Weiss (1994).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines.
3-Chloro-N-(3-methylphenyl)benzamide top
Crystal data top
C14H12ClNOF(000) = 1024
Mr = 245.70Dx = 1.323 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6149 reflections
a = 9.4032 (3) Åθ = 2.2–29.5°
b = 10.0963 (2) ŵ = 0.29 mm1
c = 25.9904 (7) ÅT = 298 K
V = 2467.46 (11) Å3Plate, colourless
Z = 80.38 × 0.24 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3440 independent reflections
Radiation source: fine-focus sealed tube1666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 10.4340 pixels mm-1θmax = 29.5°, θmin = 2.7°
ω scansh = 1313
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 1414
Tmin = 0.921, Tmax = 0.988l = 3636
39014 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.6744P]
where P = (Fo2 + 2Fc2)/3
3440 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H12ClNOV = 2467.46 (11) Å3
Mr = 245.70Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 9.4032 (3) ŵ = 0.29 mm1
b = 10.0963 (2) ÅT = 298 K
c = 25.9904 (7) Å0.38 × 0.24 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3440 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
1666 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.988Rint = 0.072
39014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
3440 reflectionsΔρmin = 0.24 e Å3
154 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2146 (3)0.4686 (2)0.23782 (10)0.0575 (6)
C20.1595 (3)0.5148 (2)0.18676 (10)0.0559 (6)
C30.1825 (3)0.4345 (3)0.14430 (10)0.0615 (7)
H3A0.22720.35300.14830.074*
C40.1393 (3)0.4751 (3)0.09637 (10)0.0657 (7)
C50.0675 (3)0.5920 (3)0.08959 (11)0.0743 (8)
H5A0.03740.61790.05700.089*
C60.0407 (3)0.6699 (3)0.13170 (13)0.0764 (8)
H6A0.00990.74840.12770.092*
C70.0881 (3)0.6333 (2)0.18017 (11)0.0657 (7)
H7A0.07180.68840.20820.079*
C80.3209 (3)0.5467 (2)0.31904 (10)0.0546 (6)
C90.2617 (3)0.4605 (2)0.35419 (10)0.0588 (6)
H9A0.18220.41090.34510.071*
C100.3201 (3)0.4473 (2)0.40297 (10)0.0601 (7)
C110.4389 (3)0.5208 (3)0.41499 (11)0.0719 (8)
H11A0.47970.51280.44740.086*
C120.4979 (3)0.6061 (3)0.37956 (13)0.0770 (8)
H12A0.57820.65500.38830.092*
C130.4390 (3)0.6196 (3)0.33154 (11)0.0665 (7)
H13A0.47880.67750.30770.080*
C140.2552 (4)0.3530 (3)0.44195 (12)0.0796 (9)
H14C0.30880.35650.47340.095*
H14B0.25720.26440.42850.095*
H14A0.15860.37840.44860.095*
N10.2606 (2)0.56520 (19)0.26937 (8)0.0600 (6)
H1N0.25290.64530.25850.072*
O10.2191 (2)0.35053 (16)0.24849 (7)0.0776 (6)
Cl10.17750 (10)0.37730 (9)0.04296 (3)0.0932 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0787 (16)0.0375 (13)0.0563 (15)0.0021 (11)0.0064 (13)0.0007 (10)
C20.0672 (15)0.0420 (12)0.0585 (15)0.0051 (12)0.0003 (12)0.0033 (11)
C30.0768 (17)0.0486 (14)0.0591 (16)0.0002 (12)0.0029 (13)0.0033 (12)
C40.0783 (17)0.0599 (16)0.0590 (17)0.0098 (14)0.0038 (13)0.0027 (12)
C50.087 (2)0.0708 (18)0.0650 (18)0.0045 (16)0.0159 (15)0.0150 (15)
C60.0796 (19)0.0596 (16)0.090 (2)0.0089 (14)0.0155 (17)0.0102 (16)
C70.0780 (18)0.0488 (14)0.0702 (18)0.0001 (13)0.0028 (14)0.0026 (12)
C80.0717 (16)0.0376 (12)0.0546 (15)0.0096 (11)0.0009 (12)0.0013 (10)
C90.0708 (16)0.0442 (13)0.0615 (16)0.0051 (12)0.0008 (13)0.0018 (11)
C100.0785 (18)0.0481 (14)0.0538 (15)0.0142 (13)0.0031 (13)0.0001 (11)
C110.0861 (19)0.0670 (17)0.0626 (17)0.0130 (16)0.0118 (15)0.0082 (14)
C120.085 (2)0.0655 (18)0.081 (2)0.0042 (15)0.0085 (16)0.0060 (16)
C130.0766 (18)0.0520 (15)0.0708 (18)0.0030 (13)0.0031 (15)0.0007 (13)
C140.100 (2)0.0742 (19)0.0640 (18)0.0066 (16)0.0039 (17)0.0155 (15)
N10.0853 (15)0.0348 (10)0.0599 (13)0.0008 (10)0.0027 (11)0.0053 (9)
O10.1386 (18)0.0328 (9)0.0615 (12)0.0018 (10)0.0036 (11)0.0041 (8)
Cl10.1290 (8)0.0918 (7)0.0588 (5)0.0005 (5)0.0013 (4)0.0071 (4)
Geometric parameters (Å, º) top
C1—O11.225 (3)C8—C91.379 (3)
C1—N11.345 (3)C8—N11.422 (3)
C1—C21.499 (4)C9—C101.388 (4)
C2—C71.383 (3)C9—H9A0.9300
C2—C31.386 (4)C10—C111.377 (4)
C3—C41.373 (4)C10—C141.518 (4)
C3—H3A0.9300C11—C121.377 (4)
C4—C51.371 (4)C11—H11A0.9300
C4—Cl11.741 (3)C12—C131.372 (4)
C5—C61.371 (4)C12—H12A0.9300
C5—H5A0.9300C13—H13A0.9300
C6—C71.386 (4)C14—H14C0.9600
C6—H6A0.9300C14—H14B0.9600
C7—H7A0.9300C14—H14A0.9600
C8—C131.371 (4)N1—H1N0.8600
O1—C1—N1123.8 (2)C8—C9—C10120.4 (3)
O1—C1—C2121.0 (2)C8—C9—H9A119.8
N1—C1—C2115.2 (2)C10—C9—H9A119.8
C7—C2—C3118.9 (2)C11—C10—C9118.4 (3)
C7—C2—C1123.1 (2)C11—C10—C14120.8 (3)
C3—C2—C1118.0 (2)C9—C10—C14120.7 (3)
C4—C3—C2120.2 (2)C10—C11—C12120.8 (3)
C4—C3—H3A119.9C10—C11—H11A119.6
C2—C3—H3A119.9C12—C11—H11A119.6
C5—C4—C3121.3 (3)C13—C12—C11120.5 (3)
C5—C4—Cl1119.2 (2)C13—C12—H12A119.8
C3—C4—Cl1119.6 (2)C11—C12—H12A119.8
C4—C5—C6118.8 (3)C8—C13—C12119.3 (3)
C4—C5—H5A120.6C8—C13—H13A120.4
C6—C5—H5A120.6C12—C13—H13A120.4
C5—C6—C7120.9 (3)C10—C14—H14C109.5
C5—C6—H6A119.6C10—C14—H14B109.5
C7—C6—H6A119.6H14C—C14—H14B109.5
C2—C7—C6119.9 (3)C10—C14—H14A109.5
C2—C7—H7A120.0H14C—C14—H14A109.5
C6—C7—H7A120.0H14B—C14—H14A109.5
C13—C8—C9120.6 (2)C1—N1—C8125.9 (2)
C13—C8—N1117.9 (2)C1—N1—H1N117.1
C9—C8—N1121.5 (2)C8—N1—H1N117.1
O1—C1—C2—C7147.5 (3)C13—C8—C9—C100.7 (4)
N1—C1—C2—C734.1 (4)N1—C8—C9—C10178.0 (2)
O1—C1—C2—C332.8 (4)C8—C9—C10—C110.8 (4)
N1—C1—C2—C3145.6 (2)C8—C9—C10—C14179.8 (2)
C7—C2—C3—C42.4 (4)C9—C10—C11—C120.4 (4)
C1—C2—C3—C4177.3 (2)C14—C10—C11—C12179.8 (3)
C2—C3—C4—C52.9 (4)C10—C11—C12—C130.1 (4)
C2—C3—C4—Cl1176.50 (19)C9—C8—C13—C120.1 (4)
C3—C4—C5—C60.9 (4)N1—C8—C13—C12178.6 (2)
Cl1—C4—C5—C6178.5 (2)C11—C12—C13—C80.3 (4)
C4—C5—C6—C71.5 (5)O1—C1—N1—C80.1 (4)
C3—C2—C7—C60.0 (4)C2—C1—N1—C8178.2 (2)
C1—C2—C7—C6179.7 (2)C13—C8—N1—C1136.5 (3)
C5—C6—C7—C22.0 (4)C9—C8—N1—C144.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.102.938 (3)163
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)9.4032 (3), 10.0963 (2), 25.9904 (7)
V3)2467.46 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.38 × 0.24 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.921, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
39014, 3440, 1666
Rint0.072
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.191, 1.02
No. of reflections3440
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.102.938 (3)163.0
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

LK and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10) for financial support and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds